第5章__特征选择与提取.
- 格式:ppt
- 大小:1.60 MB
- 文档页数:48
特征的提取和选择
特征提取和选择是机器学习中非常重要的环节,它既可以减少计算量,又可以提高模型的性能。
选择较好的特征可以让模型更加简单,更加容易
和快速的训练出最佳参数,从而使得模型更加精确、效果更好。
一般来说,特征提取和选择有以下几步:
1.特征提取。
特征提取关注的是利用现有特征生成新的特征。
它可以
是特征融合(如结合多个特征生成更强大的特征),也可以是特征变换
(如离散特征变换成连续特征)。
2.无关特征删除。
把没有帮助的特征删除,有助于减少模型的运行时间,提高模型的效果。
3.有关特征选择。
把与目标值有很强关联的特征选择出来,这些特征
被称为有关特征,它们可以帮助模型训练出更好的结果。
4.特征降维。
为了减少特征之间的相关性,减少计算量,与有关特征
相关性比较低的特征可以被删除。
5.特征加权。
调整特征的权重,使得有关特征拥有更大的影响力,从
而帮助模型更好的进行预测。
通过这种特征提取和选择的过程,可以把训练集中拥有相关性比较高
的有用特征保留下来,把没用的特征抛弃,有效的提高模型的性能。
第五讲特征提取和特征选择
**特征提取和特征选择**
特征提取和特征选择是机器学习的重要组成部分,它们既可以提高机
器学习算法的性能、训练速度,也可以帮助研究者了解数据。
特征提取和
特征选择的目的是最大限度地挖掘数据中的有用信息,并创建出一组有意
义的特征,以便进一步的分析和模型建立。
特征提取是指从原始数据中提取出具有含义的特征,一般情况下,特
征提取过程中会涉及到一定的数据预处理、特征提取算法和特征可视化等
步骤。
常见的特征提取方法有主成分分析(PCA)、独立成分分析(ICA)、因子分析(FA)、降维分析(DA)、线性判别分析(LDA)等。
特征选择是从特征矩阵中选择最有效的特征,可以提高模型的准确率,减少模型的运行时间,同时可以更加深入地了解数据。
常见的特征选择方
法有过滤法(Filter)、包裹法(Wrapper)和嵌入法(Embedded)。
特征提取和特征选择非常重要,可以在机器学习的各个阶段发挥重要
作用,比如,可以在训练数据集合的构建阶段快速提取有效特征,以减少
数据集的维度;可以在模型训练阶段和测试阶段选择最优特征,以提高模
型性能,减少运算负担;还可以在结果分析和结论阶段。
特征选择和特征提取特征选择(Feature Selection)和特征提取(Feature Extraction)是机器学习领域中常用的特征降维方法。
在数据预处理阶段,通过选择或提取与目标变量相关且有代表性的特征,可以有效提高模型的性能和泛化能力。
特征选择指的是从原始特征集合中选择一部分最相关的特征子集,剔除无关或冗余的特征,以减少计算成本和模型复杂度。
它可以分为三种类型的方法:过滤方法(Filter Method)、包裹方法(Wrapper Method)和嵌入方法(Embedded Method)。
过滤方法是利用统计或信息论的方法来评估特征与目标变量之间的相关程度,然后根据得分来选择特征。
常见的过滤方法包括互信息(Mutual Information)、方差选择(Variance Selection)和相关系数选择(Correlation Selection)等。
包裹方法是在特征子集上训练模型,通过观察模型性能的变化来评估特征子集的优劣,并选择性能最好的特征子集。
包裹方法的代表性算法有递归特征消除(Recursive Feature Elimination)和遗传算法(Genetic Algorithm)等。
嵌入方法则是将特征选择融入到模型的训练过程中,通过训练模型时的正则化项或特定优化目标来选择特征。
常见的嵌入方法有L1正则化(L1 Regularization)和决策树的特征重要性(Feature Importance of Decision Trees)等。
主成分分析是一种无监督学习方法,通过线性变换将原始特征投影到一组正交的主成分上,使得投影后的特征具有最大的方差。
主成分分析可以降低特征的维度,并保留原始特征的主要信息。
线性判别分析是一种有监督学习方法,通过线性变换找到一个投影方式,使得在投影空间中不同类别的样本更容易区分。
线性判别分析可以有效地提取类别间的差异和类别内的相似性。
因子分析则是一种概率模型,通过考虑变量之间的相关性而提取潜在的共享特征。
分类:根据对象的观察值确定对象的类别属性。
分类的一般过程:特征的发现与提取(特征提取的好坏将直接影响到分类的结果。
特征选取的原则包括:明显有区分意义(同一类别样本的特征值比较相近,而不同类别的样本特征值有较显著的差异);容易提取;对不相关因素变化保持稳定;对噪声不敏感等);确定决策函数特征发现:将先验知识和实验数据有机结合起来,通过对学习样本(实验数据)的分析,发现并提取有效的特征。
•根据特定的问题领域(包括实验数据)的性质,提出可能特征的假设•利用已有的实验数据,验证假设是否正确特征处理:在已经得到数据样本之后如何用数学的办法对数据进行必要的选择和变换使得特征更易于分类,求出一组对分类最有效的特征1.高维特征带来的问题实际应用中,通常发现当特征个数增加到某一个临界点后,继续增加反而会导致分类器的性能变差。
1)概率模型与实际情况不匹配2)训练样本数有限→概率分布的估计不准确3)训练样本数有限→过拟合4)训练过程中的计算复杂度、时间-空间复杂度太大。
2.特征选择:1)概念:特征选择是从数量为D的原始特征中挑选出一组(d个)最有代表性,分类性能最好的特征;每个特征的状态是离散的-选与不选;从N个特征中选取k个,共C N k种组合;若不限定个数,则共2N种;这是一个典型的组合优化问题。
(思路)2)方法:Filter方法:不考虑所使用的学习算法。
通常给出一个独立于分类器的指标μ(可分离性判据)来评价所选择的特征子集S,然后在所有可能的特征子集中搜索出使得μ最大的特征子集作为最优特征子集;Wrapper方法:将特征选择和分类器结合在一起,即特征子集的好坏标准是由分类器决定的,在学习过程中表现优异的特征子集被选中;另外,按照最优特征组的构成可以分为“自下而上”法(特征数从0渐增)和“自上而下”法(特征数从D递减)。
3)可分离性判据:衡量特征对分类的有效性(关键问题)要求:A.与错误概率(或者错误概率的上界及下界)有单调关系,一般使判据取最大值时对应较小错误概率B.当特征(x1, x2, …, xd)相互独立时有可加性,即:;其中Jij是第i类和第j类的可分性准则函数。
特征提取与特征选择的区别与联系在机器学习和数据挖掘领域,特征提取和特征选择是两个重要的概念。
它们在数据预处理和模型构建中起着至关重要的作用。
本文将探讨特征提取与特征选择的区别与联系,并从理论和实践角度进行深入分析。
1. 特征提取的定义与意义首先,我们来看看特征提取的定义与意义。
特征提取是指从原始数据中提取出具有代表性的特征,以便进行后续的数据分析和建模。
在实际应用中,原始数据往往包含大量的冗余信息和噪声,特征提取的目的就是通过某种算法或方法,对原始数据进行转换或映射,得到更加有用和有效的特征表示。
这样可以提高模型的准确性和泛化能力,同时减少计算复杂度和存储空间的消耗。
特征提取的方法有很多种,比如主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)等。
这些方法都是通过对原始数据进行变换,得到新的特征表示,从而达到降维、去噪或增强特征的目的。
2. 特征选择的定义与意义接下来,我们再来看看特征选择的定义与意义。
特征选择是指从原始特征中选择出最具有代表性和重要性的特征子集,以用于后续的建模和预测。
在实际应用中,原始特征往往包含很多冗余和无关的信息,特征选择的目的就是找出对目标变量影响最大的特征,从而简化模型、提高预测性能和可解释性。
特征选择的方法有很多种,比如过滤式、包裹式和嵌入式等。
过滤式方法是直接对特征进行评估和排序,选择最高分的特征子集;包裹式方法是把特征选择看作一个搜索问题,通过试验不同的特征子集来找到最佳组合;嵌入式方法则是在模型训练过程中,通过正则化或增加惩罚项的方式来选择特征。
3. 特征提取与特征选择的区别特征提取与特征选择虽然都是对原始数据或特征进行处理,但它们在目的和方法上有着明显的区别。
首先,特征提取是通过某种变换或映射,得到新的特征表示,目的是降维、去噪或增强特征;而特征选择是从原始特征中选择出最具有代表性和重要性的特征子集,目的是简化模型、提高预测性能和可解释性。
第五章 特征选择与特征提取5.1 问题的提出前面主要介绍的是各种分类器的设计方法,实际上我们已经完全可以解决模式识别的问题了。
然而在实际应用中,在分类器设计之前,往往需要对抽取出的特征进行一下处理,争取尽量减小特征的维数。
在实践中我们发现,特征的维数越大,分类器设计的难度也越大,一维特征的识别问题最容易解决,我们只要找到一个阈值t ,大于t 的为一类,小于t 的为一类。
同时特征维数越大,要求的训练样本数量越多,例如在一维的情况下,10个训练样本就可以比较好的代表一个类别了,而在10维空间中,10个训练样本则是远远不够的。
这一章中我们就来介绍一下减小特征维数的方法。
一般来说模式识别系统的输入是传感器对实物或过程进行测量所得到的一些数据,其中有一些数据直接可以作为特征,有一些数据经过处理之后可以作为特征,这样的一组特征一般称为原始特征。
在原始特征中并不一定每个特征都是有用的,比如在识别苹果和橙子的系统中,我们可以抽取出的特征很多,(体积,重量,颜色,高度,宽度,最宽处高度),同样还有可能抽取出其它更多的特征。
在这些特征中对分类有用的是(颜色,高度,最宽处高度),其它特征对识别意义不大,应该去除掉。
这样的过程称为是特征选择,也可以称为是特征压缩。
特征选择可以描述成这样一个过程,原始特征为N 维特征()12,,,TN x x x =X L ,从中选择出M 个特征构成新的特征矢量()11,,,MTi i i Y x x x =L ,M N <。
同时,特征矢量的每一个分量并不一定是独立的,它们之间可能具有一定的相关性,比如说高度和最宽处的高度,高度值越大,最宽处的高度值也越大,它们之间具有相关性,我们可以通过一定的变换消除掉这种相关性,比如取一个比值:最宽处的高度/高度。
这样的过程称为特征提取。
特征提取可以描述为这样一个过程,对特征矢量()12,,,TN x x x =X L 施行变换:()i i y h =X ,1,2,,i M =L ,M N <,产生出降维的特征矢量()12,,,TM Y y y y =L 。
第五章 特征选择与特征提取5.1 问题的提出前面主要介绍的是各种分类器的设计方法,实际上我们已经完全可以解决模式识别的问题了。
然而在实际应用中,在分类器设计之前,往往需要对抽取出的特征进行一下处理,争取尽量减小特征的维数。
在实践中我们发现,特征的维数越大,分类器设计的难度也越大,一维特征的识别问题最容易解决,我们只要找到一个阈值t ,大于t 的为一类,小于t 的为一类。
同时特征维数越大,要求的训练样本数量越多,例如在一维的情况下,10个训练样本就可以比较好的代表一个类别了,而在10维空间中,10个训练样本则是远远不够的。
这一章中我们就来介绍一下减小特征维数的方法。
一般来说模式识别系统的输入是传感器对实物或过程进行测量所得到的一些数据,其中有一些数据直接可以作为特征,有一些数据经过处理之后可以作为特征,这样的一组特征一般称为原始特征。
在原始特征中并不一定每个特征都是有用的,比如在识别苹果和橙子的系统中,我们可以抽取出的特征很多,(体积,重量,颜色,高度,宽度,最宽处高度),同样还有可能抽取出其它更多的特征。
在这些特征中对分类有用的是(颜色,高度,最宽处高度),其它特征对识别意义不大,应该去除掉。
这样的过程称为是特征选择,也可以称为是特征压缩。
特征选择可以描述成这样一个过程,原始特征为N 维特征()12,,,TN x x x =X ,从中选择出M 个特征构成新的特征矢量()11,,,MTi i i Y x x x =,M N <。
同时,特征矢量的每一个分量并不一定是独立的,它们之间可能具有一定的相关性,比如说高度和最宽处的高度,高度值越大,最宽处的高度值也越大,它们之间具有相关性,我们可以通过一定的变换消除掉这种相关性,比如取一个比值:最宽处的高度/高度。
这样的过程称为特征提取。
特征提取可以描述为这样一个过程,对特征矢量()12,,,TN x x x =X 施行变换:()i i y h =X ,1,2,,i M =,M N <,产生出降维的特征矢量()12,,,TM Y y y y =。
习题及参考答案1 .降维的目的是什么?答:(1)提高准确率;(2)减少数据量;(3)数据可视化。
2 .降维的方法分哪几类?特点分别是什么?答:(1)直接降维。
特点:没有改变原始的特征空间(2)间接降维。
特点:改变了原来的特征空间。
3 .主成分分析是如何实现数据降维的?答:PCA算法通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量的个数通常小于原始变量的个数,可以去除冗余、降低噪音,达到降维的目的。
4 .线性判别分析是如何实现数据降维的?答:将高维的样本投影到最佳鉴别矢量空间,即:把高维空间中的数据进行点投影到一条直线上,将多维降为一维。
5 .线性判别分析的分类目标是什么?答:目标:类间离差最大,类内离差最小。
6 .特征选择的考虑因素有哪些?答:(1)特征是否发散;(2)特征与目标的相关性。
7 .特征选择的方法有哪些?特点分别是什么?答:(1)过滤法优点:不依赖于任何机器学习方法,并且不需要交叉验证,计算效率比较高,只需要基础统计知识;缺点:没有考虑机器学习算法的特点,特征之间的组合效应难以挖掘。
(2)包装法优点:特征选择直接针对给定学习器来进行优化,从最终学习器的性能来看,包装法比过滤法更优;缺点:特征选择过程中需要多次训练学习器,因此,包装法特征选择的计算开销通常比过滤法大得多。
(3)嵌入法特点:使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。
8 .采用主成分分析法将下列二维数据降为•维数据。
4 424答:(1)分别计算X 和丫的均值0.7071-0.7071、0.70710.7071)选择较大的特征值对应的特征向量组成特征向量矩阵0.7071∖0.7071/将样本点投影到选取的特征向量上Python 程序:importnumpyasnpX=np.array([[1,1],[lz3]z[2,3],[4,4],[2,4]])meanval=np.mean(×,axis=0)#计算原始数据中每一列的均值,axis=。