第17章 勾股定理单元复习测试A卷(含答案)
- 格式:doc
- 大小:129.50 KB
- 文档页数:7
人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)(本试卷3个大题,25个小题。
满分150分,考试时间120分钟。
)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10个小题,每小题4分,共40分。
) 1.在ABC 中,AB=13,BC=5,AC=12,则ABC 的面积为( )A .60B .30C .65D .782.在ABC 中,A B C ∠∠∠、、的对边分别为a b c 、、.下列所给数据中,不能判断ABC 是直角三角形的是( )A .ABC ∠-∠=∠B .::3:4:5A BC ∠∠∠= C .222a c b -=D .9a b c =:::40:413.如图,在ABC 中,AD BC ⊥于点D ,BF 平分ABC ∠交AD 于点E ,交AC 于点F .171528AC AD BC ===,,则AE 的长等于( )A .5B .20C .203D .2534.如图,在Rt ABC △中90,6,8,ACB AC BC AD ∠=︒==平分CAB ∠交BC 于D 点,,E F 分别是,AD AC 上的动点,则CE EF +的最小值为( )A .403B .154C .245D .65.在正方形网格中,AOB ∠的位置如图所示,到AOB ∠两边距离相等的点应是( )A .M 点B .N 点C .P 点D .Q 点6.如图,在ABC 中,AB AC AD AB =⊥,交BC 于点D ,若30DAC ∠=︒,3cm =AD 则BC的长为( )A .9cmB .10cmC .6cmD .12cm7.如图,在Rt ABC △中90C ∠=︒,D 为AC 上一点.若10DA DB ==,ABD △的面积为40,则CD 的长是( )8.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,ABC 的面积为( )9.如图,在Rt ABC △中90ACB ∠=︒,AC=6,BC=8,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是( )A .2.4B .4C .4.8D .510.赵爽是我国著名的数学家,“赵爽弦图”是他研究勾股定理的重要成果.古人有记载“勾三,股四,则弦五”的定理.如图,外围四个小长方形的宽相等,且邻长互相垂直,对长互相平行.若AB 的长是小长方形宽的2倍,内部小正方形面积为9,则最外围的大正方形的二、选填空题题(本题共10个小题,每小题4分,共40分。
⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。
第17章《勾股定理》单元测试题考试时间:100分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c.若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2 C.a2+c2=b2D.c2-a2=b22.下列长度的三条线段中,可以构成直角三角形的是()A.6,15,17B.7,12,15C.13,15,20D.7,24,253.如图,以直角三角形的一条直角边和斜边为一边作正方形M和N,它们的面积分别为9平方厘米和25平方厘米,则直角三角形的面积为()A.6平方厘米B.12平方厘米C.24平方厘米D.3平方厘米4.如图,在水塔O的东北方向5m处有一抽水站A,在水塔的东南方12m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.10m B.13m C.14m D.8m5.如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数为( )A. 5B.11C.13D.46.历史上美国第20届总统加菲尔德的梯形面积法对勾股定理进行了证明,采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDBC.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD7.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.148.如图,圆柱的底面直径为16π,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则第3题图第4题图第5题图第6题图第7题图第8题图第10题图移动的最短距离为( )A .10B .12C .14D .20 9.已知△ABC 中,AB =17,AC =10,BC 边上的高AH =8,则BC 的长是( )A .21B .15C .6D .21或9 10.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF ∥BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为( )A .8B .16C .32D .64二.填空题(共8小题,满分32分,每小题4分)11.写出“两直线平行内错角相等”的逆命题: . 12.如图,所有阴影四边形都是正方形,两个空白三角形均为直角三角形,且A 、B 、C 三个正方形的边长分别为2、3、4,则正方形D 的面积为 .13、如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为 米14.在△ABC 中,若其三条边的长度分别为9、12、15,则这个三角形的面积是 .15.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…请写出下一数组: .16.如图,一根长20cm 的吸管置于底面直径为9cm ,高为12cm 的圆柱形水杯中,吸管露在杯子外面的长度最短是 cm .17.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.18.如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问最短路线长为 .三.解答题(满分共78分) 19.(10分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点都在格点上(1)直接写出边AB 、AC 、BC 的长.(2)判断△ABC 的形状,并说明理由.第12题图 第13题图 第16题图第17题图第18题图20.(10分)如图,一架方梯长25米,斜靠在一面墙上,梯子底端离墙7米。
第17章勾股定理单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共33分)1.下列各组数中,属于勾股数的是()A. 2.5,6,6.5B. 5,7,10C. ,,D. 6,8,102.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A. 25B. 14C. 7D. 7或253.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A. (4+)cmB. 9cmC. 4cmD. 6cm5.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、66.如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则()A. S1=S2B. S1<S2C. S1>S2D. 无法确定7.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A. B. C. D. 28.如图,有一只棱长为20厘米的正方形盒子,一只蚂蚁从A点出发,沿着正方体木箱的外表面爬行到C′D′的中点P的最短路线长为()A. 10厘米B. 50厘米C. 10厘米D. 30厘米9.如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2πB. 3πC. 4πD. 8π10.现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A. 300厘米B. 250厘米C. 200厘米D. 150厘米11.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A. a=1.5,b=2,c=3B. a=3,b=4,c=5C. a=6,b=8,c=10D. a=7,b=24,c=25二、填空题(共11题;共33分)12.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:________14.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.15.等腰△ABC,其中AB=AC=17cm,BC=16cm,则三角形的面积为________ cm2.16.一个直角三角形的两条直角边长为6和8,则它的斜边上的高是________.17.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________18.在Rt△ABC中,AC=9,BC=12,则AB=________.19.一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距________千米.20.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为________ 米.21.一个直角三角形的两条直角边分别为3cm,4cm,则这个直角三角形斜边上的高为________ cm.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.三、解答题(共4题;共34分)23.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2 ,求:(1)AB的长为________;(2)S△ABC=________.26.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?参考答案一、选择题D D C C C A C C A B A二、填空题12. 2 d 13. 13、84、85 14. 415. 120 16. 4.8 17.18. 15或3 19. 10 20. 1521. 22. 12三、解答题23.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.24.解:∵AD⊥AC,AC=20,AD=15,∴CD= =25∴BD=BC﹣CD=32﹣25=725.(1)4(2)2+226.(1)解:由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE= =2.4米(2)解:由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE= =1.5(米),∴BD=0.8米。
第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
八年级下册 数学第17章《勾股定理》单元测试题(含答案)一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直角三角形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了米.(假设绳子是直的)三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正方形的面积和勾股定理即可求解.【解答】解:设全等的直角三角形的两条直角边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵火车在铁路MN上沿ON方向以10米/秒的速度行驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米【分析】首先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17米,得出EF=EM﹣FM=AC﹣BD=7米,求出BF=OE=5米,OF=12米,得出CM=CD﹣DM=CD﹣BF=12米,OM=OF+FM=15米,由勾股定理求出ON=OA=13米,进而求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(米)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(米),∵OE+OF=2EO+EF=17米,∴2OE=17﹣7=10(米),∴BF=OE=5米,OF=12米,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA===13(米),∴MN=OM﹣OF=15﹣13=2(米).故选:A.二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直角三角形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三角形ABC为直角三角形,利用勾股定理列出关系式,结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100.【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,设斜边上的高为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9米.(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.故答案为:9.三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【分析】(1)根据全等三角形的性质和线段的和差即得结论;(2)根据大三角形的面积等于三个小三角形的面积和即可求解;(3)综合(1)和(2)的结论进行推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=600米,∴BP=BQ=米,∴PQ=1600米,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣3)m,利用勾股定理可得x2=62+(x ﹣3)2.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣3)m,故x2=62+(x﹣3)2,解得:x=7.5,答:绳索AD的长度是7.5m.。
人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。
第17章《勾股定理》单元测试卷含答案解析参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A. 4 B.8 C.10 D.12分析:利用勾股定理即可解答.解答:解:设斜边长为x,则一直角边长为x﹣2,依照勾股定理列出方程:62+(x﹣2)2=x2,解得x=10,故选C.点评:本题考查了利用勾股定明白得直角三角形的能力.2.(3分)小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度考点:勾股定理的应用.分析:依照电视机的适应表示方法解答.解答:解:依照29英寸指的是荧屏对角线的长度可知售货员的说法是正确的.故选D.点评:本题考查了勾股定理的应用,解题时了解一个常识:通常所说的电视机的英寸指的是荧屏对角线的长度.3.(3分)如图中字母A所代表的正方形的面积为()A. 4 B.8 C.16 D.64考点:勾股定理.分析:依照勾股定理的几何意义解答.解答:解:依照勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,因此A=289﹣225=64.故选D.点评:能够运用勾股定理发觉并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论能够迅速解题,节约时刻.4.(3分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形考点:相似三角形的性质.分析:依照三组对应边的比相等的三角形相似,依据相似三角形的性质就能够求解.解答:解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.点评:本题要紧考查相似三角形的判定以及性质.5.(3分)一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D. 25cm考点:勾股定理.分析:设另一条直角边是a,斜边是c.依照另一条直角边与斜边长的和是49cm,以及勾股定理就能够列出方程组,即可求解.解答:解:设另一条直角边是a,斜边是c.依照题意,得,联立解方程组,得.故选D.点评:注意依照已知条件结合勾股定理列方程求解.解方程组的方法能够把①方程代入②方程得到c﹣a=1,再联立解方程组.6.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D. 5个考点:勾股定理的逆定理;三角形内角和定理.分析:运算出三角形的角利用定义判定或在明白边的情形下利用勾股定理的逆定理判定则可.解答:解:①,依照勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,依照勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,依照勾股定理的逆定理不是直角三角形,故不是.故选A.点评:本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判定.7.(3分)在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形考点:勾股定理的逆定理;完全平方公式.分析:依照勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么那个是直角三角形判定则可.假如有这种关系,那个确实是直角三角形.解答:解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.点评:本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,那个三角形有一个锐角是()A.15° B.30° C.45°D.60°考点:勾股定理.分析:依照斜边的平方等于两条直角边乘积的2倍,以及勾股定理能够列出两个关系式,直截了当解答即可.解答:解:设直角三角形的两直角边是a、b,斜边是c.依照斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,依照勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则那个三角形是等腰直角三角形,因而那个三角形的锐角是45°.故选C.点评:已知直角三角形的边长问题,不要不记得三边的长,满足勾股定理.9.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D. 12cm2考点:勾股定理;翻折变换(折叠问题).分析:依照折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就能够求解.解答:解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,依照勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.点评:本题考查了利用勾股定明白得直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A动身向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D. 40海里考点:勾股定理的应用;方向角.分析:依照方位角可知两船所走的方向正好构成了直角.然后依照路程=速度×时刻,得两条船分别走了32,24.再依照勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,依照勾股定理得:=40(海里).故选D.点评:熟练运用勾股定理进行运算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分闻名的定理,那个定理称为勾股定理,该定理的结论其数学表达式是a2+b2=c2.考点:勾股定理的证明.专题:证明题.分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.解答:解:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.那个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点评:本题是用数形结合来证明勾股定理,锤炼了同学们的数形结合的思想方法.12.(3分)如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10.考点:勾股定理;等腰三角形的性质.分析:依照等腰三角形的三线合一得BD=8,再依照勾股定理即可求出AB的长.解答:解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.点评:注意等腰三角形的三线合一,熟练运用勾股定理.13.(3分)如图,某人欲横渡一条河,由于水流的阻碍,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.考点:勾股定理的应用.专题:应用题.分析:从实际问题中找出直角三角形,利用勾股定明白得答.解答:解:依照图中数据,运用勾股定理求得AB===480米.点评:考查了勾股定理的应用,是实际问题但比较简单.14.(3分)小华和小红都从同一点O动身,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为15米.考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形依照勾股定明白得答.解答:解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,依照勾股定理得AB====15m.点评:本题专门简单,只要依照题意画出图形即可解答,表达了数形结合的思想.15.(3分)一个三角形三边满足(a+b)2﹣c2=2ab,则那个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,因此a2+b2=c2,则那个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.16.(3分)木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,那个桌面合格(填”合格”或”不合格”).考点:勾股定理的应用.分析:只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,依照勾股定理直截了当解答.解答:解:==68cm,故那个桌面合格.点评:本题考查的是勾股定理在实际中的应用,需要同学们结合实际把握勾股定理.17.(3分)直角三角形一直角边为12cm,斜边长为13cm,则它的面积为30cm2.考点:勾股定理.分析:依照勾股定理求得其另一直角边的长,再依照面积公式即可求得其面积.解答:解:∵直角三角形一直角边为12cm,斜边长为13cm,∴另一直角边==5cm,∴面积=×5×12=30cm2.点评:解决本题的关键是依照勾股定理求得另一直角边的长.18.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是那个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.考点:平面展开-最短路径问题.分析:先将图形平面展开,再用勾股定理依照两点之间线段最短进行解答.解答:解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要依照题意判定出长方形的长和宽即可解答.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形,构造出直角三角形,利用勾股定理求解.解答:解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.点评:本题考查正确运用勾股定理.善于观看题目的信息是解题以及学好数学的关键.20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.考点:勾股定理.分析:∵AD⊥BC于D,∴可得到两个直角三角形△ABD和△ADC,可利用勾股定理求得AD长,进而求得AC2的值.解答:解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.点评:本题需注意最后求的是AC2,因此在运算过程中都保持线段的平方即可.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要运算那个矩形鱼池的周长,你能关心小明算一算吗?考点:勾股定理的应用;二元一次方程组的应用;矩形的性质.专题:运算题.分析:依照矩形的面积公式得到长与宽的积,再依照勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.解答:解:设矩形的长是a,宽是b,依照题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,因此矩形的周长是14×2=28m.点评:注意依照题意结合勾股定理联立解方程组,只需求得长与宽的和即可.22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范畴内是受台风阻碍的区域.(1)A城是否受到这次台风的阻碍?什么缘故?(2)若A城受到这次台风阻碍,那么A城遭受这次台风阻碍有多长时刻?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC >200则A城不受阻碍,否则受阻碍;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范畴内差不多上受台风阻碍,再依照速度与距离的关系则可求时刻.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,因此A城要受台风阻碍;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,因此△ADG是等腰三角形,因为AC⊥BF,因此AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风阻碍的时刻是:t=240÷40=6(小时).点评:此题要紧考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时刻的关系等,较为复杂.四、创新探究题23.一只蚂蚁假如沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.考点:平面展开-最短路径问题.分析:要求长方体中两点之间的最短路径,最直截了当的作法,确实是将正方体展开,然后利用两点之间线段最短解答.解答:解:如图:依照题意,如上图所示,最短路径有以下三种情形:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,因此AB′2=25,即AB′=5cm.点评:此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
第17章勾股定理一.选择题(共10小题)1.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组3.下列数据中不能作为直角三角形的三边长是()A.1,1,B.1,,C.,, D.,,4.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则BC边长的高为()A.B.C.D.5.如图,四边形ABCD中,AC⊥BD于O,AB=3,BC=4,CD=5,则AD的长为()A.1 B.3C.4 D.26.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD=AC,点D在AB上,AF⊥CD交于点E,交CB于点F,则CF的长是()A.2.5 B.2 C.1.8 D.1.57.在平面直角坐标系中,已知点A(1,1)和B(4,5),则线段AB 的长是()A.3 B.5 C.4 D.38.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,∠B=90°,AB=8米,BC=6米.当正方形DEFH 运动到什么位置,即当AE=()米时,有DC2=AE2+BC2.A.2 B.2.5 C.3.4 D.3.69.如图,在2×2的正方形网格中,每个小正方形边长为1,点A、B、C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则以B、C、D为顶点的三角形面积为()A.B.C.D.10.如图,在△ABC中,AB=2,∠C=45°,高AD=6,则△ABC 的面积为()A.12 B.24 C.36 D.48二.填空题(共5小题)11.在△ABC中,a2+b2=25,ab=12,且c=5,则最大边上的高是.12.如图,一块形如“z”字形的铁皮,每个角都是直角,且AB=BC =EF=GF=1,CD=DE=GH=AH=3,则AF=.13.如图,由四个相同直角三角形与中间一个正方形拼成一个大正方形,大正方形边长为13cm,小正方形边长为7cm.则每个三角形较短直角边为.14.一颗大树在一次强烈的地震中于离树根B处4米的C处折断倒下(如图),树顶A落在离树根B处3米,则大树AB的原长为米.15.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了m.三.解答题(共5小题)16.如图,A(﹣2,3),B(4,3),C(﹣1,﹣3)(1)点C到x轴的距离为.(2)△ABC的三边长为:AB=,AC=,BC=.(3)当点P在y轴上,且△ABP的面积为6时,点P的坐标为:.17.已知△ABC中,BC=m﹣n(m>n>0),AC=2,AB=m+n.(1)求证:△ABC是直角三角形;(2)当∠A=30°时,求m,n满足的关系式.18.如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.19.定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy =2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC 是勾股三角形.20.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连结AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D做DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?参考答案一.选择题(共10小题)1.C.2.B.3.D.4.C.5.B.6.D.7.B.8.C.9.D.10.B.二.填空题(共5小题)11.2.4.12.5.13.5.14.8.15.13.三.解答题(共5小题)16.解:(1)∵C(﹣1,﹣3),∴点C到x轴的距离为3;(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB=4﹣(﹣2)=6,AC ==,BC==;(3)∵点P在y轴上,当△ABP的面积为6时,∴P到AB的距离为:6÷(×6)=2,故点P的坐标为(0,1)或(0,5).故答案为:3;6,,;(0,1)或(0,5).17.解:(1)∵BC=m﹣n(m>n>0),AC=2,AB=m+n,∴AC2+CB2=(m﹣n)2+4mn=m2+n2﹣2mn+4mn=m2+n2+2mn=(m+n)2=AB2.∴∠C=90°.∴△ABC是为直角三角形;(2)∵∠A=30°,∴==,∴m=3n.18.解:(1)∵AB⊥AC,∴∠BAC=90°,∵AB、AC长分别为13米、20米,∴BC===m,答:固定点B、C之间的距离为m;(2)∵BC=21,∴BD=21﹣CD,∵AD⊥BC,∴AB2﹣BD2=AC2﹣CD2,∴132﹣BD2=202﹣(21﹣BD)2,∴BD=5,∴AD===12.19.(1)解:“直角三角形是勾股三角形”是假命题;理由如下:∵对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形,∴无法得到,所有直角三角形是勾股三角形,故是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.20.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则 2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)若P在C点的左侧,CP=16﹣2t.AP=20﹣2t(20﹣2t)2=(16﹣2t)2+82解得:t=5,若P在C点的右侧,CP=2t﹣16.AP=2t﹣12;(2t﹣12)2=(2t﹣16)2+82解得:t=11答:当t为5或11时,能使DE=CD.。
第17章勾股定理单元复习测试A卷(时间90分钟满分100分)
班级学号
姓名得分
一、填空题(共14小题,每题2分,共28分)
1.△ABC,∠C=90°,a=9,b=12,则c=__________.
2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.
3.等边三角形的边长为6 cm,则它的高为__________.
4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.
5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.
6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.
7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.
8.等腰三角形的两边长为2和4,则底边上的高为__________.
9.若等腰直角三角形斜边长为2,则它的直角边长为_______.
10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.
11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .
A B C D
13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.
14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是___ _.
二、选择题(共4小题,每题3分,共12分)
15.下列各组数中,不能构成直角三角形的一组是()A.1,2,5B.1,2,3C.3,4,5 D.6,8,12
第13题第16题
第19
题②
第19题①
16.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于 ( )
A .6
B .6
C .
5
D .4
17.已知三角形的三边长之比为1∶1∶2,则此三角形一定是 ( )
A .锐角三角形
B .钝角三角形
C .等边三角形
D .等腰直角三角形
18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )
A .4 cm
B .8 cm
C .10 cm
D .12 cm
三、解答题(共60分)
19.(5分)如图,每个小正方形的边长是1.
①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.
20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆
底部6.9米处,那么这根旗杆被吹断裂前至少有多高?
2.8
米
9.6
米
21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到
0.1 km).
22.(6分)如图,△ABC中,AB=15 cm,AC=24 cm,∠A=60°.求BC的长.
23.(6分)如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.
B C
A
D
24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,
如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方30米B 处,过了2秒后,测得小汽车C 与车速检测仪A 间距离为50米,这辆小汽车超速了吗?
25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0
B .1
C .2
D .3
(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.
26.(6分)小明把一根长为160 cm的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40 cm,你知道小明是怎样弯折铁丝的吗?
27.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?
28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:
(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c = mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).
(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c = mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).
(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.
(1)(2)
参考答案
一、填空题
1.15 2.10 3.33cm 4.1∶3∶2 5.
13
60
6.12+63 7. 96 8.15 9.2 10.30cm 2 11.直角 12.A A 不是直角三角形,B 、C 、D 是直角三角形 13.2+23 14. 5或7 二、选择题
15.D 16.B 17.D 18.C 三、解答题
19.略解 20.10米 21.7 km 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²。