通用版倾角传感器选型
- 格式:pdf
- 大小:154.16 KB
- 文档页数:4
工程倾角传感器解决方案引言工程倾角传感器是一种用于测量物体相对于地面的倾斜角度的传感器。
它可以帮助工程师和技术人员在建筑、道路建设、机械设备等领域准确地测量倾斜角度。
本文将介绍工程倾角传感器的工作原理、应用领域、解决方案等内容。
工程倾角传感器的工作原理工程倾角传感器主要基于MEMS技术(微机电系统技术)或倾角传感器芯片来实现。
该传感器能够通过内部的倾斜角度检测装置,测量物体相对于地面的倾斜角度。
倾角传感器主要由加速度计、陀螺仪和磁罗盘等部件组成,它们能够对三轴加速度、三轴角速度和三轴磁场进行监测,并通过算法计算出物体的倾斜角度。
工程倾角传感器的应用领域工程倾角传感器主要应用于以下几个领域:1. 建筑工程:在建筑工程中,工程倾角传感器可以用于测量墙体、地面、天花板等部件的倾斜角度,以确保建筑物的结构和平衡性。
2. 机械设备:在机械设备领域,工程倾角传感器可以用于测量各种设备的倾斜角度,如吊车、挖掘机、铲车等,以确保其工作平稳、安全。
3. 道路建设:在道路建设中,工程倾角传感器可以用于测量路面的倾斜角度,以确保道路平整度和排水系统的设计。
4. 水利工程:在水利工程中,工程倾角传感器可以用于监测水坝、堤坝等水利设施的倾斜情况,以预防地质灾害。
工程倾角传感器的解决方案工程倾角传感器的解决方案主要包括传感器选型、安装调试、数据采集分析等环节。
1. 传感器选型选择合适的工程倾角传感器对于确保测量精度至关重要。
工程师需要根据测量的精度要求、工作环境、通信协议等因素选取合适的传感器型号。
常见的工程倾角传感器有MEMS倾斜传感器、倾角测量仪、倾角传感器模块等,其测量精度一般可达0.1度至0.01度。
2. 安装调试工程倾角传感器的安装位置和安装角度对测量结果具有重要影响。
在安装时,需要确保传感器与被测物体平面垂直安装,并调试传感器的零位和灵敏度,以及校准传感器的零点漂移。
3. 数据采集分析工程倾角传感器通常具有模拟输出、数字输出或模拟数字混合输出等多种输出方式。
GUD90矿用本安型倾角传感器产品使用说明书2013年1月5日目录1. 概述 (3)1.1 主要用途及使用范围 (3)1.2 型号组成及代表意义 (3)1.3 使用环境条件 (3)2 结构特征与工作原理 (3)2.1 结构 (3)2.2 工作原理 (4)3 技术特性 (4)3.1 产品执行标准 (4)3.2 主要性能 (4)3.3 主要参数 (4)3.4尺寸重量 (4)3.4.1 尺寸 (4)3.4.2 重量 (4)4 安装、调试 (4)4.1 安装条件、技术要求 (4)5 使用、操作 (5)6 故障分析与排除 (5)7 注意事项 (5)8 运输、贮存 (6)9 开箱及检查 (6)10 订货 (6)使用本产品前,请详细阅读本说明书。
GUD90矿用本安型倾角传感器1.概述1.1主要用途及使用范围矿用本安型倾角传感器主要用于对煤矿井下工作面的液压支架的倾斜角度进行采集,并将采集到的角度以电流信号的方式传给液压支架控制分站。
1.2型号组成及代表意义1.3使用环境条件——环境温度-5℃~40℃;——海拔高度不超过2000m;——空气相对湿度不大于95%(25℃时);——在有瓦斯、煤尘爆炸危险的场所;——在无破坏绝缘的腐蚀性气体或蒸汽的场所;——在无显著振动和冲击的场所;——污染等级为3级;——安装类别为Ⅲ类。
2结构特征与工作原理2.1结构图1 结构图2.2工作原理指示环固定在液压支架上,当液压支架位移发生变化时带动指示环前后动作,指示环上封装有磁铁,在传感器杆体每0.05m处分别装有干黄管,当磁铁接近干簧管时,导致干簧管接通。
3技术特性3.1产品执行标准本产品执行标准GB3836-2010、Q/0104ZMD052—2013。
3.2主要性能--输入电压:DC12V;--工作电流:20mA;3.3主要参数3.3.1 X轴测量范围:-90°~+90°3.3.2 Y轴测量范围:-90°~+90°3.3.3 本安参数:a)Ui: 12V, Ii: 20mA;b)Ci: 0 nF, Li: 0 mH。
倾角传感器标准倾角传感器(Inclinometer)是一种用于测量物体倾斜角度或倾斜方向的传感器。
它能够检测物体相对于地平面的倾角大小和方向。
倾角传感器的标准通常包括以下要素:1. 测量范围:倾角传感器能够测量的倾角范围。
常见的范围有±45度、±90度等。
2. 分辨率:测量结果的最小可区分的角度差异。
常见的分辨率为0.1度、0.01度等。
3. 精度:倾角传感器测量结果与真实值之间的偏差。
通常用百分比或度数来表示。
精度越高,表示传感器的测量结果越接近真实值。
4. 输出方式:倾角传感器的输出方式可以是模拟信号,如电压或电流,也可以是数字信号,如RS485、CAN总线等。
不同输出方式适用于不同的应用场景。
5. 响应时间:传感器从感知到输出结果的时间。
通常以毫秒为单位。
较短的响应时间表示传感器能够更快地响应变化。
6. 环境适应能力:倾角传感器的工作环境适应能力,包括温度范围、湿度要求、抗震能力等。
7. 安装方式:倾角传感器可以通过不同的安装方式安装在不同的物体上,如挂接式、吸附式、螺纹固定式等。
8. 防护等级:倾角传感器的防护等级决定了它对外界环境的适应能力,如防尘、防水等级。
9. 电源要求:倾角传感器的电源要求,包括供电电压、功耗等。
10. 型号和规格:倾角传感器的型号和规格描述了具体的型号和尺寸信息,方便购买和安装。
根据不同的应用场景和需求,倾角传感器的标准可能会有所不同。
使用者在选择倾角传感器时,应根据具体需求和应用要求,选择合适的传感器。
倾角传感器的技术参数包括测量范围、测量精度、分辨率、测量方向、时间漂移、更新时间、上电启动时间、电源电压、信号输出、静态工作电流等。
此外,倾角传感器的技术参数还包括灵敏度误差、非线性、横轴误差、重复测量精度、温漂等。
具体来说,灵敏度误差取决于核心敏感器件的自身特性,与频率响应有关;非线性可以通过后续校正,取决于校正点的多少;横轴误差是指当传感器垂直于其灵敏轴方向施加一定的加速度或者倾斜一定的角度时耦合到传感器的输出信号上所产生的误差;重复测量精度取决于核心敏感器件的自身特性,不能通过后续修正措施来提高;温漂受温度影响半导体元器件会发生一些参数上的变化,会影响到传感器的测量精度和可靠性。
简述传感器选型的原则传感器作为信息采集的重要组成部分,其选型直接影响着系统的性能和稳定性。
本文将从传感器选型的原则、选择参数以及应用实例等方面进行详细阐述。
一、传感器选型的原则1. 适用性原则传感器选型首先需要考虑其适用性,即是否能够满足具体应用场景下的测量要求。
这包括测量范围、精度、灵敏度、响应时间等参数。
2. 可靠性原则传感器在工作过程中需要保证稳定可靠,因此可靠性也是选型时需要考虑的重要因素。
这包括抗干扰能力、长期稳定性、寿命等指标。
3. 经济性原则经济性是在满足适用和可靠性条件下尽可能降低成本的原则。
在选择传感器时需要考虑成本因素,并权衡其与其他指标之间的关系。
4. 互换性原则互换性是指同一类型传感器之间可以互相替代使用,具有相同或类似的特点和参数。
在实际应用中,考虑到维护和更换等问题,互换性也是一个重要的选型原则。
二、传感器选择参数1. 测量范围测量范围是指传感器能够测量的最大和最小值。
在选择传感器时需要根据具体应用场景确定所需的测量范围,并选择相应的传感器类型。
2. 精度精度是指传感器输出值与真实值之间的偏差。
在选择传感器时需要根据应用要求确定所需精度,并选择具有相应精度指标的传感器。
3. 灵敏度灵敏度是指传感器输出信号随被测量物理量变化的程度。
在选择传感器时需要考虑被测量物理量的变化幅度,并选择具有相应灵敏度指标的传感器。
4. 响应时间响应时间是指传感器从接收到输入信号到输出响应所需时间。
在选择传感器时需要根据实际应用场景确定所需响应时间,并选择具有相应响应时间指标的传感器。
5. 抗干扰能力抗干扰能力是指传感器工作时对外部干扰信号的抑制和排除能力。
在选择传感器时需要考虑实际工作环境中存在的干扰因素,并选择具有相应抗干扰能力指标的传感器。
三、应用实例以温度传感器为例,介绍传感器选型的具体步骤和方法。
1. 确定测量范围在选择温度传感器时需要确定所需测量范围,例如-40℃~100℃。
2. 确定精度要求根据实际应用场景确定所需精度要求,例如±0.5℃。
倾角传感器JRTD-X02-751特点·高稳定性的MEMS传感器·数字滚动和俯仰输出·RS-232通信接口·高分辨率和设置时间2应用·水平平台·精确倾斜测量·机械水平3工作原理倾角传感器JRTD-X02-75通过感知地球重力加速度在其测量轴上的分量大小,对载体倾斜角度的反应,产生相应变化的电信号,从而测量出物体角度信息。
倾角传感器一般有较稳定的零位置,可以较准确的测量绝对角度(相对零位),而不是通过积分计算而来,可以较大程度的避免误差积累。
其原理框图如图1所示。
AY=g*sin(β)其中AX、AY代表加速度传感器输出,g是以重力作为参考的加速度值,α、β是倾角。
α=sin-1(AX/g)β=sin-1(AY/g)加速度传感器输出的模拟信号经A/D转换器变换成数字信号,由微处理器进行计算出倾角α、β,通过RS232接口输出。
加速度传感器的灵敏度和零点漂移随着工作温度的变化而发生变化,但是这个变化是有规律的,加速度传感器的灵敏度随着温度的升高而减少,零点漂移随着温度的升高而增加或减少,倾角传感器内部增加一个温度传感器,对灵敏度和零点漂移进行补偿,由微处理器进行矫正,由于用微处理器会占用大量CPU时间和资源,节省资源常用EEPROM进行查表方法实现。
4技术指标倾角传感器JRTD-102-75技术指标如表1所示。
性能指标JRTD-102-75JRTD-202-75单位备注精度±0.4±0.2º()常温25ºC 角度范围±75±75(º)水平方向角度飘移w/Temp 1.50.7(º)达到±20ºC倾角角度分辨率0.0320.032(º)设定时间0.140.14s零位角度补偿<0.5<0.5(º)非线性度(±45º)<11%<0.3%常温25ºC 横向灵敏度1%1%典型值温度范围0~+700~+85ºCRS2329600bps9600bps bps电源电压8~308~30VDC电源电流6060mA外型尺寸10.21X5.74X3.1510.21X5.74X3.15cm重量9090g5外型结构倾角传感器JRTD-X02-75的外型结构如图2所示。
参数名称条件SCA100T-D01 SCA100T-D02 单位工作电压 4.75…5.25 4.75…5.25 V工作电流VDD=5V;无负载 4 4 mA工作温度-40…125 -40…125 degC倾角传感器测量量程+/-30 +/-90 度+/-0.5 +/-1.0 G频率响应-3dB 8…28 8…28 Hz零点输出环比输出VDD/2 VDD/2 V零点校正误差+/-0.11 +/-0.23 度零点数字输出1024 1024 LSB灵敏度 4 2 V/g在0…1度范围内70 35 mV/度灵敏度校正误差+/-0.5 +/-0.5 %数字灵敏度1638 819 LSB/g零点温漂-25…85degC +/-0.008 +/-0.0008 度/degC -40…85degC +/-0.86 +/-0.86 度灵敏度温漂-25…85degC +/-0.014 +/-0.014 %/degC -40…85degC -2.5…+1 -2.5…+1 %线性度测量范围内+/-0.11 +/-0.57 度数字分辨率11 11 Bits在0…1范围内0.035 0.07 度/LSB噪声密度DC…100Hz 0.0008 0.0008 度/√Hz模拟输出分辨率带宽10Hz 0.0025 0.0025 度环比误差VDD=4.75…5.25V +/-1 +/-1 %艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城/。
传感器选型计算公式(实用)传感器选型计算公式(实用)一、引言本文档旨在提供一些实用的传感器选型计算公式,以帮助选择合适的传感器用于特定应用。
以下是一些常见的传感器类型及其适用范围:- 温度传感器:用于测量温度- 压力传感器:用于测量压力- 加速度传感器:用于测量加速度- 光传感器:用于检测光线- 湿度传感器:用于测量湿度- 位移传感器:用于测量物体的位移二、传感器选型计算公式下面是一些常用的传感器选型计算公式,供参考:1. 温度传感器选型计算公式- 基于环境温度范围选择温度传感器:$T_{\text{sensor}} = T_{\text{operating}} + T_{\text{margin}}$其中:- $T_{\text{sensor}}$:传感器的工作温度范围- $T_{\text{operating}}$:预期的环境工作温度范围- $T_{\text{margin}}$:温度安全裕度,一般为正数- 基于测量精度选择温度传感器:$T_{\text{sensor}} = T_{\text{target}} \pm \Delta T$其中:- $T_{\text{sensor}}$:传感器的测量精度范围- $T_{\text{target}}$:目标测量温度- $\Delta T$:允许的温度误差范围2. 压力传感器选型计算公式- 基于压力范围选择压力传感器:$P_{\text{sensor}} = P_{\text{operating}} + P_{\text{margin}}$其中:- $P_{\text{sensor}}$:传感器的工作压力范围- $P_{\text{operating}}$:预期的环境工作压力范围- $P_{\text{margin}}$:压力安全裕度,一般为正数- 基于测量精度选择压力传感器:$P_{\text{sensor}} = P_{\text{target}} \pm \Delta P$其中:- $P_{\text{sensor}}$:传感器的测量精度范围- $P_{\text{target}}$:目标测量压力- $\Delta P$:允许的压力误差范围3. 其他传感器选型计算公式根据不同传感器的特性和应用需求,可以使用类似的方法选择合适的传感器,根据不同的目标和误差范围来计算传感器的选型参数。
特点- 高稳定性,优异的性价比- ±0.02°零点偏置和重复精度- 响应时 间0.3s@ t 90- ±0.3%FS的横轴误差- -40~85℃全温段漂移达±0.1°(选件)- 全灌胶密封,抗冲击,防护等级IP67- 参照执行近50个国内外的工业/军用标准概述SST200系列倾角传感器采用MEMS电容技术,结合专有的横轴误差校正、滤波处理、自动测试补偿技术、非线性校正以及各种CAE、EDA技术,满足各种恶劣环境下使用的倾角测量需求。
在可靠性与稳定性方面,SST200采用全灌胶密封、增强的PCBA设计、电源管理能力优化、增强的抗冲击和振动能力、30kg抗拉力的电缆线、运动模拟寿命测试、专利全自动测试技术,以及防止变形的(精密加工和高效的热处理工艺)铝合金外壳等,具有成熟和稳定的生产和测试工艺。
SST200系列产品还可以满足各种军事应用场合的苛刻要求,严格按照MIL、EN、IEC或GJB的相关标准进行严格的测试,在-40~85℃范围内的总温度漂移精度最高达到±0.1°。
- GB/T 191 SJ 20873-2003 倾斜仪、水平仪通用规范- JJF 1059-1999测量不确定度评定与表示- JJF 1116-2004线加速度计的精密离心机的校准规范- GJB 2786A-2009 军用软件开发通用要求- GJB 2884-1997三轴角运动模拟转台通用规范- GJB 450A-2004 装备可靠性通用要求- GJB-299C-2006 电子设备可靠性预计手册- GJB 7826 失效模式和效应分析程序- GJB1032 电子产品环境应力筛选方法- GJB150-3A 高温试验- GJB150-5A温度冲击试验- GJB150-12A沙尘试验- GJB150-18A冲击试验- GB/T 17626-2A 静电放电抗扰度试验- GB/T 17626-4A 电快速瞬变脉冲群抗扰度试验- GB/T 17626-6A传导骚扰抗扰度- GB/T 17626-11A 电压暂降、短时中断和电压变化的抗扰度- RoSH等参考标准- GBT 18459-2001 传感器主要静态性能指标计算方法- JJF 1094-2002 测量仪器特性评定- QJ 2318-92陀螺加速度计测试方法- GBT 14412-2005 机械振动与冲击 加速度计的机械安装- GJB 451 可靠性维修性保障性术语- GJB813-90 可靠性模型的建立和可靠性预计- GJB/Z35 元器件降额准则- GJB 909A 关键件和重要件的质量控制- GJB899 可靠性鉴定和验收试验- GJB150-4A 低温试验- GJB150-8A淋雨试验- GJB150-16A振动试验- GJB150-23A倾斜和摇摆试验- GB/T 17626-3A 射频电磁场辐射抗扰度试验- GB/T 17626-5A 浪涌(冲击)抗扰度试验- GB/T 17626-8A 工频磁场抗扰度试验- ISTA-2A国际安全运输标准- 航空航天- 工厂自动化- 仪器仪表- 船舶- 农业机械- 工程机械- 土木工程- 军工等应用江门市安泰电子有限公司 电话:0750-6655202 SST200倾角传感器技术参数表1技术参数表量程±5° ±10° ±15° ±30° ±45° ±60° ±90°(单轴)测量精度(25 ℃)±0.05° ±0.08° ±0.1° 温漂系数@ -20~65 ℃±0.004°/℃±0.005°/℃±0.009°/℃-40~85℃总温度漂移精度(可选)±0.1° ±0.2° 分辨力0.003°重复性±0.02°零点重复性±0.02°零点偏置±0.02°横轴误差±0.3%FS测量轴数单轴,双轴(±90°量程时仅提供单轴)数字输出SST250、SST260R S232(可选R S485、R S422)CAN2.0: 根据IS O11898-2 标准,传输速率5k~1MB i t/s, 可支持127个节点,内置高速光电隔离器模拟电压输出SST230、SST240 电压输出:0.5~4.5V DC 输出阻抗:0.3Ω负载阻抗:< 100Ω模拟电流输出SST210、SST220电流输出:4~20m A 输出阻抗:50MΩ负载阻抗:150~250Ω响应时间0.3s@t90 电磁兼容性依照GB17626绝缘电阻100MΩ平均无故障时间≥150000小时/次电源电压模拟电压和数字输出时:9~36V DC;消耗电流≤20m A 模拟电流输出时:16~36V DC;消耗电流≤40m A电源抑制比>85d B工作温度-40~85℃储存温度-40~100℃防护等级IP67外壳材料6061-T6铝合金连接器B inder 712型连接器(金属猪尾巴)电缆线抗30kg拉力的7芯屏蔽电缆冲击100g@11m s,三轴向(半正弦波)振动8g rm s,20~2000H z重量240g(不包括线缆和接头)数据格式:波特率115200bps,8个数据位,1个起始位,1个停止位,无奇偶校验,ACSII码江门市安泰电子有限公司 电话:0750-6655202 外形尺寸(mm)订货信息接线定义图1 Binder712型连接器插座引脚(从外看传感器)图 2 Binder712连接器插头表2 Binder712插座/金属猪尾巴的接线定义图1 Binder 712接插件的传感器尺寸图图 2 金属猪尾巴的传感器尺寸图江门市安泰电子有限公司 电话:0750-6655202 。
倾角传感器使用说明书一. 产品特点1.通过硅微机械传感器测量以水平面为参面的双轴倾角变化。
2.数据通讯RS232接口。
3.通过串口指令标定倾角水平零点。
4.开极电极角度门限输出。
二.产品描述***是双轴倾角传感器,通过测量静态重力加速度变化,转换成倾角变化。
测量输出传感器相对于水平面的倾斜和俯仰角度。
传感器附带角度开关量检测输出。
输出方式开极电极。
传感器角度响应速度5次/秒。
三. 要技术指标1.常规模式时主要指标(环境温度=20℃,电源=+12V)输出速度5次/秒单位测量范围双轴±60度分辨率±0.02 度精度(<±30°) <±0.3 度精度(<±60°)<±0.5 度非线性 ±1%重复性 ±0.05 度温度漂移 0.05°/℃2.其它指标(测试温度=20℃)3.工作参数极限值(注意:长期工作在极限参数条件下,将导致产品永久性不可恢复性损坏)最小最大单位工作温度-40 +100 ℃四.输出数据格式XW QJ02-01S上电工作后,等待命令,命令格式和输出格式如下:1.发送命令格式:字节位置 含义 数据 说明1,2 帧头 0xAA 0XAA3 数据长度 0x04 除帧头外数据长度4 传感器地址 0Xxx 232输出方式地址为25 命令 0x01 命令罗盘输出数据帧6 效验字 前面全部数据的异或结果2.接收输出格式:字节位置 含义 数据类型 说明1,2 帧头 0xAA,0xAA3 帧长 字节 除帧头外全部数据长度4 地址 字节 0Xxx(232输出方式地址为2)5 命令返回 字节 接收到的命令字返回6,7 保留8,9 保留10,11 X轴角度 整数 角度=整数/100(单位:度)*12,13 Y轴角度 整数 角度=整数/100(单位:度)14 保留15 校验 字节 前面14字节数据的异或效验结果 *注释说明:标准双字节整数,最高比特位=0,表示正数,最高比特位=1,表示负数。
传感器型号及选择概述本文档旨在提供有关传感器型号选择的基本指导,以帮助读者在设计和开发过程中选择适合其应用需求的传感器。
传感器选择的基本原则在选择传感器型号时,应考虑以下几个基本原则:1. 应用需求:了解应用的具体需求,包括测量物理量的种类、范围和准确度要求等。
这有助于缩小选择范围并找到最合适的传感器型号。
2. 传感器性能:评估传感器的性能参数,如灵敏度、分辨率、响应时间等。
这些参数将直接影响到传感器在实际应用中的准确度和可靠性。
3. 可用技术:了解不同传感器技术的特点和优势,例如光学传感器、压力传感器、温度传感器等。
选择符合应用需求的合适技术将有助于提高系统性能。
4. 成本考虑:考虑传感器的成本,包括购买成本、维护成本和更换成本等。
寻找性价比高的传感器型号可以帮助控制项目预算。
传感器型号选择的步骤选定了基本原则后,可以按照以下步骤进行传感器型号的选择:1. 确定测量物理量:确定需要测量的具体物理量,例如温度、压力、光照等。
2. 确定测量范围:根据应用需求确定物理量的测量范围。
这将有助于选择合适的传感器型号。
3. 评估传感器性能参数:根据测量需求,比较不同传感器的性能参数,如灵敏度、分辨率、精度等。
这可以通过参考传感器厂商的技术规格表或相关文献来获取信息。
4. 考虑环境因素:评估传感器将操作的环境因素,例如温度、湿度、电磁干扰等。
确保所选择的传感器型号在实际环境中能够正常工作。
5. 比较成本和可靠性:比较不同传感器型号的成本和可靠性。
这包括购买成本、维护成本以及传感器的寿命等方面。
6. 选择合适的传感器型号:综合考虑上述因素,选择合适的传感器型号,并确保它满足应用需求。
结论传感器型号的选择应基于应用的需求、传感器性能、可用技术和成本考虑等因素。
按照上述步骤进行选择将有助于找到最合适的传感器型号,并确保系统能够达到预期的性能和准确度要求。
希望本文档能够对读者在传感器选择方面提供帮助和指导。
T 21:41:33+02:00Type code B2N45H-Q20L60-2LI2-H1151Ident no.1534013Measuring range-45…45°Measuring range x-axis -45…45°measuring range y-axis -45…45°Repeatabilityð 0.2 % of measuring range |A - B|ð 0.1 %, after warm-up 0.5 h Absolute accuracy (at 25 °C)+/- 0.5 °Temperature coefficient typical 0.03 °/K Resolutionð 0.1 °Ambient temperature-30…+70 °COperating voltage 10…30VDC No-load current I 0ð 20 mA Rated insulation voltageð 0.5 kV Wire breakage / Reverse polarity protection yes/ yesOutput function 4-wire, analog output Current output4…20mA Load resistance current output ð 0.2 k òshort-circuit proof to U (= 10…30 VDC)Response time0.1 stime for the output signal to achieve 90% full scale if the angle changes from -45° to +45°Design rectangular, Q20L60Dimensions60 x 30 x 20 mm Housing material plastic, PC Connectionmale, M12 x 1Vibration resistance 55 Hz (1 mm)Shock resistance 30 g (11 ms)Protection class IP68 / IP69KMTTF203 years acc. to SN 29500 (Ed. 99) 40 °Cs Plastic, PCs Zero point calibration +/- 15°s Two analog outputs sMale M12 x 1Wiring diagramFunctional principleInclination is determined by a wear-free semi-conducting sensor element.T 21:41:33+02:00Mounting instructions / DescriptionTilt angleT 21:41:33+02:00AccessoriesType codeIdent no.Description Dimension drawingVB2-SP36999085Teach adapterSG-Q20L606901100Protective frame for Q20L60; protects against mechanical im-pact; stainless steelIM43-13-SR 7540041Limit value monitor; 1-channel; input 0/4…20 mA or 0/2…10V; supply of 2- or 3-wire transmitters/sensors; limit value ad-justment via teach button; three relay outputs with one NO contact each; removable terminal blocks; 27 mm wide; uni-versal voltage supply 20…250 VUC; further limit value moni-tors are described in our "Interface Technology" catalog.。