北师大高中数学选修1-2 反证法
- 格式:ppt
- 大小:989.00 KB
- 文档页数:13
《反证法》教学设计一1.教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
2.教学重点:了解反证法的思考过程、特点3. 教学难点:反证法的思考过程、特点4.教具准备:与教材内容相关的资料。
5.教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。
6.教学过程:学生探究过程:综合法与分析法归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
上,都需要翻转奇数次,所以 3 枚硬币全部反面朝上时,需要翻转 3 个奇数之和次,即要翻转奇数次.但由于每次用双手同时翻转 2 枚硬币, 3 枚硬币被翻转的次数只能是 2 的倍数,即偶数次.这个矛盾说明假设错误,原结论正确,即无论怎样翻转都不能使 3 枚硬币全部反面朝上.一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法 ( reduction to absurdity ) .例1、已知直线,a b 和平面,如果,a b αα⊄⊂,且||a b ,求证||a α。
证明:因为||a b , 所以经过直线a , b 确定一个平面β。
因为a α⊄,而a β⊂,所以 α与β是两个不同的平面.因为b α⊂,且b β⊂,所以b αβ=. 下面用反证法证明直线a 与平面α没有公共点.假设直线a 与平面α有公共点P ,则P b αβ∈=,即点P 是直线 a 与b 的公共点,这与||a b 矛盾.所以 ||a α.点评:线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////a b a b a ααα⊄⊂⇒.例2、求证:2不是有理数分析:直接证明一个数是无理数比较困难,我们采用反证法.假设2不是无理数,那么它就是有理数.我们知道,任一有理数都可以写成形如m n(,m n 互质, *,m Z n N ∈∈”的形式.下面我们看看能否由此推出矛盾.正是2的发现,使人们认识到在有理数之外,还有一类数与 1 是不可公度的,这就是无理数;从而引发了数学史上的第一次危机,大大推动了数学前进的步伐。
例谈反证法在解题中的应用反证法是一种间接证法.它是数学学习中一种很重要的证题方法.反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设; (2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等.一、证明“至多”或“至少”问题例1 已知函数()f x 对其定义域内的任意两个实数a b ,,当a b <时,都有()()f a f b <.求证:至多有一个实数x 使得()0f x =.证明:假设存在两个不等实数12x x ,,使得12()()0f x f x ==.()* 不妨设12x x <,由条件可知12()()f x f x <,与()*式矛盾.故至多有一个实数x 使得()0f x =.二、证明“不可能”问题例2 给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a-=∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴.证明:假设函数图象上存在两点12M M ,,使得直线12M M 平行于x 轴. 设111222()()M x y M x y ,,,且12x x ≠.由120M M k =,得212121212121111110(1)(1)x x y y ax ax a x x x x ax ax -------===----,解得1a =.与已知1a ≠矛盾.故经过这个函数图象上任意两个不同的点的直线不平行于x 轴.例3 双曲线1xy =的两支为12C C ,,正三角形PQR 的三顶点位于此双曲线上.求证:P Q R ,,不可能在双曲线的同一支上.证明:假设正三角形的三顶点P Q R ,,位于双曲线同一支如1C 上,其坐标分别为112233()()()x y x y x y ,,,,,,不妨设1230x x x <<<,则一定有1230y y y >>>. 于是222PQ QR PR ++22222122313122313[()()()][()()()]x x x x x x y y y y y y =-+---+-+--- 21232122()()2()()0x x x x y y y y --+--<. 因此,222PQ QR PR +<.这说明PQR △是钝角三角形,与PQR △为正三角形矛盾.故P Q R ,,不可能在双曲线的同一支上.三、证明“存在性”或“唯一性”问题例4 已知函数2()f x ax bx c =++的图象过点(10)-,.问是否存在常数a b c ,,,使不等式21()(1)2x f x x +≤≤对一切实数x 都成立?若存在,求出a b c ,,的值;若不存在,说明理由.解:假设存在符合条件的a b c ,,. ()f x ∵的图象过(10)-,, (1)0f -=∴,即0a b c -+=.又21()(1)2x f x x +∵≤≤对一切实数都成立, 令1x =,则211(11)12a b c +++=≤≤. 1a b c ++=∴,12b =∴,12a c +=.211()22f x ax a ⎛⎫=++- ⎪⎝⎭∴.由2()1()(1)2f x x f x x ⎧⎪⎨+⎪⎩,,≥≤得221102211022ax x a a x x a ⎧⎛⎫-+- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-+- ⎪⎪⎝⎭⎩,①.②≥≤ 据题意,对于任意实数x ,①与②都成立.对于①,若0a =,则1x ≤,不合题意;若0a >,欲使①的解集为R ,则需00a >⎧⎨⎩∆,,≤即0114042a a a >⎧⎪⎨⎛⎫-- ⎪⎪⎝⎭⎩,.≤解得14a =. 对于14a =,再考虑②,把14a =代入②,得2210x x -+≥,其解集为R . 所以,存在满足条件的abc ,,,其中1142a cb ===,.。
(一)用反证法证明数学命题的一般步骤(1)反设——即先弄清命题的条件和结论,然后假设命题的结论不成立;(2)归谬——从反设出发,经过推理论证,得出矛盾;(3)断言——由矛盾得出反设不成立,从而断定原命题的结论成立.(二)反证法得出的矛盾反证法的关键是在正确的推理下得出矛盾,这些矛盾常常表现为以下几个方面:(1)与已知条件矛盾;(2)与假设矛盾;(3)与数学公理、定理、公式或已被证明了的结论矛盾;(4)与简单的、显然的事实矛盾.(三)注意事项(1)必须先否定结论,即肯定结论的反面,同时注意反设的准确性,尤其当出现两种以上情况时应特别细心,必须罗列出各种情况,缺少任何一种可能,反证法都是不完全的.(2)必须从否定结论进行推理,即把结论的反面作为条件,并且必须依据这一条件进行推证,否则,只否定结论,不从结论的反面出发进行推理,就不是反证法.(3)反证法常用于直接证明比较困难的命题,例如某些初始命题(包括部分基本定理)、必然性命题、存在性问题、唯一性问题、否定性问题、带有“至多有一个”或“至少有一个”等字眼的问题.使用反证法证明问题时,准确地做出反设是正确运用反证法的前提,常见“反设词”如1.反证法属逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”,第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”,书写格式易错之处是“假设”易错写成“设”.2.适合用反证法证明的命题:(1)否定性命题;(2)唯一性命题;(3)至多、至少型命题;(4)明显成立的问题;(5)直接证明有困难的命题.3.使用反证法证明问题时,准确地作出反设(即否定结论)是正确运用反证法的前提,常见的“结论词”与“反设词”列表如下:4.常见的矛盾主要有:(1)与假设矛盾;(2)与公认的事实矛盾;(3)与数学公理、定理、公式、定义或已被证明了的结论矛盾.1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用(C)①结论相反的判断,即假设;②原命题的条件;③公理、定理、定义等;④原结论A.①② B.①②④C.①②③ D.②③2.用反证法证明命题“一个三角形不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,所以∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个直角,不妨设∠A=∠B=90°.其中顺序正确的是(C)A.①②③ B.①③②C.③①② D.③②①解析:根据反证法的步骤,容易知道选C.3.在用反证法证明数学命题时,如果原命题的否定项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的结论是正确的.例如:在△ABC中,若AB=AC,P是△ABC 内一点,∠APB>∠APC,求证:∠BAP<∠CAP.用反证法证明时应分:假设________和________两类.解析:因为小于的否定是不小于,所以应填∠BAP=∠CAP和BAP>∠CAP.答案:∠BAP=∠CAP BAP>∠CAP4.求证:如果a>b>0,那么na>nb(n∈N,且n>1).证明:假设na不大于nb,则na=nb,或na<nb当na=nb时,则有a=b.这与a>b>0相矛盾.当na<nb时,则有a<b,这也与a>b相矛盾.所以na>nb.。
北师大版数学选修1-2第三章推理与证明§4 反证法一、教学目标:1.知识与技能:(1)了解间接证明的一种基本方法──反证法;(2)了解反证法的思考过程与特点,会用反证法证明数学问题.2.过程与方法:通过学生动手及简单实例,让学生充分体会反证法的数学思想,并学会简单应用.3.情感态度与价值观通过反证法的学习,让学生形成逆向思维的模式,体验数学方法的多样性。
提高学生推导、推理能力及思考问题和解决问题的能力,并在合作探究中找到一种解决生活生产实际问题的新方法。
二.教学重点:了解反证法的思考过程与特点..三.教学难点:正确理解、运用反证法.四.教学方法:多媒体辅助教学;小组合作探究,多元活动.教学过程:一、课前复习与思考:(1)请学生复习旧知,为本节课夯实基础:直接证明:是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推理证明结论的真实性。
常用的直接证明方法:综合法与分析法。
综合法的思路是由因导果;分析法的思路是执果索因。
(2)让学生思考间接证明是什么?它有哪些方法?(初中所学)间接证明:不是从正面证明命题的真实性,而是证明命题的反面为假,或改证它的等价命题为真,间接地达到证明的目的。
反证法就是一种常用的间接证明方法。
二、探究新知【新课导引】多媒体课件显示9个白色球.上课时要求学生将9个球分别染成红色或绿色.让学生注意观察现象.提问学生,让学生由感性认识上升到理性认识:同学们请看,这9个球无论如何染色,至少有5个球是同色的.你能用数学中的什么方法来证明这个结论吗?【学生自主合作探究】学生阅读完教材后,小组合作探究以下问题:1、什么是反证法?2、反证法的证题步骤有哪几步?3、什么样的命题适合用反证法来证明?4、反证法的应用关键在于什么?【学生展示、交流】(1)反证法概念反证法:假设命题结论不成立(即命题结论的反面成立),经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。
反证法反证法,可以说是一个难点。
因为以前我们的证明,所采用的方法均为直接证法,由已知到结论,顺理成章。
而对于属于间接证法的反证法,许多同学正是难以走出直接证法的局限,从而不能深刻或正确理解反证法思想。
其实,反证法作为证明方法的一种,有时起着直接证法不可替代的作用。
下面这两则故事,对于我们正确理解反证法很有帮助。
故事一:南方某风水先生到北方看风水,恰逢天降大雪。
乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。
”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。
”实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的茺唐结论。
风水先生当然不会承认这个事实了。
那么,显然,他说的就是谬论了。
这就是反证法的威力,一个原本非常复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。
如果说这则故事还尚不能让我们明白反证法的思路的话,不妨再看看故事二。
故事二:王戎小时候,爱和小朋友在路上玩耍。
一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动。
等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。
”这是很著名的“道旁苦李”的故事。
实质上王戎的论述,也正是运用了反证法,我们不妨把这则故事改编成象几何题目中的“已知、求证、证明”再和反证法的步骤进行对比,大家就明白了。
至此,反证法的思路及步骤就一目了然了。
我们在以后运用反证法时,可对照此例。
则反证法可运用自如矣。
反证法就是证明命题的等价问题——逆否命题,从而间接地证明原命题正确。
●三维目标1.知识与技能结合实例了解间接证明的一种基本方法——反证法,了解反证法的思考过程与特点.会用反证法证明数学问题.2.过程与方法使学生经历“总结归纳反证法的操作步骤”的过程,培养学生归纳、总结、推理论证的能力.增强学生的数学应用意识和创新意识.3.情感、态度与价值观注重培养学生积极参与、大胆探索的精神以及合作意识.通过让学生体验成功,培养学生学习数学的自信心.通过科学家的故事,培养学生的耐心、恒心、自信心和抗挫折能力.从而发展学生的数学思维能力,提高思维品质.●重点难点重点:反证法概念的理解以及反证法的解题步骤.难点:应用反证法解决问题,在推理过程中发现矛盾.在教学中要明确反证法证明的三个步骤:(1)做待证命题的否命题;(2)根据所做出的否命题,结合已知条件或己知的其他的真命题,推导出和已知条件或已知的真命题相矛盾的地方;(3)否定所做的否命题,也就是肯定原命题的正确性.让学生亲身体会并总结三个步骤中的关键因素,集体探索解决方法,突出重点、化解难点.(教师用书独具)●教学建议建议本节课采取探究式教学法,让学生参与证明问题的否定假设,推理归谬,激发学生积极参与的热情,开发其论证推理能力的潜能,培养良好的思维品质.关于反证法的教学需要注意以下几点:(1)书写格式及解题步骤:假设——归谬——指出矛盾——得出结论.(2)提出反设的方式方法:引导学生弄清反设词语的含义,掌握常见量词的反设词.(3)归谬方法:在归谬过程中要注意假设条件的利用,通过例题分析总结归谬的方法技巧.(4)反证法的适用范围及对象:反证法一般适用于题目条件中含有量词“至多”“至少”“全部”“都”或否定性命题.其次是在直接证明受阻的情况下,考虑间接证明.●教学流程创设问题情境,通过“道旁苦李”的故事,引导学生认识反证法,了解其特点、推理方式及应用范畴.让学生自主完成填一填,使学生进一步了解反证法的证明格式、步骤、思维方式、证明思想等.引导学生分析例题1的已知条件,师生共同探究证明思路,学生自主完成证明过程,老师指导完善,并完成变式训练.学生分组探究例题2解法,总结反证法证明唯一性命题的反设方式及证明的方法,完成例题2变式训练.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3互动探究,教师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示,引导学生总结解题规律.【问题导思】著名的“道旁苦李”的故事:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?【提示】实质运用了反证法的思想.1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、定理、公理、事实矛盾等.设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【思路探究】此题为否定形式的命题,直接证明很困难,可选用反证法.证题的关键是根据f(0),f(1)均为奇数,分析出a,b,c的奇偶情况,并应用.【自主解答】假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z).而f(0),f(1)均为奇数,即c为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n ,an +b 均为奇数. 又a +b 为偶数, ∴an -a 为奇数, 即a (n -1)为奇数,∴n -1为奇数,这与n 为奇数矛盾. ∴f (x )=0无整数根.1.对某些结论为肯定形式或者否定形式的命题的证明,从正面突破较困难时,可用反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.2.常见否定词语的否定形式如下表所示:已知非零实数a 、b 、c 成等差数列a ≠c ,求证:1a ,1b ,1c 不可能成等差数列. 【证明】 假设1a ,1b ,1c 成等差数列,则2b =1a +1c =a +c ac , 又a 、b 、c 成等差数列, ∴2b =a +c , ∴b =a +c 2, ∴4a +c =a +cac , ∴(a -c )2=0,即a =c . 这与a ≠c 矛盾. 故假设错误,原命题正确.0,且f (x )在[a ,b ]上单调递增,求证:f (x )在(a ,b )内有且只有一个零点.【思路探究】 先由函数零点存在性判定定理判定函数在(a ,b )内有零点,再用反证法证明零点唯一.【自主解答】 由于f (x )在[a ,b ]上的图象连续不断开,且f (a )<0,f (b )>0,即f (a )·f (b )<0,所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,则f (m )=0, 假设f (x )在(a ,b )内还存在另一个零点n ,即f (n )=0, 则n ≠m .若n >m ,则f (n )>f (m ),即0>0,矛盾; 若n <m ,则f (n )<f (m ),即0<0,矛盾.因此假设不正确,即f (x )在(a ,b )内有且只有一个零点.证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.已知a与b是异面直线,求证:过a且平行于b的平面只有一个.【证明】如图所示.假设过直线a且平行于直线b的平面有两个,分别为α和β,在直线a上取点A,过b和A确定一个平面γ,且γ与α、β分别交于过点A 的直线c、d,由b∥α,知b∥c,同理b∥d,故c∥d,这与c、d相交于点A矛盾,故假设不成立,原结论成立.求证:1+xy,1+yx中至少有一个小于2.【思路探究】明确“至少”的含义―→对结论作出假设―→得出矛盾.【自主解答】假设1+xy,1+yx都不小于2,即1+xy≥2,1+yx≥2.∵x>0,y>0,∴1+x≥2y,1+y≥2x.∴2+x +y ≥2(x +y ).即x +y ≤2,这与已知x +y >2矛盾. ∴1+x y ,1+yx 中至少有一个小于2.常见结论词与反设词列表如下:在本例中,若x,y>0且x+y=2,求证:1+xy,1+yx中至少有一个不小于2.【证明】假设1+xy,1+yx都小于2.则1+x<2y,1+y<2x,,那么2+x+y<2x+2y,∴x+y>2与已知x+y=2矛盾.所以假设不成立,原命题成立.利用反证法证题时,假设错误而致误已知a,b,c是互不相等的非零实数.求证:三个方程ax2+2bx+c =0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.【错解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac<0,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0,相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2<0,即(a-b)2+(b-c)2+(c-a)2<0,此不等式不能成立,所以假设不成立,即三个方程中至少有一个方程有两个相异实根.【错因分析】上面解法的错误在于认为“方程没有两个相异实根就有Δ<0”,事实上,方程没有两个相异实根时Δ≤0.【防范措施】用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.【正解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,即(a-b)2+(b-c)2+(c-a)2≤0,(*)由题意a,b,c互不相等,所以(*)式不能成立.所以假设不成立,即三个方程中至少有一个方程有两个相异实根.1.反证法:假设原命题的反面正确,根据已知条件及公理、定理、定义,按照严格的逻辑推理导出矛盾.从而说明假设不正确,得出原命题正确.2.反证法是间接证明的一种方法,在证明否定性命题、唯一性命题和存在性命题时运用反证法比较简便.3.反证法的基本步骤是:(1)反设——假设命题的结论不成立,即假设原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果;(3)存真——由矛盾结果,断定反设不真,从而肯定结论成立.1.用反证法证明“如果a >b ,那么3a >3b ”的假设内容应是( ) A.3a =3b B.3a <3b C.3a ≤3bD .3a ≥3b【解析】 “大于”的对立面为“小于等于”,故应假设“3a ≤3b ”. 【答案】 C2.否定“任何一个三角形的外角都至少有两个钝角”时正确的说法为( )A .存在一个三角形,其外角最多有一个钝角B .任何一个三角形的外角都没有两个钝角C .没有一个三角形的外角有两个钝角D .存在一个三角形,其外角有两个钝角【解析】 原命题的否定为:存在一个三角形,其外角最多有一个钝角. 【答案】 A3.用反证法证明命题:若a 、b 是实数,且|a -1|+|b -1|=0,则a =b =1时,应作的假设是________.【解析】 ∵“a =b =1”的否定为“a ≠1或b ≠1”,故应填a ≠1或b ≠1. 【答案】 a ≠1或b ≠14.证明方程2x =3有且仅有一个实根. 【证明】 ∵2x =3,∴x =32, ∴方程2x =3至少有一个实根.设x 1,x 2是方程2x =3的两个不同实根, 则⎩⎪⎨⎪⎧2x 1=3, ①2x 2=3, ②由①-②得2(x1-x2)=0,∴x1=x2,这与x1≠x2矛盾.故假设不正确,从而方程2x=3有且仅有一个实根.一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定,即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③【解析】由反证法的定义可知应选C.【答案】 C2.(2013·海口高二检测)用反证法证明命题:三角形三个内角至少有一个不大于60°时,应假设()A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°【解析】三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°,故B正确.【答案】 B3.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0【解析】实数a,b,c不全为0,即a,b,c至少有一个不为0,故应选D.【答案】 D4.(1)已知p3+q3=2,求证p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确【解析】(1)的假设应为p+q>2;(2)的假设正确.【答案】 D5.下列命题不适合用反证法证明的是()A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1【解析】A中命题条件较少,不易正面证明;B中命题是否定性命题,其反设是显而易见的定理;D中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明.【答案】 C二、填空题6.命题“三角形中最多只有一个内角是直角”的否定是______________.【解析】“最多”的反面是“最少”,故本题的否定是:三角形中最少有两个内角是直角.【答案】 “三角形中最少有两个内角是直角”7.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________.【解析】 “a 、b 全为0”即“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”【答案】 “a 、b 不全为0”8.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角. ③假设△ABC 中有两个直角, 不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为________. 【答案】 ③①② 三、解答题9.(2013·泰安高二检测)用反证法证明:无论m 取何值,关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0至少有一个有实数根.【解】 假设存在实数m ,使得这两个方程都没有实数根, 则⎩⎪⎨⎪⎧Δ1=25-4m <0,Δ2=1-8(6-m )<0,解得⎩⎪⎨⎪⎧m >254,m <478,无解.与假设存在实数m 矛盾.故无论m 取何值,两个方程中至少有一个方程有实数根.10.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0. 【证明】 假设a <0,由abc >0得bc <0, 由a +b +c >0,得b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这与已知矛盾.又若a =0,则abc =0,与abc >0矛盾, 故a >0,同理可证b >0,c >0.11.若x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,则a ,b ,c 中是否至少有一个大于0?请说明理由.【解】 假设a ,b ,c 都不大于0, 即a ≤0,b ≤0,c ≤0,则a +b +c ≤0. 而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6 =(x -1)2+(y -1)2+(z -1)2+π-3, 因为π-3>0,且无论x ,y ,z 为何实数, (x -1)2+(y -1)2+(z -1)2≥0, 所以a +b +c >0.这与假设a +b +c ≤0矛盾.因此,a ,b ,c 中至少有一个大于0.(教师用书独具)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【思路探究】 第(1)问考查等差数列的通项公式与前n 项和公式,应用a n =a 1+(n -1)d 和S n =na 1+12n (n -1)d 两式求解.第(2)问先假设任三项b p 、b q 、b r 成等比数列,再用反证法证明.【自主解答】 (1)设公差为d ,由已知得 ⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴(p +r 2)2=pr ,(p -r )2=0, ∴p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.1.当结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题,此类问题的反面比较具体,适于应用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.2.反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.设函数f(x)在(-∞,+∞)上是增函数,a、b∈R.(1)若a+b≥0,是否有f(a)+f(b)≥f(-a)+f(-b)?(2)若f(a)+f(b)≥f(-a)+f(-b),是否有a+b≥0?以上两结论若正确,请给出证明,若不正确,请说明理由.【解】(1)若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)成立.证明:因为a+b≥0,所以a≥-b,b≥-a.又f(x)在(-∞,+∞)上是增函数,所以f(a)≥f(-b),f(b)≥f(-a).两式相加,得f(a)+f(b)≥f(-a)+f(-b).(2)若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0成立.证明:(反证法)假设a+b<0,则a<-b,b<-a,而f(x)在(-∞,+∞)上是增函数,所以f(a)<f(-b),f(b)<f(-a).以上两式相加,得f(a)+f(b)<f(-a)+f(-b).与已知f(a)+f(b)≥f(-a)+f(-b)矛盾,所以假设错误,因此a+b≥0.。
3.4 反证法学习目标1. 结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;2. 了解反证法的思考过程、特点;3. 会用反证法证明问题.学习过程一、课前准备复习1:直接证明的两种方法: 和;复习2:是间接证明的一种基本方法.二、新课导学※学习探究探究任务:反证法问题(1):将9个球分别染成红色或白色,那么无论怎样染,至少有5个球是同色的,你能证明这个结论吗?问题(2):三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?新知:一般地,假设原命题,经过正确的推理,最后得出,因此说明假设,从而证明了原命题.这种证明方法叫.试试:证明:5,2不可能成等差数列.,3反思:证明基本步骤:假设原命题的结论不成立→ 从假设出发,经推理论证得到矛盾→ 矛盾的原因是假设不成立,从而原命题的结论成立方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.※典型例题例1 已知0a ≠,证明x 的方程ax b =有且只有一个根.变式:证明在ABC ∆中,若C ∠是直角,那么B ∠一定是锐角.小结:应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).例2求证圆的两条不是直径的相交弦不能互相平分.变式:求证:一个三角形中,至少有一个内角不少于60︒.小结:反证法适用于证明“存在性,唯一性,至少有一个,至多有一个”等字样的一些数学问题.※ 动手试试练1. 如果12x >,那么2210x x +-≠.练2. ABC ∆的三边,,a b c 的倒数成等差数列,求证:90B <︒.三、总结提升※ 学习小结1. 反证法的步骤:①否定结论;②推理论证;③导出矛盾;④肯定结论.2. 反证法适用于证明“存在性,唯一性,至少有一个,至多有一个”等字样的一些数学问题.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 用反证法证明命题“三角形的内角至少有一个不大于60︒”时,反设正确的是( ).A .假设三内角都不大于60︒B .假设三内角都大于60︒C .假设三内角至多有一个大于60︒D .假设三内角至多有两个大于60︒2. 实数,,a b c 不全为0等价于为( ).A .,,a b c 均不为0B .,,a b c 中至多有一个为0C .,,a b c 中至少有一个为0D .,,a b c 中至少有一个不为03.设,,a b c 都是正数,则三个数111,,a b c b c a+++( ).A .都大于2 B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于24. 用反证法证明命题“自然数,,a b c 中恰有一个偶数”的反设为 .5. “4x >”是“240x x ->”的 条件.课后作业1. 已知,0x y >,且2x y +>.试证:11,x y y x ++中至少有一个小于2.2. .。
§4反证法课时过关·能力提升1.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”.其中正确的叙述有()A.0个B.1个C.2个D.3个解析:①错,应为a≤b;②对;③错,应为三角形的外心在三角形内或在三角形的边上.答案:B2.用反证法证明“如果a>b,那么假设的内容应是ABC且或解析:假设的内容应是结论的反面的否定是或故选.答案:D3.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.1在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛解析:将30秒跳绳成绩确定的学生,按其成绩从大到小,把他们的序号排列为3,6,7,10,1与5并列,4;由题意可知3,6,7号同时进入立定跳远和30秒跳绳的决赛.假设5号学生没有进入30秒跳绳决赛,则1号和4号学生也没有进入30秒跳绳决赛.这与“同时进入立定跳远决赛和30秒跳绳决赛的有6人”矛盾.故5号学生进入30秒跳绳决赛,故选B.答案:B4.已知数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数),且a>b,则两个数列中序号与数值均相同的项有()A.0个B.1个C.2个D.无穷多个2解析:假设两个数列中存在序号与数值均相等的项,即存在n0,使得则an0+2=bn0+1,即an0+1=bn0,则an0<bn0,∵n0∈N+,∴a<b,这与a>b矛盾.∴不存在n0,使得故选A.答案:A5.设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于零”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:必要性显然.充分性:若PQR>0,则P,Q,R同时大于零或其中两个负数一个正数,不妨假设P<0,Q<0,R>0.∵P<0,Q<0,∴a+b<c,b+c<a,∴a+b+b+c<c+a,∴b<0,这与a,b,c是正数矛盾.故P,Q,R同时大于零.答案:C6.用反证法证明命题“若p1p2=2(q1+q2),则关于x的方程x2+p1x+q1=0与x2+p2x+q2=0中至少有一个方程有实数根”时,假设应为.答案:两个方程都没有实数根7.有三张卡片,分别写有1和2,1和3,2和3.背面朝上,打乱后甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.3解析:由丙说的话可知,丙的卡片上的数字可能是“1和2”或“1和3”.若丙的卡片上的数字是“1和2”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和3”,此时与甲说的话一致;若丙的卡片上的数字是“1和3”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和2”,此时与甲说的话矛盾.综上可知,甲的卡片上的数字是“1和3”.答案:1和38.★设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是.(填序号)解析:若a则a+b>1,但a<1,b<1,故①推不出.若a=b=1,则a+b=2,故②推不出.若a=-2,b=-3,则a2+b2>2,故④推不出.若a=-2,b=-3,则ab>1,故⑤推不出.对于③,若a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2.与a+b>2矛盾,因此假设不成立.故a,b中至少有一个大于1.答案:③9.求证:抛物线上任取四点所组成的四边形不可能是平行四边形.证明如图,不妨设抛物线的方程为y2=ax(a>0),且A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)是抛物线上不同的四点.若AD,BC的斜率均不存在,由抛物线的对称性知四边形ABCD为梯形,不是平行四边形.若AD,BC的斜率有一个不存在,则易知AD与BC不平行,故四边形ABCD不是平行四边形.4若AD,BC的斜率均存在,则k AB----同理k BC假设四边形ABCD是平行四边形,则k AB=k CD,k BC=k DA,从而得y1=y3,y2=y4,进而得x1=x3,x2=x4,于是A,C重合,B,D重合,这与A,B,C,D是抛物线上不同的四点相矛盾.故四边形ABCD不可能是平行四边形.10.已知f(x)=x2+px+q,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于分析:本题结论中含有“至少”,结论情况比较多,可用反证法证明.证明假设|f(1)|,|f(2)|,|f(3)|都小于则|f(1)|+2|f(2)|+|f(3)|<2.而|f(1)|+2|f(2)|+|f(3)|≥|f(1)-2f(2)+f(3)|=|(1+p+q)-2(4+2p+q)+(9+3p+q)|=2,出现矛盾,所以假设不成立.故|f(1)|,|f(2)|,|f(3)|中至少有一个不小于11.★已知x,y,z∈R,x+y+z=1,x2+y2+z2求证分析:本题中的条件比较复杂,而结论比较简单,不太容易入手证明,可用反证法证明.证明由条件,得y+z=1-x,y2+z2≥则≥x25=x2-假设x,y,z中有负数,不妨设x<0,则x-这与-矛盾,∴x,y,z中没有负数.假设x,y,z中有一个大于不妨设x则x>0.-这与-矛盾.∴x,y,z中没有大于的.综上所述,x,y,z∈6。
反证法解题反证法的证题模式可以简要的概括我为“否定→推理→否定”。
即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。
应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。
实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。
用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
Ⅰ、再现性题组:1. 已知函数f(x)在其定义域内是减函数,则方程f(x)=0 ______。
A.至多一个实根B.至少一个实根C.一个实根D.无实根2. 已知a<0,-1<b<0,那么a 、ab 、ab 2之间的大小关系是_____。
A. a>ab> ab 2B. ab 2>ab>aC. ab>a> ab 2D. ab> ab 2>a3. 已知α∩β=l ,a α,b β,若a 、b 为异面直线,则_____。
A. a 、b 都与l 相交B. a 、b 中至少一条与l 相交C. a 、b 中至多有一条与l 相交D. a 、b 都与l 相交4. 四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。
(97年全国理)A. 150种B. 147种C. 144种D. 141种【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A ;2小题:采用“特殊值法”,取a =-1、b =-0.5,选D ;3小题:从逐一假设选择项成立着手分析,选B ;4小题:分析清楚结论的几种情况,列式是:C 104-C 64×4-3-6,选D 。