药物化学
- 格式:pdf
- 大小:247.02 KB
- 文档页数:2
名词解释:药物化学(medicinal chemistry):研究药物设计优化,药代学和药效学和新药的合成。
药效学(pharmacokinamics):研究药物和细胞相互作用机理。
药代学:研究机体对药物处置过程(吸收、分布、代谢、排泄)的动态变化。
药物动力学:研究人体不同位点上药物随着时间变化的浓度变化关系。
药物代谢动力学(pharmacokinetics):定量研究药物在生物体内吸收、分布、代谢和排泄规律,并运用数学原理和方法阐述血药浓度随时间变化的规律的一门学科。
药物(drug):能影响机体生理、生化和病理过程,用以预防、诊断、治疗疾病和计划生育的化学物质。
拮抗剂(antagonists):与受体结合后,不能诱导产生生物活性变化的构象变化的化合物。
激动剂(agonists):能够诱导受体构象变化而引起生物活性的化合物。
竞争性拮抗剂(competitive antagonist):与相应激动剂相互竞争相同受体的拮抗剂。
翻译药物化学(medicinal chemistry)拮抗剂(antagonists)激动剂(agonists)抑制剂(inhibitor)受体(receptor)药物代谢动力学(pharmacokinetics)药效学(pharmacokinamics)阿司匹林(aspirin)临床试验(Clinical Trials)先导化合物(Lead compounds)填空题第一章:药物化学介绍药物如何改变社会结构:①改善了生活质量②延长了平均寿命为什么药物化学面临更大的挑战①由于过度使用抗生素,细菌产生耐药性②由于预期寿命的增加,癌症和神经退行性等老年病开始流行。
③新出现的疾病,特别是由病毒引起④改善生活质量类药物的需求好药的标准:没有毒性或副作用;容易摄入;能发挥功效普遍接受的坏药:吗啡、酒精、尼古丁、海洛因药物与毒物阿司匹林对人体是药物,对细菌是毒物;高剂量或者长期使用,药物变成毒物。
什么是药物化学
药物化学是一门研究药物的化学性质、结构和生物活性的学科。
它涉及新药研发、药物作用机制、药物代谢、药物毒性以及药物化学性质等方面的研究。
药物化学在现代医药领域中起着至关重要的作用,因为它有助于科学家了解药物如何与生物体相互作用,从而为药物设计和优化提供基础。
药物化学的研究领域包括:
1.药物设计:通过计算机辅助药物设计等技术,研究人员可以预测药物的结构和活性,从而优化现有药物或开发新药。
2.药物合成:研究和发展新的合成方法,以制备具有特定生物活性的药物。
3.药物代谢:研究药物在生物体内的转化过程,包括生物利用度、药物动力学和代谢产物的研究。
4.药物毒性:研究药物在过量或长期使用时对人体的有害作用,以便为药物安全性和合理用药提供依据。
5.药物化学性质:研究药物的化学结构与生物活性之间的关系,以改进药物的性能和疗效。
6.药物作用机制:探讨药物如何与生物靶点相互作用,从而影响生物体的生理功能。
药物化学在我国的发展具有重要意义,因为它有助于我国医药产业的创新和发展。
通过药物化学研究,可以推动我国新药研发水平的
提高,为临床治疗提供更多高效、安全和经济的药物。
此外,药物化学在药物生产和质量控制方面也发挥着关键作用,确保药物的安全生产和有效使用。
总之,药物化学是一门具有重要意义的学科,它为药物研发、生产和临床应用提供了理论基础。
通过药物化学研究,我们可以更好地了解药物的生物活性和作用机制,为人类健康事业作出贡献。
《药物化学》电子教案第一章:药物化学概述1.1 课程介绍了解药物化学的定义、内容、研究方法和意义。
掌握药物化学的发展历程和现状。
1.2 药物的分类了解药物的分类方法和各类药物的特点。
掌握常见药物的分类及其代表药物。
1.3 药物的命名学习药物的命名原则和方法。
掌握常见药物的命名规则及其命名示例。
第二章:药物的化学结构与生物活性2.1 药物的化学结构了解药物的化学结构与生物活性之间的关系。
学习药物的化学结构特点及其对生物活性的影响。
2.2 药物的生物活性学习药物的生物活性评价方法和指标。
掌握药物的生物活性与化学结构之间的关系。
2.3 药物的构效关系学习药物的构效关系概念及其研究方法。
掌握药物的构效关系对药物设计和优化的重要性。
第三章:药物的合成方法与合成策略3.1 药物的合成方法学习药物的合成方法及其特点。
掌握常见药物合成方法的选择和应用。
3.2 药物的合成策略学习药物的合成策略及其意义。
掌握药物的合成策略在药物研发中的应用。
3.3 药物合成的优化学习药物合成的优化方法及其原则。
掌握药物合成的优化对提高药物产率和纯度的重要性。
第四章:药物的代谢与药效学4.1 药物的代谢了解药物的代谢途径和代谢酶系。
学习药物代谢的影响因素及其临床意义。
4.2 药物的药效学学习药物的药效学参数及其意义。
掌握药物的药效学与药物设计和应用之间的关系。
4.3 药物的毒理学学习药物的毒理学特点及其影响因素。
掌握药物的毒性评价方法和安全性评估。
第五章:药物设计及应用实例5.1 药物设计概述了解药物设计的意义和方法。
学习药物设计的策略和步骤。
5.2 抗炎药物的设计与应用学习抗炎药物的设计原理及其应用实例。
掌握抗炎药物的分类和作用机制。
5.3 心血管药物的设计与应用学习心血管药物的设计原理及其应用实例。
掌握心血管药物的分类和作用机制。
第六章:药物的化学合成反应6.1 碳碳键的形成学习卤代烃、烯烃和炔烃的合成反应。
掌握常见碳碳键形成反应的机理和应用。
1、药物的名称有国际非专利药品名称(INN)、通用名、化学名、商品名四大类型。
二、麻醉药一、全身麻醉药异氟烷、盐酸氯胺酮. 盐酸氯胺酮*:①含氯苯、甲氨基、环己酮②1个手性碳原子,具旋光性,右旋体的活性强,用外消旋体。
③代谢:氮上脱去甲基,生成去甲氯胺酮,有镇痛作用。
氟烷:本品为无色澄明易流动的液体,不易燃、易爆,遇光、热和湿空气能缓缓分解。
本品用于全身麻醉和诱导麻醉,但对肝脏有一定损害。
二、局部麻醉药1.分类:①芳酸酯类(盐酸普鲁卡因、盐酸丁卡因)②酰胺类(盐酸利多卡因)③氨基醚类④氨基酮类⑤其他类2.盐酸普鲁卡因** :①属于芳酸酯类,含有酯键,易被水解。
②有芳伯氨基,易被氧化变色,具重氮化-偶合反应。
3.盐酸丁卡因:①酯的结构易水解。
②无芳伯氨基,氮原子上连有正丁基,较稳定,一般不易氧化变色。
4.盐酸利多卡因** :①酰胺键,但邻位有两个甲基,空间位阻,对酸和碱较稳定。
②叔胺结构,有生物碱样性质。
药物化学(三)镇静催眠药、抗癫痫药和抗精神失常药一、镇静催眠药分类:巴比妥类(苯巴比妥)、苯二氮卓类(地西泮)、氨基甲酸酯类(甲丙胺酯—安宁)及其他类。
1、苯巴比妥*:5-乙基,5-苯基,丙二酰脲性质:①加热能升华,不溶于水,含硫巴比妥类药物有不适之臭。
一般较稳定,在通常情况下其环不会破裂。
②弱酸性,为丙二酰脲的衍生物。
比碳酸的酸性弱,钠盐遇CO2不稳定。
注射液(其在60%丙二醇水溶液中有一定的稳定性)不与酸性药物配伍使用。
③水解性,具有酰亚胺结构,易发生水解开环,所以其钠盐注射剂要配成粉针剂。
④成盐反应,水溶性钠盐可与某些重金属离子形成难溶性盐类,用于鉴别巴比妥类药物。
2、.硫喷妥钠的作用特点*系异戊巴比妥2-位氧原子被取代得到的药物,3、.巴比妥类药物构效关系*:1位的氧原子被硫取代起效快。
R2以甲基取代起效快。
若R(R1)为H原子则无活性,应有2~5碳链取代,或一为苯环取代,R和R1的总碳数为4~8最好。
药物化学考试重点总结
一、药物化学基础知识
1. 药物的分类与作用机制:了解各类药物的基本作用机制和分类,如抗生素、抗肿瘤药、抗炎药等。
2. 药物的化学结构与性质:理解药物的化学结构与其理化性质、稳定性及生物活性的关系。
3. 药物代谢:掌握药物在体内的代谢过程,包括代谢酶及代谢产物的性质和作用。
二、药物合成与工艺
1. 药物合成方法:掌握常见的药物合成方法和技术,如还原反应、氧化反应、酯化反应等。
2. 药物合成工艺:理解工业化生产中药物的合成工艺流程及优化方法。
3. 药物合成路线的设计与选择:了解药物合成路线的评价标准,掌握设计药物合成路线的思路与方法。
三、药物分析
1. 药物分析方法:掌握药物分析中常用的检测方法和技术,如色谱法、光谱法等。
2. 药物质量控制:理解药物质量控制的标准和要求,掌握药品质量控制的常用方法。
3. 药物制剂分析:了解药物制剂的分析方法,掌握药物制剂的质量控制标准。
四、药物设计与新药开发
1. 药物设计的原理与方法:掌握基于结构的药物设计、基于片段的药物设计等原理与方法。
2. 新药发现的途径与方法:了解新药发现的途径和策略,如高通量筛选、虚拟筛选等。
3. 新药开发的流程与评估:理解新药开发的流程和评估标准,掌握新药开发的风险与机遇。
1、药物化学:是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科。
特点:综合性、边缘性、交叉性,专业基础课。
2、激动剂是能激活受体的配体.对相应的受体有较强的亲和力和内在活性. 拮抗剂能阻断受体活性的配体,有较强的亲和力而无内在活性.3、前药:前体药物(简称前药)是一类体外活性较小或无活性,在体内经酶或非酶作用释放出活性物质(即原药,又称母药)以发挥药理作用的化合物。
例:卤加比,载体联结前药。
二苯基甲叉基增加药物的脂溶性,更易通过血脑屏障进入中枢神经系统。
4、软药(soft drugs):指本身具有治疗作用的药物,能根据预见的代谢途径和可控制的速度进行代谢分布,在发挥它的治疗作用后即代谢为无毒物质排出体外的药物。
与之相对的是硬药。
例:艾司洛尔(Esmolol):血浆半衰期8min,用于室性心律失常,急性心肌局部缺血氟司洛尔,半衰期7min,作用强于艾司洛尔10~50倍。
硬药(Hard drugs):指具有发挥药物作用所必需的结构特征的化合物,该化合物在生物体内不发生代谢或转化,可避免产生某些毒性代谢产物。
(临床上使用的绝大多数是软药,少数是前药。
前药必须在体内转化成有活性的化合物才算真正的药物。
软药是代谢失活过程,前药是代谢活化过程。
)5、生物电子等排体是指既符合电子等排体的定义,又具有相似的或相反生物学作用的化合物。
运用生物电子等排体的概念不但可设计出具有与原药物相同药理作用的新药,而且还可生产该药物的拮抗药,这是因为化学结构高度近似的药物常能与同一受体或酶结合引起相似的效应(拟似药),或相反地起抑制的作用(拮抗药)。
以乙酰胆碱结构类似物为例,其中氨甲胆碱、毒蕈碱都是拟胆碱药。
实际上,电子等排体和生物电子等排体的概念在分子药理学上有广泛的应用,尤其是借变异的方法或分子改造来设计新的药物时,更经常涉及生物电子等排体。
6、生物电子等排体原理:在结构优化研究中,生物电子等排原理(bioisosterism)是应用较多的一种方法即在基本结构的可变部分,以电子等排体(isostere)相互置换,对药物进行结构改造.经典的生物等排体是指具有相同外层电子的原子或原子团,在生物领域里表现为生物电子等排.凡具有相似的物理和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体.以后扩大范围,又将体积、电负性和立体化学等相近似的原子或原子团也包括在内,称为非经典的电子等排体.7、离子通道:是一类跨膜糖蛋白,能在细胞膜上形成亲水性孔道,以转运带电离子;通道蛋白通常是由多个亚基构成的复合体;通过其开放或关闭,来控制膜内外各种带电离子的流向和流量,从而改变膜内外电位差(门控作用),以实现其产生和传导电信号的生理功能。
1. 药物(drug):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。
2. 药物化学(medicinal chemistry):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科,是药学领域中重要的带头学科以及极具朝气的朝阳学科。
3. 国际非专有药名(international non-proprietary names for pharmaceutical substance,INN):是新药开发者在新药研究时向世界卫生组织(WHO)申请,由世界卫生组织批准的药物的正式名称并推荐使用。
该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材及资料中以及在药品说明书中标明的有效成分的名称。
在复方制剂中只能用它作为复方组分的名称。
目前,INN名称已被世界各国采用。
4. 中国药品通用名称(Chinese Approved Drug Names,CADN):依据INN的原则,中华人民共和国的药政部门组织编写了《中国药品通用名称》(CADN),制定了药品的通用名。
通用名是中国药品命名的依据,是中文的INN。
CADN主要有以下的一些规则:中文名使用的词干与英文INN对应,音译为主,长音节可简缩,且顺口;简单有机化合物可用其化学名称。
5. 巴比妥类药物(barbiturates agents):具有5,5二取代基的环丙酰脲结构的一类镇静催眠药。
20世纪初问市的一类药物,主要由于5,5取代基的不同,有数十个各具药效学和药动学特色的药物供使用。
因毒副反应较大,其应用已逐渐减少。
6. 内酰胺-内酰亚胺醇互变异构(lactam- lactim tautomerism):类似酮-烯醇式互变异构,酰胺存在酰胺-酰亚胺醇互变异构。
即酰胺羰基的双键转位,羰基成为醇羟基,酰胺的碳氮单键成为亚胺双键,两个异构体间互变共存。
药物化学一、药物化学的概述药物化学是药学的一个重要分支领域,它研究药物的化学性质、结构与活性之间的关系,以及药物的合成和改良。
药物化学在药学领域起着至关重要的作用,它对药物的设计、开发和优化具有重要的指导意义。
药物化学的发展促进了药物科学和医学的进步,为人类健康事业做出了重要的贡献。
二、药物的化学性质和结构药物的化学性质决定了它们在体内的吸收、分布、代谢和排泄等药代动力学过程,从而影响药物的疗效和毒性。
药物的分子结构决定了药物与生物体内分子的相互作用方式。
药物的分子结构通常由若干功能基团组成,这些功能基团可以与生物体内分子发生特异性的相互作用。
三、药物的合成药物的合成是药物化学的核心研究内容之一。
药物的合成通常包括合成路线的设计、反应条件的筛选和合成步骤的优化等过程。
药物化学家通过合理设计合成路线,选取合适的反应条件和催化剂,使用合适的合成方法和技术,来合成目标药物化合物。
药物的合成工艺主要考虑以下几个方面:高选择性、高产率、绿色环保和低成本。
四、药物的改良药物的改良是药物化学的重要任务之一。
药物化学家通过对药物分子结构进行调整和修饰,以改善药物的药代动力学性质和药效学性质,并减少药物的不良反应和毒性。
药物的改良可以通过合理设计和合成结构类似的新化合物、改变药物的物理化学性质和溶解度、优化药物的靶向性和选择性,以及改进药物的制剂和给药途径等方面来实现。
五、药物化学在药物研发中的作用药物化学是药物研发过程中不可或缺的一环。
药物化学在药物研发中的作用主要体现在以下几个方面:1.药物合成的设计和优化,能够提高药物的产率和纯度,缩短合成时间,降低制造成本;2.药物分子结构改良,能够提高药物的生物利用度、溶解度和稳定性,减少不良反应;3.药物分子的结构活性关系研究,能够揭示药物与生物分子的相互作用机制,为药物设计和优化提供依据;4.药物合成工艺和制剂的优化,能够改善药物的体外释放特性,提高药物的靶向性和选择性。
药物化学名词解释1、药物:以预防、诊断、治疗、缓减人的病痛、恢复健康为目的而使用的,有直接或者间接作用于人体的各种物品。
2、天然药物:从自然界中获取的某种药物。
例如植物药、动物药和矿物药等。
3、有机药物:主要含有有机化合物的药物。
4、无机药物:主要含有无机化合物的药物。
5、生物药物:利用生物体、生物组织或其成分等为原料,通过生物技术或生物工艺制备而成的药物。
6、合成药物:通过化学合成方法制备的药物。
7、抗生素:由微生物(包括细菌、真菌、放线菌属)产生的具有抗病原性或能抑制微生物生长的物质。
8、药物活性:药物对生物体产生作用的性质和能力。
9、药效学:研究药物对机体的作用及作用机制的学问。
10、药动学:研究机体对药物作用规律的科学。
11、生物药剂学:研究药物在体内的吸收、分布、代谢与排泄的学问。
12、稳定性:药物保持其质量不变的能力。
13、安全性:指按具体品种的药物安全性资料和临床药物毒性资料,对具体药品使用时可能出现的危险性做出评估,并提出相应的注意事项。
14、有效性:指在临床上判断一种药物是否有效,主要观察其是否降低了病人的发病率和/或死亡率,使病人的症状减轻,恢复健康。
药物化学名词解释和简答题一、名词解释1、药物化学:是一门以化学为基础,研究药物性质、作用机制、结构与活性关系以及药物制备和剂型设计的学科。
2、药效学:研究药物对生物体的作用机制,包括药物的作用靶点、作用方式、作用强度及作用时程。
3、药动学:研究药物在生物体内的吸收、分布、代谢和排泄过程,以及这些过程与药物效应的关系。
4、药物分析:研究药物的鉴别、杂质检查、含量测定等分析方法,以确保药物的质量和安全性。
5、药物设计:根据药物的化学结构和生物活性之间的关系,设计新的药物分子,以满足临床治疗的需要。
6、临床药理学:研究药物在人体内的药理作用、不良反应及药物相互作用等,为临床合理用药提供科学依据。
7、药剂学:研究药物的制备、加工、形态及质量控制等方面的知识,以确保药物的疗效和安全性。