铁路GSM-R数字移动通信系统网络结构32页PPT
- 格式:ppt
- 大小:3.80 MB
- 文档页数:32
铁路数字移动通信系统(GSM R)⼿持终端第1部分:技术
要求
设备分类和组成
GSM-R⼿持终端设备是指在GSM R⽹络中能实现或获得业务服务的⼿持移动设备,可分为GPH和OPH。
GPH主要⽤于铁路各类管理⼈员、与铁路业务相关的⼈员话⾳和数据通信。
OPH⽀持调度通信业务,主要⽤于列车、车站、编组场、沿线区间及其他铁路作业区的各⼯种⼯作⼈员话⾳和数据通信。
⼿持终端主要由主机(含显⽰屏、键盘、天线、麦克风和扬声器)、电池、充电器、外置⽿机麦克风等组成。
GPH可采⽤物理键盘或虚拟键盘,OPH应有物理键盘。
结构要求
GPH和OPH结构要求:
a)GPH:长不⼤
于150mm,宽不⼤于80mm,厚不⼤于30mm,重量(含电池)不⼤于220g;
b)OPH:长不⼤于155mm,宽不⼤于67mm,厚不⼤于40mm,重量(含电池)不⼤于280g。
功能要求
业务要求。
gsm-r百科名片属于专用移动通信的一种,专用于铁路的日常运营管理,是非常有效的调度指挥通信工具。
GSM-R(GSMforRailways)系统是专门为铁路通信设计的综合专用数字移动通信系统。
它在GSMPhase2+的规范协议的高级语音呼叫功能,如组呼、广播呼叫、多优先级抢占和强拆业务的基础上,加入了基于位置寻址和功能寻址等功能,适用于铁路通信特别是铁路专用调度通信的需要。
主要提供无线列调、编组调车通信、区段养护维修作业通信、应急通信、隧道通信等语音通信功能,可为列车自动控制与检测信息提供数据传输通道,并可提供列车自动寻址和旅客服务。
定义发展简史用途主要性能起源功能简介定义发展简史用途主要性能起源功能简介定义在中国铁路的频段为上行885-889MHz,下行方向为930-934MHz。
GSM-R系统包括网络子系统(NSS)、基站子系统(B SS)、运行和业务支撑子系统(OSS/BSS)和终端设备等四个部分。
其中,网络子系统包括移动交换子系统(SSS)、移动智能网(IN)子系统和通用分组无线业务(GPRS)子系统。
GSM-R系统采用主从同步方式,TMSC、MSC、HLR、SCP等设备应就近从BITS设备中获取定时信号,MSC至BSS间的G数字链路应兼作同步链路使用,BSS从MSC获取同步时钟信号,也可从就近的BITS设备或SDH设备提取同步时钟信号。
GSM-R传输系统指的是为GSM-R系统各子系统之间的连接提供通道的数字传输系统,包括GSM-R系统为提供基本服务所必需的传输配套单元,如传输光、电缆和传输设备,但不包括直放站远端机和近端机之间的连接通道,也不包括天馈线等连接。
具体的实际应用:青藏线、大秦线、胶济线、武广线、郑西线、新丰镇编组站、石太线、合宁线、合武线、京津城际线等。
补充资料固定点与移动点或移动点与移动点之间的铁路工作人员的专用无线电通信,主要有列车无线电通信、站内无线电通信、无线电报警装置,以及其他铁路工作人员使用的无线电通信等。
数字移动通信系统GSM-R核心网.数字移动通信系统 GSMR 核心网在当今高度信息化的时代,铁路运输的安全和效率对于国家的经济发展和人民的出行至关重要。
数字移动通信系统 GSMR(GSM for Railway)作为专门为铁路通信设计的数字移动通信系统,其核心网在保障铁路运营的稳定、高效和安全方面发挥着关键作用。
GSMR 核心网是整个 GSMR 系统的控制和管理中心,它负责处理呼叫控制、用户数据管理、移动性管理等重要功能,以确保铁路通信的顺畅和可靠。
首先,呼叫控制是 GSMR 核心网的一项基本任务。
当铁路工作人员需要进行通信时,核心网会接收并处理呼叫请求。
它会根据用户的权限和当前网络的资源状况,为呼叫建立合适的连接路径。
无论是语音呼叫还是数据呼叫,核心网都要迅速而准确地完成路由选择和连接建立,以保障信息的及时传递。
比如,列车司机与调度员之间的紧急通话,必须在最短时间内接通,以确保列车运行的安全。
用户数据管理也是核心网的重要职责之一。
GSMR 系统中的每个用户都有相关的身份信息、权限级别和服务配置等数据,这些数据都存储在核心网的数据库中。
核心网需要对这些数据进行有效的管理和维护,确保用户信息的准确性和完整性。
同时,当用户的状态发生变化,如位置更新、权限调整等,核心网要及时更新相应的数据,以提供准确的服务。
移动性管理是 GSMR 核心网的另一个关键功能。
由于铁路运输的特点,用户(如列车上的工作人员)在移动过程中会不断跨越不同的基站覆盖区域。
核心网需要实时跟踪用户的位置变化,并在用户移动时,确保通信的连续性和稳定性。
当用户从一个基站覆盖区域移动到另一个区域时,核心网要迅速进行切换控制,使通话和数据传输不受影响。
为了实现这些功能,GSMR 核心网采用了一系列先进的技术和架构。
它通常由多个网络节点组成,包括移动交换中心(MSC)、归属位置寄存器(HLR)、拜访位置寄存器(VLR)等。
移动交换中心是核心网的核心组件之一,它负责处理呼叫的建立、释放和切换等功能。
GSM-R在列控系统中的应用班级:姓名学号:GSM-R 作为铁路专用通信技术,正在世界铁路范围内得到越来越广泛的应用,发展GSM-R 已经成为我国铁路的技术政策。
近年来,GSM-R 数字移动通信网络在青藏、大秦和胶济线的应用取得成功,客运专线建设也将采用GSM-R 作为调度通信、列车控制和移动信息传输等的综合平台。
我国铁路发展GSM-R 的目标是在全路建立移动通信网络,利用通信手段实现铁路移动设施和固定设施的无缝连接,确保列车平稳、高速、安全运行。
1 基于GSM-R 的列车控制系统基于GSM-R 的列车控制系统是在车载设备和地面设备之间,利用无线通信系统双向传输列车控制信息,可以实现地面对列车的闭环控制(见图1)。
目前,相对比较成熟的有欧洲列车控制系统(ETCS)、北美增强型列车控制系统(ITCS)和应用于重载运输的机车同步操作控制系统(LOCOTROL)。
从图 1 可以看出,基于GSM-R 的列控系统主要包括三个部分:地面子系统、车载子系统和GSM-R 网络。
另外,还有一些外部接口,如列车接口、联锁设备、调度集中设备等。
图1基于GSM-R的列控系统结构图地面子系统中的无线闭塞中心(RBC)是一个安全计算机系统,根据来自外部信号系统(如联锁设备)的信息以及与车载子系统交换的信息,经过计算,产生发送给列车的消息。
这些许可列车运行的消息,保证列车在RBC的管辖范围内安全运行。
列控G S M -R 接入服务器主要用于连接RBC 和GSM-R 网络,可以方便实现接入控制。
车载子系统的核心也是一个安全计算机系统,通过与地面子系统交换信息来控制列车运行。
地面子系统和车载子系统之间的信息交换由GSM-R 网络实现,并且列控信息在网络中要安全、可靠、及时地传递。
2列控数据传输对GSM-R 业务的要求2.1 基本承载业务车载设备和R B C 之间的列控数据传输需要GSM-R 网络提供满足电路交换模式的数据传输、非限制数字信息(UDI)、全速率无线信道、非语音/ 数据交替、异步透明传输模式等要求的承载业务。