北师大版八年级数学下册第二章内容 不等式的基本性质
- 格式:doc
- 大小:44.50 KB
- 文档页数:3
北师大版八年级下册数学《2.2 不等式的基本性质》说课稿一. 教材分析北师大版八年级下册数学《2.2 不等式的基本性质》这一节的内容,主要介绍了不等式的性质。
包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
这些性质是解不等式的基础,对于学生理解和掌握不等式的解法具有重要意义。
二. 学情分析在进入这一节的学习之前,学生已经学习了有理数的概念,对数的大小比较有一定的理解。
但是,对于不等式的性质,他们可能是第一次接触,需要通过实例来理解和掌握。
同时,学生可能对于同时乘除同一个数的操作有一定的困惑,需要老师在教学中进行解释和引导。
三. 说教学目标1.知识与技能目标:使学生理解和掌握不等式的基本性质,能够运用这些性质解不等式。
2.过程与方法目标:通过实例分析和讨论,培养学生观察、分析和推理的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极参与数学学习的习惯。
四. 说教学重难点1.教学重点:不等式的基本性质,以及如何运用这些性质解不等式。
2.教学难点:不等式的两边同时乘以或除以同一个负数时,不等号方向的变化。
五. 说教学方法与手段在这一节课中,我将采用讲授法和活动教学法相结合的方式进行教学。
在讲解不等式的性质时,我会通过举例和推理的方式来解释和展示。
同时,我还会学生进行小组讨论,让他们通过合作来理解和掌握不等式的性质。
在教学过程中,我会使用多媒体课件来辅助教学,使抽象的不等式性质更加直观和易于理解。
六. 说教学过程1.导入:通过一个具体的问题,引导学生思考如何比较两个不等式的大小。
2.讲解:讲解不等式的基本性质,通过实例和推理来展示如何运用这些性质解不等式。
3.活动:学生进行小组讨论,让他们通过合作来解决问题,巩固对不等式性质的理解。
4.总结:对本节课的内容进行总结,强调不等式性质的重要性和应用。
北师大版数学八年级下册《2. 不等式的基本性质》教案1一. 教材分析《2. 不等式的基本性质》是北师大版数学八年级下册中的一章,主要介绍不等式的性质。
本章内容是学生进一步深入研究不等式的基础,对于学生理解和掌握不等式具有重要意义。
本章主要内容包括不等式的定义、不等式的性质以及不等式的运算。
二. 学情分析学生在学习本章内容前,已经学习了实数和方程等基础知识,对于数学概念和运算有一定的理解。
但是,对于不等式的理解和运用还需要进一步的培养和指导。
因此,在教学过程中,需要注重引导学生理解和掌握不等式的基本性质,并通过实例让学生熟悉和运用不等式的性质进行运算和解决问题。
三. 教学目标1.理解不等式的定义和基本性质。
2.学会使用不等式的性质进行简单的运算和解决问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.不等式的定义和性质的理解。
2.不等式的运算和应用。
五. 教学方法1.讲授法:通过讲解和举例,引导学生理解和掌握不等式的基本性质。
2.实践法:通过让学生进行实际操作和解决问题,培养学生的实际应用能力。
3.讨论法:通过分组讨论和小组合作,培养学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,用于辅助讲解和展示。
2.实例和习题:准备一些相关的实例和习题,用于引导学生进行实践和应用。
七. 教学过程1.导入(5分钟)通过引入实际问题,引发学生对不等式的思考,激发学生的学习兴趣。
例:某商店举行打折活动,商品的原价大于等于100元,打折后的价格小于等于80元。
请用不等式表示这个条件。
2.呈现(15分钟)讲解不等式的定义和基本性质,通过PPT展示和讲解,引导学生理解和掌握不等式的基本性质。
不等式的定义:用“<”、“>”、“≤”、“≥”表示两个数之间的大小关系。
不等式的性质:1.如果a<b,那么a+c<b+c(不等式的加法性质)2.如果a<b,那么ac<bc(不等式的乘法性质)3.如果a<b<c,那么a<c(不等式的传递性质)3.操练(15分钟)让学生进行实际操作,运用不等式的性质进行运算和解决问题。
不等式的基本性质各位老师,你们好:我今天说课的内容是北师版八年级下册第二章第2节不等式的基本性质一、分析教材(说教材)(一)教材地位和作用:不等式的基本性质是职中数学的主要内容之一,在初中数学中占着重要地位。
它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,有着重要的实际意义。
同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容,起到重要的奠基作用。
(二)学习目标1掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题。
2进一步掌握作差比较法比较实数的大小。
3通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质。
(三)教学重点难点不等式的三条基本性质及其应用是重点,不等式基本性质3的探索与运用是难点二、学情分析(说学法)我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
我们大家现在所教的学生是职中学生,底子薄,学习积极性不高。
所以我们必须从现实生活入手,首先来提高学生的学习兴趣;其次要一步一个脚印,通过师生互动、通过小组研究来降低学习难度,最后达到学习要求。
三、教法分析(说教法)本节课主要采用讲练结合与分组探究的教学方法。
坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,通过引导回顾玩跷跷板的经验,师生共同探究天平两侧物体质量的大小,引导学生感性地认识不等式的三条基本性质,并运用分析法、综合法、作差比较法来证明,通过题组训练,使学生逐步掌握不等式的基本性质,为后面学习一元一次不等式和解一元一次不等式组打下理论基础。
四、教学程序和设想(说教学程序)(一)展示课件创设情景,引入新课<用时8分钟左右>因为数学来源于生活,所以我以学生的实际生活背景为素材创设情景,易于被学生接受、感知。
有助于调动学生的学习积极性。
所以我创设了天平情境问题(如图1),让学生观察课件,说出物体a和c哪个质量更大一些,由此判断:如果a>b,b>c,那么a和c的大小关系如何?这是感性认识。
北师大版数学八年级下册《2. 不等式的基本性质》说课稿1一. 教材分析北师大版数学八年级下册《2. 不等式的基本性质》这一节的内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数时,不等号的方向如何变化。
这些性质是解决不等式问题的关键,也是学习更高级数学的基础。
二. 学情分析八年级的学生已经掌握了不等式的基本概念,具备了一定的逻辑思维能力,但是对于不等式的性质的理解还需要加强。
他们在学习过程中,需要通过实例来理解不等式的性质,需要通过练习来巩固不等式的性质,需要通过思考来深化不等式的性质。
三. 说教学目标本节课的教学目标有三:一是让学生理解不等式的性质,二是让学生掌握不等式的性质的运用,三是让学生提高解决实际问题的能力。
四. 说教学重难点本节课的重难点是理解和掌握不等式的性质。
难点在于学生对于不等式的性质的理解,需要通过实例来帮助学生理解,需要通过练习来帮助学生巩固,需要通过思考来帮助学生深化。
五. 说教学方法与手段本节课我采用的教学方法是讲解法和练习法。
讲解法用于讲解不等式的性质,练习法用于让学生通过练习来巩固不等式的性质。
同时,我还会使用多媒体手段,如PPT等,来辅助教学,使教学更加生动有趣。
六. 说教学过程教学过程分为五个环节:导入新课、讲解不等式的性质、举例说明、练习巩固、总结提高。
1.导入新课:通过一个实际问题,引出不等式的性质的概念。
2.讲解不等式的性质:详细讲解不等式的性质,并通过实例来帮助学生理解。
3.举例说明:通过具体的例子,让学生理解不等式的性质。
4.练习巩固:让学生通过练习,巩固不等式的性质。
5.总结提高:让学生通过总结,提高解决实际问题的能力。
七. 说板书设计板书设计分为两部分:一部分是不等式的性质的定义和公式,另一部分是举例说明。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
第二章一元一次不等式与一元一次不等式组2.不等式的基本性质伍仁桥中学吴函菲一、学生知识状况分析本章是在学生学习了一元一次方程、二元一次方程组和一次函数(等式及等式的基本性质)的基础上,开始研究简单的不等关系。
学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。
学习时可以类比七年级上册学习的等式的基本性质。
二、教学任务分析不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:(1)知识与技能目标:①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
三、教学过程分析本节课设计了六个教学环节:第一环节:复习铺垫,回忆与本节授课相关的不等式定义及等式的基本性质;第二环节:情景引入,提起学生兴趣,提出问题,;第三环节:创建情景,讲授新课,引导学生归纳总结不等式的性质;第四环节:课堂练习,学会熟练运用性质并会做一些稍有难度的习题;第五环节:归纳总结,画龙点睛,强调本节课重点;第六环节:布置作业。
课题不等式的基本性质
【学习目标】
1.通过类比、猜测、验证发现不等式基本性质的探究过程,初步体会不等式与等式的异同.
2.掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式.
【学习重点】
理解并掌握不等式的基本性质.
【学习难点】
初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式.
情景导入生成问题
旧知回顾:
1.等式的性质是什么?
答:(1)等式两边同时加上(或减去)同一个数(或式子),所得结果仍是等式;(2)等式两边同时乘以(或除以)同一个不为0的数(或式子),所得结果仍是等式.
2.用不等号填空:
(1)6>46×2>4×26÷(-2)<4÷(-2)
(2)-2>-4 -2×2>-4×2 -2÷(-2)<-4÷(-2)
自学互研生成能力
知识模块一不等式的基本性质
【自主探究】
阅读教材P40
-41
的内容,回答下列问题:
不等式的基本性质有哪些?
答:1.不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变;如果a>b,那么a+c>b+c,a-c>b-c(选填“>”或“<”).
2.不等式的基本性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;如果a>b,并且c>0,那么ac>bc(选填“>”或“<”).
3.不等式的基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变;如果a>b,并且c<0,那么ac<bc(选填“>”或“<”).
范例1:已知a<b,用不等号填空:
(1)a+3<b+3;(2)-a
4>-
b
4;(3)3-a>3-b.
解析:(1)两边都加3,a+b<b+3,(2)两边都除以-4,-a
4>-
b
4,(3)两边都乘-1,-a>-b,两边都加
3,3-a>3-b.故答案为:<,>,>.
仿例1:下列不等式变形正确的是(D)
A.由a>b得ac>bc
B.由a>b得-2a>-2b
C .由a>b 得-a>-b
D .由a>b 得a -2>b -2
仿例2:已知a>b,则下列不等式中,错误的是( D )
A .3a>3b
B .-a 3<-b 3
C .4a -3>4b -3
D .(c -1)2a>(c -1)2b
归纳:不等式的基本性质是不等式变形的重要依据,关键要注意不等号的方向.性质1和性质2类似于等式的性质,但性质3中,当不等式两边乘或除以同一个负数时,不等号的方向要改变.
知识模块二 利用不等式的基本性质对不等式变形
范例2:把下列不等式化为“x>a”或“x<a”的形式.
(1)2x -2<0;(2)3x -9<6x ;(3)12x -2>32x -5.
解:(1)根据不等式的基本性质1,两边都加上2得2x<2.根据不等式的基本性质2,两边都除以2得x<1.
(2)根据不等式的基本性质1,两边都加上9-6x 得-3x<9.根据不等式的基本性质3,两边都除以-3得x>-3.
(3)根据不等式的基本性质1,两边都加上2-32x 得-x>-3.根据不等式的基本性质3,两边都除以
-1得x<3.
仿例:用“>”或“<”填空:
(1)如果x -2<3,那么x<5;
(2)如果-x>2,那么x<-2;
(3)如果14x>-2,那么x>-8;
(4)如果-34x<-1,那么x>43;
(5)若a<b,c ≠0,则ac 2<bc 2.
归纳:不等式变形先在不等式两边同时加上一个适当的代数式,使含未知数的项在不等式的左边,常数项在不等式右边,然后把系数化为1,切记要正确运用不等式基本性质.
交流展示 生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
【展示提升】
知识模块一 不等式的基本性质
知识模块二 利用不等式基本性质对不等式变形
检测反馈 达成目标
见光盘.
课后反思查漏补缺
1.收获:__________________________________________________________
2.存在困惑:_______________________________________________________。