数据结构-chap7 (1)图的存储结构
- 格式:ppt
- 大小:1.12 MB
- 文档页数:49
数据结构图的存储表示在计算机科学中,数据结构是组织和存储数据的方式,以便能够有效地进行操作和处理。
图是一种常见且重要的数据结构,用于表示对象之间的关系。
而要有效地处理图,首先需要选择合适的存储表示方式。
图是由顶点(vertex)和边(edge)组成的。
顶点表示对象,边表示顶点之间的关系。
根据边是否有方向,图可以分为有向图和无向图。
对于图的存储,主要有以下几种常见的方式。
邻接矩阵是一种直观且简单的存储方式。
假设有 n 个顶点,我们就创建一个 n×n 的矩阵。
如果顶点 i 和顶点 j 之间有边相连,那么矩阵中第i 行第j 列的元素就为1;如果无边相连,则为0。
对于有权重的图,这个元素的值可以是边的权重。
邻接矩阵的优点是查询顶点之间是否有边相连非常快速,时间复杂度为 O(1)。
但它的缺点也很明显,不管图是否稀疏,都需要存储 n×n 个元素,空间复杂度较高。
邻接表则是一种更节省空间的存储方式,尤其对于稀疏图。
对于每个顶点,我们使用一个链表来存储与其相邻的顶点。
这样,对于一个顶点,我们只需要存储与其有边相连的顶点,大大节省了空间。
在查找一个顶点的相邻顶点时,时间复杂度与顶点的度成正比,平均情况下时间复杂度较好。
十字链表是专门为有向图设计的一种存储结构。
它结合了邻接表和逆邻接表的特点,既能方便地找到一个顶点的出边,又能找到入边。
邻接多重表则主要用于无向图的存储,解决了在邻接表中删除和插入边操作复杂的问题。
在实际应用中,选择哪种存储方式取决于图的特点和具体的操作需求。
如果图比较稠密,且经常需要快速判断两个顶点之间是否有边,邻接矩阵可能是较好的选择。
而如果图比较稀疏,邻接表通常能节省更多的空间。
比如说在社交网络中,人与人之间的关系可以用图来表示。
如果我们想要快速了解一个人的直接好友(即与其有直接联系的人),可能会选择邻接表。
因为社交网络中的关系通常比较稀疏,邻接表能节省大量空间,而且查找好友的操作也比较高效。
数据结构的存储结构通常可以分为以下四种类型:1. 顺序存储结构(Sequential Storage Structure):顺序存储结构是将数据元素存储在一块连续的存储空间中。
每个元素占据一段连续的内存空间,并且相邻元素之间在内存中也是相邻的。
数组就是一种典型的顺序存储结构,可以通过下标来直接访问元素。
顺序存储结构的特点是随机访问速度快,但插入和删除操作需要移动大量元素。
2. 链式存储结构(Linked Storage Structure):链式存储结构通过节点之间的指针连接来存储数据元素。
每个节点包含数据和指向下一个节点的指针,最后一个节点的指针为空。
链式存储结构的特点是插入和删除操作方便快捷,不需要移动元素,但访问元素需要遍历链表。
3. 索引存储结构(Indexed Storage Structure):索引存储结构使用一个索引表来存储数据元素的地址或者指针。
索引表中的每个条目包含一个关键字和对应数据元素的地址或指针。
通过索引表可以快速定位和访问数据元素,而无需遍历整个数据集。
索引存储结构适用于静态数据集或者数据集更新较少的情况。
4. 散列存储结构(Hashed Storage Structure):散列存储结构使用散列函数将数据元素的关键字映射为存储位置。
存储位置可以是数组或者其他数据结构,称为散列表。
通过散列函数,可以直接计算出数据元素的存储位置,从而实现快速的插入、查找和删除操作。
散列存储结构适用于需要快速查找和访问数据的情况,但可能存在散列冲突的问题,需要解决冲突并保证散列函数的均匀性。
这些存储结构可以根据具体的应用场景和需求选择使用,每种结构都有其适用的优势和限制。
数据结构图的存储结构及基本操作数据结构图的存储结构及基本操作1·引言数据结构图是一种用来描述数据元素之间关系的图形结构,它可以表示实体之间的联系和依赖关系。
本文将介绍数据结构图的存储结构及基本操作。
2·存储结构2·1 邻接矩阵邻接矩阵是使用二维数组来表示数据结构图中各个节点之间的关系。
矩阵的行和列代表节点,如果两个节点之间存在边,则矩阵相应位置的值为1,否则为0。
2·2 邻接表邻接表是使用链表来表示数据结构图中各个节点之间的关系。
每个节点都有一个链表,链表中的每个元素表示与该节点相邻的节点。
2·3 十字链表十字链表是使用链表来表示数据结构图中各个节点之间的关系。
每个节点都有两个链表,一个表示该节点指向的节点,另一个表示指向该节点的节点。
2·4 邻接多重表邻接多重表是使用链表来表示数据结构图中各个节点之间的关系。
每个节点都有一个链表,链表中的每个元素表示与该节点相邻的边。
3·基本操作3·1 创建图创建一个空的数据结构图,根据需要选择适当的存储结构。
3·2 插入节点在数据结构图中插入一个节点,并建立与其他节点的关系。
3·3 删除节点从数据结构图中删除一个节点,并删除与其他节点的关系。
3·4 插入边在数据结构图中插入一条边,连接两个节点。
3·5 删除边从数据结构图中删除一条边,断开两个节点的连接。
3·6 遍历图按照某种规则遍历整个数据结构图,访问每个节点。
本文档涉及附件:无本文所涉及的法律名词及注释:1·邻接矩阵:用于表示图的存储结构,矩阵的行和列代表图的节点,矩阵的值表示节点之间的连接关系。
2·邻接表:用于表示图的存储结构,每个节点都有一个链表,链表中的每个元素表示与该节点相邻的节点。
3·十字链表:用于表示图的存储结构,每个节点都有两个链表,一个表示该节点指向的节点,另一个表示指向该节点的节点。
数据结构图的存储结构及基本操作一、数据结构图的存储结构数据结构图是一种表示数据元素之间关系的图形结构,常用于描述实体之间的关系、网络拓扑结构等。
数据结构图的存储结构可以使用邻接矩阵、邻接表等方式进行表示。
1.邻接矩阵存储结构邻接矩阵是使用二维数组表示数据结构图的存储结构。
数组的行和列分别代表数据结构图中的顶点,矩阵中的元素表示对应顶点之间的关系。
例如,如果顶点i和顶点j之间存在边,则邻接矩阵中(i,j)位置的元素为1;否则为0。
邻接矩阵的优点是可以快速判断两个顶点之间是否存在边,但缺点是当图中顶点较多时,矩阵中大部分元素为0,造成空间浪费。
2.邻接表存储结构邻接表是使用链表表示数据结构图的存储结构。
每个顶点对应一个链表,链表中的节点表示与该顶点直接相连的其他顶点。
顶点的链表可以使用数组或链表等数据结构来表示。
邻接表的优点是可以有效地利用存储空间,只存储存在边的关系,不存储无关边的信息。
但缺点是判断两个顶点之间是否存在边需要遍历链表,时间复杂度较高。
二、数据结构图的基本操作1.创建数据结构图创建数据结构图的操作是初始化一个空的图结构,可以选择使用邻接矩阵或邻接表存储结构。
根据实际需求,可以根据顶点和边的信息逐个添加到图结构中。
2.添加顶点添加顶点是向数据结构图中增加一个新的顶点,可以根据实际需求给顶点赋予相应的值或标识。
添加顶点的操作需要更新邻接矩阵或邻接表的相应位置。
3.添加边添加边是在两个已存在的顶点之间建立连接关系。
根据实际需求,可以指定边的权重或其他属性。
添加边的操作需要更新邻接矩阵或邻接表的相应位置。
4.删除顶点删除顶点是将一个存在的顶点从图结构中移除,同时将与该顶点相关的边也一并删除。
删除顶点的操作需要更新邻接矩阵或邻接表的相应位置。
5.删除边删除边是在两个已存在的顶点之间断开连接关系。
删除边的操作需要更新邻接矩阵或邻接表的相应位置。
6.查找顶点查找顶点是根据给定的值或标识在图结构中查找相应的顶点。