高层建筑结构设计的实践探讨
- 格式:doc
- 大小:25.00 KB
- 文档页数:6
超高层建筑的设计探索与实践——以晟通·梅溪湖国际总部中心二期为例文/ 何芳 湖南省建筑设计院有限公司 湖南长沙 410012【摘要】伴随着城市的加速发展,以及城市人口的日益增多,我们对土地及空间的利用提出了更高的要求,超高层建筑的广泛采用也成为了主流。
在这种背景下,本文以晟通·梅溪湖国际总部中心二期项目为例,探索了超高层建筑在城市背景下的功能布局、立面造型,重点空间打造以及绿色节能的设计。
【关键词】超高层建筑;设计;空间打造;绿色节能1、工程概况晟通·梅溪湖国际总部中心二期项目位于湖南湘江新区梅溪湖国际新城梅溪湖路与东方红路交汇处的东北角,净用地面积27130.72㎡,东侧临环湖路与梅溪湖风光带隔路相望,西侧为梅溪湖路,南侧为连湖八路,北侧为连湖七路。
主要功能及面积:A栋、B栋塔楼为公寓式办公;C栋为商业中心;地下共三层,G层为商业,地下一层、地下二层为停车配套等辅助用房;总建筑面积267381.79㎡,地上建筑面积194535.37㎡。
建筑高度:A栋公寓式办公,249.55m;B栋公寓式办公,199.55m;C栋商业中心,23.95m;地下室,15.1m。
2、总平面布置项目地上布置了两栋(A栋、B栋)超高层公寓式办公塔楼,一栋(C栋)多层商业中心。
B栋超高层办公塔楼与C栋多层商业中心朝向为南北向,避免东西向开大窗,实现建筑最大限度自然通风、被动节能。
A栋、B栋两栋超高层公寓式办公塔楼位于基地西侧,沿梅溪湖路布置,是统帅全区域的核心,两栋塔楼相互垂直,从而在建筑前形成开阔大气的入口广场;C栋多层商业中心位于基地东侧,沿环湖路布置,在环湖路一侧建筑轮廓局部内凹,自然形成商业入口广场的同时与梅溪湖城市公园融为一体,加深了此段沿湖风光带的进深。
项目地下共三层,G层为商业,地下一层、地下二层为停车配套等辅助用房。
3、功能布局3.1超高层塔楼(A栋,B栋)景观资源丰富是本项目用地最大特点,场地享有梅溪湖一线景观,交通便利,紧邻地铁口与南侧城市绿地。
关于高层建筑结构设计的探讨摘要:随着城市化发展以及建筑用地的紧张,高层建筑将日益增多。
高层建筑的结构设计不仅应保证高层建筑具有足够的安全性,还应保证结构的经济性、合理性。
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。
关键词:高层建筑结构设计探讨中图分类号:tu318文献标识码: a 文章编号:1高层建筑结构设计的概念高层建筑结构设计是针对高层建筑特性的建筑结构设计:在满足安全、适用、耐久、经济和施工可行的要求下,按有关设计标准的规定,对建筑结构进行总体布置、技术经济分析、计算、构造和制图工作,并寻求优化的过程。
2高层建筑结构设计的特点2.1水平力是设计主要因素在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。
而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。
因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。
另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
2.2侧移成为控制指标与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
2.3抗震设计要求更高有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
2.4轴向变形不容忽视高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。
高层住宅建筑结构的设计实践摘要:文章主要结合工程实例,介绍了高层建筑中框支一剪力墙结构的设计方法。
关键词:框支剪力墙、结构布置、抗震等级、振型、周期、位移中图分类号:tu241.8 文献标识码:a 文章编号:1. 引言框支剪力墙结构是指底部为框架柱,上部为剪力墙的结构。
底部的框架结构可使建筑平面灵活布置,适用于商场、餐厅、会议室、活动中心等大开间的公共建筑;上部的剪力墙结构整体性好,侧向刚度大,水平位移小,多用于住宅、旅馆等建筑设计。
两者之间的楼板为转换层楼板,需采取措施增强该层的整体性及刚性,以减小整个结构的上下刚度差异。
现代化高层建筑设计趋向功能多元化,要求居住、办公、饮食、商业一体化,因此这种结构得到越来越广泛的应用。
文章结合实际工程,具体的探讨对框支剪力墙结构的看真设计及软件应用情况进行简要介绍。
2. 工程概况本工程周边已有已建建筑物,公路交通便利。
概况为地下一层为车库,地上20层。
首层~三层为商业裙楼,4层~20层为住宅。
首层及二层的层高为4.9m,三层层高为5.7m,4~20层层高为3.6m。
地上高度为76.700m,建筑面积约13000 m2。
本工程结构设计基准周期为50年,安全等级为二级,建筑抗震设防类别为丙类,位移计算时采用50年一遇风压0.65kn/ m2,强度计算时采用100年一遇风压0.75kn/ m2。
抗震设防烈度为7度,设计基本地震加速度为0.10g。
场地土类别为ⅲ类。
为满足商业的使用功能要求,在四层楼面设置梁板式结构转换层。
转换层及标准层结构平面图如图一、图二所示。
图一:转换层结构平面图图二:标准层结构平面图3. 抗震等级确定由于本工程属于3层高位转换,地上高度为76.700m,根据《抗震规范设计规范》gb50011-2010第6.1.2条、《高层建筑混凝土结构设计规程》jgj3-2010第10.2.5条以及广东省实施《高层建筑混凝土结构技术规程》(jgj—2010)补充规定dbj/t15-46-2005第3.6.1条和第3.6.4条规定4. 转换层结构布置及构造加强措施框支-剪力墙结构的薄弱部位在框支层,故加强其延性,提高抗震性能是十分重要的。
关于高层建筑底层穿层柱结构设计探讨在现代城市发展中,高层建筑已经成为不可忽视的存在。
然而,高层建筑的安全性和稳定性始终是一个重要的问题,其中底层穿层柱结构的设计尤其关键。
本文将探讨高层建筑底层穿层柱结构的设计原则和实践经验。
一、什么是底层穿层柱结构?底层穿层柱结构是一种在高层建筑设计中使用的结构形式。
它是通过在建筑底层的一些位置放置柱子,使得建筑在底层形成中空的结构形式,从而可以减小建筑的自重和地基承载压力。
这种结构形式可以缩小建筑底部的面积,提高地上使用空间,同时还能增加建筑的抗风等能力。
二、底层穿层柱结构的设计原则1. 抗震要求高:由于底层穿层柱结构会减小建筑底部的面积,因此建筑的稳定性也受到一定的影响。
为了弥补这种影响,必须在设计中考虑到抗震要求,采取合适的结构形式和施工技术。
2. 穿层柱的位置要合理:穿层柱的位置对于整个结构的稳定性和强度有很大的影响。
如果穿层柱位置不合理,将导致强度和稳定性不足,影响建筑的安全性。
因此,在选择穿层柱的位置时,必须考虑到建筑的力学特性和地形、地质等因素。
3. 点与线的转换妥善处理:底层穿层柱结构要考虑到建筑力学特性,能够把点形式的支撑转化为线形式。
因此,在设计中需要充分考虑柱子的截面形状、布置方式等因素,以达到点与线的合理转换。
1. 选择合适的结构形式:在底层穿层柱的设计中,可以采用不同的结构形式,如框架结构、桁架结构、悬吊结构等。
设计人员应根据建筑形态、地理位置、建筑用途和抗灾等级等因素,选择合适的结构形式。
2. 合理安排穿层柱的位置和数量:穿层柱的位置和数量关系到整个结构的稳定性和强度,设计人员应该根据建筑实际情况来合理安排穿层柱的位置和数量,例如,某些穿层柱可以用于提高建筑的抗风能力,某些穿层柱可以增加建筑的空间利用率。
3. 在施工中注意安全问题:在建筑施工中,底层穿层柱结构的施工必须高度重视安全问题。
建筑施工中必须严格按照设备、安全、文明施工的要求进行操作,加强监督和管理,确保施工过程安全、稳定和高效。
关于高层建筑底层穿层柱结构设计探讨高层建筑作为城市建设的重要组成部分,其设计和结构的稳固性对于整个建筑的安全性和使用效果至关重要。
底层穿层柱作为高层建筑结构设计中的重要部分,其设计和布置对于建筑结构的承载能力和整体稳定性起着至关重要的作用。
本文将就高层建筑底层穿层柱结构设计进行一些探讨。
一、底层穿层柱结构的作用底层穿层柱是指在建筑底层的楼层中,穿过多层楼板而直接连到地基的柱子,其作用主要有以下几点:1. 承重支撑:底层穿层柱在建筑底层承担着整个建筑结构的重要承重任务,其稳固性和承载能力对于整个建筑的安全性至关重要。
2. 风力剪力传递:高层建筑在面对风力作用时,底层穿层柱可以有效地传递风力剪力,减少建筑结构的振动和位移,保证建筑整体的稳定性。
3. 地震作用承受:在地震作用下,底层穿层柱可以有效地承受地震作用而保护建筑结构和居民的安全。
底层穿层柱的合理设计对于建筑结构的稳定性和安全性有着非常重要的作用。
1. 结构布置底层穿层柱的布置应该考虑到整个建筑结构的承载情况和受力情况,一般来说,底层穿层柱的布置应该尽量均匀分布在建筑的底层平面中,以保证整个底层楼板的受力均匀。
在实际设计中,还应该考虑到底层穿层柱与其他结构元件(如墙体、楼板等)的连接问题,以保证底层穿层柱与其他结构的协同工作。
2. 材料选择底层穿层柱一般采用钢筋混凝土结构,钢筋混凝土具有良好的抗震性能和承载能力,可以满足底层穿层柱的设计要求。
在实际设计中,还需要考虑到材料的品质和施工工艺,以保证底层穿层柱的质量和稳定性。
3. 组合形式底层穿层柱的组合形式可以根据具体的建筑结构和使用需求进行设计,一般来说,可以采用方柱或者圆柱的形式,同时可以结合其他结构元件,如构造柱、外墙柱等,形成整体结构。
在组合形式设计中,需要注意底层穿层柱与其他结构的衔接和协同工作,以保证整体结构的稳定性。
4. 设计要点在底层穿层柱的设计过程中,需要注意以下几个关键要点:(1)整体稳定性:底层穿层柱的设计应该考虑到整个建筑的受力情况和承载要求,以保证整体结构的稳定性。
对高层建筑结构设计的探讨摘要:结构设计是一项综合性技术工作,也是一项对国家建设有重大意义的工作。
只有把握建筑结构设计要点,对计算结果作出正确的分析和判断,采取相应处理方法进行必要的调整完善,才能设计出高质量、高品质的工程,本文就高层建筑结构设计做一阐述。
关键词:高层建筑结构设计建筑的结构设计的任务复杂繁重,设计人员应当认真学习规范,努力提高理论知识,依据工程的实际情况,结合自己的实践经验,把握工程设计要点,提高对结构设计问题的防治能力,使结构设计工作做行更安全、更合理,下面就高层建筑结构设计中值得注意的几个问题进行探讨。
1、高层建筑基础的选型问题。
高层建筑应选用整体性好、能满足地基承载力和建筑物允许变形要求、并能调节不均匀沉降的基础形式,达到安全实用和经济合理的目的。
一般有筏板基础、箱形基础、条形交叉梁基础等。
应根据上部结构类型、层数、荷载及地基承载力选用合理的基础形式。
筏形基础有梁板式和平板式,当建筑物层数较多,地下室柱距较大、基底反力很大时,宜优先选用平板式。
采用梁板式筏基时,基础梁截面大必然增加基础埋置深度,当水位高时更为不利,梁板的混凝土需分层浇筑,梁支模费事,因而增长工期,综合经济效益反而比平板式差。
筏形基础的双向底板的厚度,除满足正截面承载力外,主要由冲切、剪切承载力确定。
高层建筑应尽量采用规则的平面布置和立面造型。
在建筑方案设计阶段,应提倡平、立面简单对称。
震害表明,简单、对称的结构体形在地震时较不容易破坏。
简单、对称的结构容易估计其他震时的反应,容易采取抗震构造措施和进行细部处理。
在方案设计时,首先应符合抗震概念设计,宜采用规则的建筑设计方案,避免采用不规则的设计方案。
在体型上简单、抗侧力体系的刚度和承载力上下变化应连续。
在平面、竖向没有明显的、突出的突变,并应尽量避免整体扭转不均匀的现象出现,使质量中心和刚度中心基本相重合。
2、地基与基础设计。
地基与基础设计一直是结构工程师比较重视的方面,同时,也是因为地基基础也是整个工程造价的决定性因素。
高层建筑结构设计的问题及对策探讨张冰峰摘要:随着经济和社会的发展,科学技术的不断进步,建筑领域发生了一些新的变化。
其中新型建筑结构层出不穷,建筑物的整体高度也不断增加。
随着城市化进程的加快,高层建筑不断涌现,尤其是大城市,多数以大量建设高层建筑来缓解土地资源的日益紧张。
高层建筑的设计和施工比多层建筑复杂,提高内部结构设计的合理性与经济性是保证建筑质量和效率的关键。
为此,本文分析了高层建筑结构设计中存在的问题,并提出了一些可供参考的对策。
关键词:高层建筑;结构设计;问题与对策科学技术和市场发展的需要,促进了建筑结构的不断变化,建筑工程正逐步由多层向高层发展。
高层建筑具有样式多变,设计难度大,施工工艺工序复杂的特点,在开发建设项目时应重视结构设计,保证结构设计的合理性和科学性,满足建筑使用需求。
除此之外,高层建筑结构设计还需要考虑抗震和抗风能力,尤其是抗震能力,往往是结构设计的难点,除此之外,随着建筑高度的上升,风荷载显著增加,设计应予以有效应对,达到建筑舒适安全的需要。
一、结构分析与设计特点1.1水平荷载是决定因素在整个建筑结构设计中,水平荷载效应的处理是解决结构安全问题的关键。
从地震灾害过后的灾区建筑来看,基本上都是地震作用引起的主要承重结构剪切破坏失效,从而导致坍塌,造成损失。
以往结构设计主要解决重力荷载产生的效应的。
对于非抗震区多层普通建筑来说可能是足够的,但是对抗震的高层建筑可不同。
随着层数的增加,荷载也将垂直发展。
结构的动力特性在水平荷载作用下会有不同幅度的变化。
而且由水平位移引起的重力二阶效应也将不容忽视。
1.2轴向变形不容忽视一般来说,常规多层建筑在结构设计中没有必要考虑轴力项的变形,只考虑抗风抗震弯矩引起的水平位移。
然而,高层建筑的结构设计不同,轴力值会随着建筑高度的增加而增大,会出比较严重的的压缩现变形,竖向结构混凝土的徐变收缩变形不可忽略,不同的类型的竖向结构变形量不尽相同,引起建筑物构建的不均匀下沉,产生次内力,建筑结构的内力值和分布将发生很大变化,对建筑整体性有较大的影响。
试论高层建筑结构设计有关问题探讨摘要:目前,我国的经济水平不断提高,人民的生活水平也随之不断提高。
钢筋混凝土高层建筑发展模式也因建筑师以及业主的创新思维而得到推广,从而被广泛使用。
高层建筑结构设计与以往一般的建筑设计并不一样,它对建筑师以及设计人员提出了更高的设计要求,因此,本文根据高层建筑结构设计中所应当注意的几点问题进行探讨。
关键词:高层建筑;结构设计1、高层建筑结构受力方面。
高层建筑的设计方案在规划时,所需要考虑的是其空间组成的特点,而不是对建筑物的结构进行详细的确定。
一座建筑物的地平面对建筑物来说是十分重要的,建筑物的竖向稳定和水平方向的稳定都是取决于建筑物的地平面的承重能否。
由于建筑物本体是由多种大型构件所拼接而成的,因此,它要求建筑结构能够将它本身的重量传达至地面,且建筑结构中所负重的总体是向下作用至地面的,因此,在进行建筑设计时一定要注意建筑结构中的负重体系与地基的承载力之间的关系,所以,在进行建筑设计阶段时,就必须对建筑的承重柱与承重墙的总体分布进行规划。
对于各种建筑结构来说,其总体的竖向与水平方向的结构体系设计原理基本相同,但其中对于高层建筑来说,随着建筑物高度的不断增加,建筑物竖向结构体系成为影响建筑设计的主要因素,这其中主要有两方面的原因:一是如果建筑结构中有较大的荷载时,其必须要求有柱、墙或者井筒;二是建筑结构中其侧向力所产生的倾覆力矩与剪切变形要大得多。
竖向荷载中,其侧向荷载对于建筑物来说并不是线性型增加的,其增加的幅度是随着建筑物的高度增加而增加的。
因此,低层建筑与高层建筑中的结构受力性能有很大的区别。
2、结构选型阶段。
高层结构中在工程设计的结构选型阶段,结构工程师应当主要注意一下几点:2.1结构的规则性问题。
建筑设计规则中,其新旧规范有着较大的出入,新规范中添加了较多的限制条件,如:平面规则性信息以及嵌固端上下层刚度比信息等等。
新规范较为严格,有着强制性的明文规定,其规定为“建筑不应采用严重不规则的设计方案”。
关于高层房屋建筑结构设计的探讨摘要:高层房屋建筑结构的设计与低层、多层建筑结构相比较,其结构专业在各专业中占有很重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、施工工期长短和施工技术的要求和投资的高低等。
文章结合笔者多年来在这方面的工作经验,就高层房屋建筑结构的设计概要进行探讨。
关键词:高层建筑;结构设计;探讨;对策;随着城市集约化用地要求的不断提高,建筑向高发展的趋势越来明显,西方发达国家在把建筑向高发展的过程中,运用建筑结构技术建筑了很多经典的作品。
我国也大力借鉴了这些西方高层钢结构建筑的成功技术,一大批造型新颖、美观实用的高层结构建筑在东部发达地区鳞次栉比,随着产业西行,高层和异结构建筑也开始在西部地区落地生根。
但由于目前房屋建筑结构设计周期短,任务重,大多数结构设计仅是根据已确定好的平面和竖向布置,先假定好构件尺寸,通过电算来调整结构的周期、位移、刚度比等,以至于房屋建好后在经济、实用、安全方面留下遗憾。
1.高层建筑的细部结构设计1.1结构平面的设计与布置平面形状简单、规则、对称尽量使质心和钢心重合。
偏心大的结构扭转效应大,会加大端部构件的位移,导致应力集中。
平面突出部分不宜过长。
扭转是否过大,可用概念设计方法近似计算钢心、质心及偏心距后进行判断,还可以比较结构最远边缘处的最大层间变形和质心处的层间变形,其比值超过1.1者,可以认为扭转太大而结构不规则。
高层建筑不应采用严重不规则的结构布置,当由于使用功能与建筑的要求,结构平面布置严重不规则时,应将其分割成若干比较简单、规则的独立结构单元。
对于地震区的抗震建筑,简单、规则、对称的原则尤为重要。
1.2结构立体的设计与布置结构竖向布置最基本的原则是规则、均匀。
规则,主要是指体型规则,若有变化,亦应是有规则的渐变。
体型沿竖向的剧变,将使地震时某些变形特别集中,常常在该楼层因过大的变形而引起倒塌。
均匀是指上下体型、刚度、承载力及质量分布均匀,以及它们的变化均匀。
超高层建筑结构设计和工程实践 pdf超高层建筑结构设计和工程实践是指在设计和建造超过300米的建筑物时所涉及的一系列工作。
由于超高层建筑的高度和复杂性,其结构设计和工程实践面临着独特的挑战和要求。
在超高层建筑结构设计中,需要考虑以下几个关键因素:1. 结构安全性:超高层建筑必须具备足够的抗风、抗震能力,以应对自然灾害和其它外部荷载的影响。
结构工程师需要进行详尽的力学分析和计算,确保结构的稳定性和安全性。
2. 构件材料选择:超高层建筑通常使用钢结构或混凝土结构。
在选择构件材料时,需要考虑其强度、刚度、耐久性和施工可行性等因素。
3. 基础设计:超高层建筑的基础设计至关重要,它直接影响到整个建筑物的稳定性和承载能力。
结构工程师需要分析地质条件、地基承载能力等因素,设计合理的基础结构。
4. 抗震设计:超高层建筑位于地震活跃区域时,抗震设计尤为重要。
结构工程师需要根据地震参数、地质条件和建筑物特点,采取相应的抗震措施,提高建筑物的抗震能力。
5. 火灾安全设计:超高层建筑的火灾安全设计需要考虑建筑材料的燃烧性能、疏散通道的设置、消防系统的布置等因素,以确保在火灾发生时人员的安全疏散和有效的灭火。
超高层建筑的工程实践包括以下几个方面:1. 施工技术:由于超高层建筑的高度和复杂性,施工技术要求极高。
施工过程中需要采用先进的起重和安装设备,确保施工安全和效率。
2. 质量控制:超高层建筑的质量控制是关键,需要对材料、构件和施工工艺进行严格监控和检测,以确保建筑物的安全和稳定性。
3. 监测与维护:超高层建筑的监测与维护是一个长期的过程,需要对结构进行定期检查和评估,及时发现和修复可能存在的问题,保障建筑物的可持续运行。
总之,超高层建筑结构设计和工程实践是一个综合性的工作,需要结构工程师、施工人员、监理人员等多个专业团队的合作与配合。
通过科学合理的设计和精细的施工管理,可以确保超高层建筑的安全性和可靠性。
高层建筑结构设计的实践探讨
摘要随着经济的快速发展和城市化进程的加快,高层建筑大量涌现并从单一用途向多用途、多功能发展,从而给高层建筑结构设计带来新的课题。
本文在分析高层建筑结构形式特点的基础上对高层建筑结构设计中存在的几个问题及解决方法进行了探讨,并总结了应注意的事项。
关键词高层建筑;结构设计;实践探讨
中图分类号tu972 文献标识码a 文章编号
1674-6708(2010)22-0044-02
随着经济的发展,我国高层建筑特别是超高层建筑的发展非常迅速,其规模、形式日益丰富。
高层建筑形式的这一变化使得结构形式也发生了很大的变化,传统的设计方法遇到了挑战和瓶颈,为了确保高层建筑结构设计的安全和合理,开展高层建筑结构设计的实践探讨非常必要。
1 高层建筑结构设计特点
1.1 水平荷载成为决定因素
楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩,与楼房高度的1次方成正比。
而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,与楼房高度的2次方成正比。
对于一定高度的楼房来讲,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,则随着结构动力特性的不同而有较大幅度的变化。
1.2 轴向变形不容忽视
高层建筑的竖向荷载很大,能够在柱中引起较大的轴向变形,会
对连续梁弯矩产生影响,导致连续梁中间支座处的负弯矩值减小,
跨中正弯矩值和端支座负弯矩值增大,还会对预制构件的下料长度产生影响。
针对以上问题要求根据轴向变形计算值对下料长度进行调整。
1.3 侧移成为控制指标
与较低的楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下的结构侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
1.4 结构延性是重要的设计指标
相对于较低的楼房而言,高楼结构更柔一些,在地震作用下的变
形更大一些。
为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,尤其需要在构造上采取恰当的措施,以保证结构具有足够的延性。
2 高层建筑结构设计面临的问题及对策
2.1 荷载取值不适当
当房屋建筑地基大部分受力面积没有软粘性土层时,柱下独立基础多用于钢筋混凝土多层框架房屋的建设,因为只要房屋高度不超过25m,即一般不高于8层的情况下,就不必验算地基抗震承载力了。
但是风荷载的影响在房屋基础设计时还是必须考虑的,所以在整体计算分析钢筋混凝土多层框架房屋时,需要输入风荷载。
许多人就觉得在地震区以外,风荷载一般在房屋建筑时不起作用就可不考虑
甚至是忽略不计,这是及其错误的。
另外还有一点,顶面上的外荷载,即柱脚内力设计值不能只取轴力设计值和弯矩设计值,无剪力设计值,或者只取轴力设计值甚至任意一项的值。
这种情况会导致基础设计尺寸偏小、配筋偏少,从而影响基础和上部结构的安全或者造成事故。
2.2 框架计算简图输入错误
设置拉梁层时,最好比较一下底层柱的配筋是由什么控制的,是
基础顶面处的截面控制还是基础拉梁顶面处的截面控制。
因为无地下室的钢筋混凝土多层框架房屋,一般情况下,独立基础埋置较深,这样对地基土就有约束作用,对于这种情况的基础简图,可写地下
室层数为1,再输入电算程序总信息中,最好再复算,以防那个出错,两次计算出来的结果形成包络图,就按照包络图对框架结构底层柱进行配筋。
2.3 基础拉梁层的计算模型不准确
基础拉梁层的计算模型不符合实际情况的直接后果就是房屋平
面不规则。
究其原因是用tat或satwe等电算程序进行框架整体计算时,楼板厚度应取零(基础拉梁层无楼板),同时定义弹性节点,最关键的一点是要用总刚分析方法进行分析计算。
如果前两者都做好了,就没有用总刚分析,那么程序分析时自动按刚性楼面假定进行
计算,这就与实际情况不相符,从而产生错误,导致房屋平面不规则。
2.4 基础拉梁的设计不合理
减小小底层柱的计算长度和位移适宜用在多层框架房屋基础埋
深值较大时,也可在适当的位置基础拉梁,应当按框架梁进行设计
并按规定的规范设置箍筋加密区而不宜按结构要求设置。
从抗震的角度考虑,应采用短柱基础。
2.5 框架结构尽量避免设置带楼电梯小井筒
井筒会吸收较大的地震剪力,这就减少了框架结构承担的地震剪力。
但是井筒墙壁减薄,开竖缝、开洞等种种办法使刚度弱化了也可以设计钢筋混凝土井筒。
要弱化井筒的影响,在配筋时适合配置单排的少量的钢筋。
应特别注意的是在设计计算时不能忽视按带井筒的框架复核,同时加强与墙体相连的柱子的配筋。
对于框架结构出屋顶的楼电梯间和水箱间这样的结构,不应采用砌体墙承重,适
合采用框架承重。
2.6 结构计算中重要参数的合理确定
结构计算的所有结果,包括:楼层地震剪力系数,墙和柱的轴压比及墙、柱、梁和板的配筋,楼层的侧向刚度比,楼层弹性层间位移和弹塑性变形验算时楼层的弹塑性层间位移,框架—抗震墙结构抗震墙承受的地震倾覆力矩与总地震倾覆力矩的比值,楼层弹性层间位移和弹塑性变形验算时楼层的弹塑性层间位移,结构的自振周期,
振型参与质量系数等等。
在结构设计计算时,要制定合理的结构方案,填写正确的抗震防裂度,合理选取各项参数,这十分重要。
总之,结构要认真的判断分析其是否合理、可行,确认无误才可用于设计。
3 高层结构设计应注意的事项
1)周期折减系数在高层结构的周期分析中,很容易忽略掉非结构的砌体填充墙所带来的影响。
显然,周期的折减应考虑到非结构性构件的影响作用,而且不同的结构类型和填充墙的形式也决定了周期折减系数的取值。
2)选择足够的振型数目通常对于规则高层建筑而已,选择其前三阶振型计算即可满足计算要求,在分析的过程中,应依据规范要求对计算结果进行合理判断。
但对于一些不规则的高层结构而已,或者对于一些有特殊构件的结构而已,局部的振动也必然存在,此时因根据具体的振动特性来选择振型数目的取值。
3)明确多塔之间的藕联计算在高层建筑结构形式中,主塔建筑和裙塔建筑构成的藕联体系是一种常见的结构形式,按结构的受力特点,将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算是满足力学基本要求的规定,但是很多工程师为了计算的方便通常都是分开单独计算,这样处理显然是存在问题的。
当多塔间刚度相差较大的时候,两者之间就存在“耦合效应”,此时若忽视掉就必然使得塔楼的计算误差仍然有较大,从而导致结构出现不安全的隐患。
4 结论
总之,随着高层建筑规模和型式的不断发展,追求结构形式日益新颖,对于日益复杂的建筑,必须结合实际情况,每个环节都应该进行认真的分析和计算,加强优化设计的实施。
只有这样对其经济指标、安全性、可靠性作充分的考虑和分析才会设计出科学合理的机
构体系。
参考文献
[1]方鄂华.高层建筑钢筋混凝土结构概念设计[m].北京:机械工业出版社,2004.
[2]胡文湛.浅谈高层建筑结构分析与设计[j].江西建材,
2006(1).。