2012年四川省成都市中考数学试卷及答案
- 格式:doc
- 大小:374.00 KB
- 文档页数:8
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简( - 3x2)〃2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6.在函数中,自变量x的取值范围是(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2(B )15πcm 2(C )18πcm 2(D )24πcm 210. 有下列函数:①y = - 3x ;②y = x – 1:③y = - x1(x < 0);④y = x 2+ 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有(A )①②(B )①④(C )②③(D )③④二、填空题:(每小题4分,共16分)11. 现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为2甲S =0.32,2乙S =0.26,则身高较整齐的球队是 队.12. 已知x = 1是关于x 的一元二次方程2x 2+ kx – 1 = 0的一个根,则实数k 的值是 . 13. 如图,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .14. 如图,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它们的对应点N 的坐标是.三、(第15题每小题6分,第16题6分,共18分) 15. 解答下列各题:(1)计算:231)2008(410-+⎪⎭⎫⎝⎛--+- .(2)化简:).4(2)12(22-⋅-+-x xx x x x 16. 解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整式解. 四、(每小题8分,共16分)17. 如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)18. 如图,已知反比例函数y =xm 的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. (1)试确定这两个函数的表达式; (2)求点B 的坐标.五、(每小题10分,共20分)19. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4. (1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.20. 已知:在梯形ABCD 中,AD ∥BC ,AB = DC ,E 、F 分别是AB 和BC 边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC.若AD =4,BC=8,求梯形ABCD 的面积ABCD S 梯形的值;(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果FG=k 〃EF (k 为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.一、选择题:(每小题3分,共30分)1. 计算2(12-)的结果是 (A)-1 (B) l (C)一2 (D) 22. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是俯视图主视图(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上(C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖(D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限 7. 若关于x 的一元二次方程2210kxx --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150° 9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为(A)20kg (B)25kg (C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是6.8度 (C)极差是5度 (D)中位数是6度二、填空题:(每小题4分,共16分) BCDEA′BCDO11.分式方程2131xx =+的解是_________ 12.如图,将矩形ABCD 沿BE 折叠,若∠CBA ′=30则∠BEA ′=_____.13.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①54.4110⨯人;②64.4110⨯人;③544.110⨯人.其中是科学记数法表示的序号为_________.14.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6,那么BD =_________. 三、(第15题每小题6分,第16题6分,共18分) 15.解答下列各题: (1032(2009)4sin 45(1)π--+-。
—20XX年年成都市中考数学试题及答案导读:就爱阅读网友为您分享以下“ —20XX年年成都市中考数学试题及答案”的资讯,希望对您有所帮助,感谢您对的支持!四川省成都市中考数学试卷(含成都市初三毕业会考)全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ为其它类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1. 第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2. 第Ⅰ卷全是选择题。
各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2. 化简(- 3x2)〃2x3的结果是(A)- 6x5 (B)- 3x5 (C)2x5 (D)6x53. 北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4. 用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)65. 下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6. 在函数中,自变量x的取值范围是(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 37. 如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF (D)78. 一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A)12πcm2 (B)15πcm2 (C)18πcm2 (D)24πcm2 1 (x < 0);④y = x2 + 2x + 1.x其中当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有(A)①②(B)①④(C)②③(D)③④第Ⅱ卷(非选择题,共70分)注意事项:1. A卷的第Ⅱ卷和B卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
2012年全国各地中考数学解析汇编:实数1、(2012四川成都,1,3分)3-的绝对值是( )A .3B .3-C .13D .13- 【答案】A2、(2012四川成都,5,3分)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元【答案】A3、(2012四川乐山,1,3分)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )A .500-元B .237-元C .237元D .500元 【答案】B4、(2012浙江舟山3,3分)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为( )A . 0.35×108B .3.5×107C .3.5×106D .35×105【答案】C5、(2012浙江温州,1,4分)给出四个数-1,0,0.5,其中为无理数的是( )A .-1B .0C .0.5 D【答案】D6、(2012浙江省衢州,1,3分)下列四个数中,最小的数是( )A .2B .-2C .0D . 12- 【答案】B7、(2012浙江省衢州,2,3分)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计公报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为( )A.12.104×109元B.12.104×1010元C.1.2104×1010元D.1.2104×1011元【答案】C8、(2012浙江嘉兴,3,4分)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学计数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×105【答案】C9、(2012浙江绍兴,1,4分)3的相反数是()A.3 B.-3 C.13D.13-【答案】B10、(2012浙江绍兴,3,4分)据科学家估计,地球的年龄大约是4600000000年,这个数用科学计数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×1010【答案】C11、(2012浙江丽水,3,3分)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.-4 B.-2 C.0 D.40 【答案】B12、(2012山东临沂,2,3分)太阳的半径约为696000千米,把这个数据用科学记数法表示为()A.696×103千米B.69.6×104千米C.6.96×105千米D. 6.96×106千米【答案】C13、(2012山东济宁,1,3分)在数轴上到原点距离等于2的点所表示的数是()A.-2 B.2 C.2±D.不能确定【答案】C14、(2012江苏无锡,1,3分)如-2的相反数是( )A .2B .一2C .12D .一 12【答案】A15、(2012江苏泰州,3,3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×107【答案】B16、(2012湖南益阳,1,4分)-2的绝对值等于( )A .2B .-2C .12 D .12- 【答案】A17、(2012株洲,1,4分)-9的相反数( )A .9B .-9C .19D .19- 【答案】A18、(2012湖南常德,9,3分)若A 与5互为倒数,则A=( ) A. 15 B. 5 C. -5 D. -15 【答案】A19、(2012湖南长沙,1,3分)+3相反数是( )A .31B .-3C . -31D .3【答案】D20、(2012贵州铜仁,1,4分)-2的相反数是( )A .21B . -21C . -2D . 2【答案】D21、(2012贵州铜仁,9,4分)从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一, 299.7万平方公里用科学计数法表示为( )平方公里(保留两位有效数字)A .6103⨯B .7103.0⨯C .6100.3⨯D .61099.2⨯【答案】C 22、(2012广东湛江,1,4分)2的倒数是( )A .2B .-2C .12D .12- 【答案】C23、(2012广东湛江,2,4分)国家发改委已于2012年5月24日核准广东湛江钢铁基地项目,项目有由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,数据10200000( )A .510210⨯B .610.210⨯C .61.0210⨯D .71.0210⨯【答案】D24、(2012广东广州,1,3分)实数3的倒数是( )A .13-B .13C .-3D .3 【答案】B25、(2012福州,1,4分)3的相反数是( )A .-3B .31C .3D .31- 【答案】A26、(2012福州,2,4分)今年参观“5·18”海交会的总人数约为489000人,将489000用科学记数法表示为( )A .4109.48⨯B .51089.4⨯C .41089.4⨯D .610489.0⨯【答案】B27、(2012浙江,义乌1,3分)-2的相反数是( )A .2B .-2C .21 D .21- 【答案】A28、(2012山东泰安1,3分)下列各数比﹣3小的数是( )A .0B .1C .﹣4D .﹣1【答案】C29、(2012•山东泰安4,3分)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为( )A .21×10﹣4千克B .2.1×10﹣6千克C .2.1×10﹣5千克D .21×10﹣4千克【答案】C30、(2012四川绵阳,1,3分)4的算数平方根是( )A.2B.-2C.±2D.2【答案】A31、(2012江苏淮安,1,3分)12的相反数是 ( ) A .-12 B .12 C .-2 D .2 【答案】A 。
成都市二0—二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考数学A卷(共100分第1卷(选择题•共30分一、选择题(本大题共10个小题,每小题3分,共30分•每小题均有四个选项, 其中只有一项符合题目要求1. J的绝对值是()A. 3 B .2.D.A. B. C.3. 如图所示的几何体是由4个相同的小正方体组成.其主视图为()4. 下列计算正确的是()D.5. 成都地铁二号线工程即将竣工,通车后与地铁一号线呈 “十”字交叉,城市交 通通行和转换能力将成倍增长.该工程投资预算约为 930 000万元,这一数据用科 学记数法表示为()7.已知两圆外切,圆心距为5cm 若其中一个圆的半径是3cm 则另一个圆的半径 是()9. 如图.在菱形ABCD 中,对角线AC, BD 交于点O,下列说法错误的是()A.「— B.「;】“ C.A. •「万元B .」:万元心万元C 万元6.如图,在平面直角坐标系 ()5关于y 轴的对称点的坐标为A.B . (3,5 C . (3 .・.(5,A. 8cm B . 5cm C. 3cm D. 2cm8. 分式方程 lx x-1 的解为()A.B. \2 C .vxOy 中,点P ((A. AB// DCB. AC=BD C ACL BD D. OA=OC10. —件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是 ' ,根据题意,下面列出的方程正确的是()A B..丨冋丨| 川-I2ID 10(1(1 v r-121C第口卷(非选择题,共70分二、填空题(本大题共4个小题,每小题4分,共16分11 .分解因式:> ' \ = _____________12 .如图,将□ ABCD的一边BC延长至E,若/ A=110。
,则/ 1= _________A13 .商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm 38 39 40 41 42件数14 3 1214.如图,AB是O O的弦,0C丄AB于C.若AB=三、解答题(本大题共6个小题,共54分15.(本小题满分12分,每题6分⑴计算:4⑴、L (,T ■(丨丨fx-2<0(2)解不等式组:16.(本小题满分6分b a—)-- ----b a2- b217.(本小题满分8分如图,在一次测量活动中,小华站在离旗杆底部眼睛离地面的距离ED为1.5米.试帮助小华求岀旗杆73 »1.732(B处6米的D处,仰望旗杆顶端A,测得仰角为60°, AB 的高度.(结果精确到0.1米,则这II件衬衫领口尺寸的众数是.cm,中位数是.cm.化简: (1-,0C=1,则半径0B的长为18.(本小题满分8分y- 一"+ b(b为常数的图象与反比例函数如图,一次函数k丄(为常数,且工0的图象交于A, B两点,且点A的坐标为(丨,4(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校 1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_____ ,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟的人数为_____ ;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报•请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分如图,△ ABC^O^ DEF是两个全等的等腰直角三角形,/ BAC=Z EDF=90°,^ DEF的顶点E 与厶ABC的斜边BC的中点重合.将△ DEF绕点E旋转,旋转过程中,线段DE与线段AB 相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ寸,求证:△ BPE^A CQE9—Q (2)如图②,当点Q在线段CA的延长线上时,求证:△ BPE^A CEQ并求当BP=汀,CQ= _ 时,、填空题(本大题共5个小题,每小题4分,共20分P、Q两点间的距离(用含的代数式表示.国②B卷(共50分、填空题(本大题共5个小题,每小题4分,共20分>小(保留21.已知当;「八\的值为丫丨时,?<7A I 爪 的值为3,则当' 一时,(结果,0, l , 2,的图象不经过点(1,0的3的卡片,它们除数字不同外其余全J ,则使关于 \ 的一元二次有两个不相等的实数根,且以\为自变量的二次函数〉' M概率是23•有七张正面分别标有数字 J ,- ,1部相同•现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为方程、24•如图,在平面直角坐标系 xOy 中,直线AB 与x 轴、y 轴分别交于点 A, B,与反比例函数在第一象限的图象交于点BE 尸;&丄( 为常数,且过点F 作FN L x 轴于N,直线EM 与 FN 交于点C.若B FE , F. 1过点E 作EM L y 轴于M;h 为大于I 的常数.记的代数式表示(用含“丿22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积为S s,△ CEF 的面积为 •,△ OEF 的面积为 -,则O\ N 4\25-如图,长方形纸片ABCDK AB=8cmAD=6cm按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB, EC剪下一个三角形纸片EBC余下部分不再使用;第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M线段BC上任意取一点N,沿MN将梯形纸片GBCF剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HE HE重合,拼成一个与三角形纸片EBC W积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠则拼成的这个四边形纸片的周长的最小值为_________cm最大值为 _________ m.二、解答题(本大题共3个小题,共30分26.(本小题满分8分“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时是车流密度' (单位:辆/千米的函数,且当0< \ <28时,V=80;当28V \ <188时,V是\的一次函数.函数关系如图所示.'的函数表达式;(1)求当28< < 188时,V关于(2)若车流速度V不低于50千米/时,求当车流密度为多少时,车流量P(单位:辆/时达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度X车流密度27.(本小题满分10分如图,AB是。
成都市二0一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l 0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求) 1.(2012成都)3-的绝对值是( ) A .3 B .3- C .13 D .13- 考点:绝对值。
解答:解:|﹣3|=﹣(﹣3)=3. 故选A .2.(2012成都)函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-考点:函数自变量的取值范围。
解答:解:根据题意得,x ﹣2≠0, 解得x ≠2. 故选C . 3.(2012成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .考点:简单组合体的三视图。
解答:解:从正面看得到2列正方形的个数依次为2,1, 故选:D . 4.(2012成都)下列计算正确的是( )A .223a a a += B .235a a a ⋅= C .33a a ÷= D .33()a a -=考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
解答:解:A 、a +2a =3a ,故本选项错误; B 、a 2a 3=a 2+3=a 5,故本选项正确;C 、a 3÷a =a 3﹣1=a 2,故本选项错误;D 、(﹣a )3=﹣a 3,故本选项错误. 故选B5.(2012成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A . 59.310⨯ 万元 B . 69.310⨯万元 C .49310⨯万元 D . 60.9310⨯万元 考点:科学记数法—表示较大的数。
解答:解:930 000=9.3×105. 故选A . 6.(2012成都)如图,在平面直角坐标系xOy 中,点P (3-,5)关于y 轴的对称点的坐标为( ) A .( 3-,5-) B .(3,5) C .(3.5-) D .(5,3-)考点:关于x 轴、y 轴对称的点的坐标。
三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
【考点】锐角三角函数定义,特殊角的三角函数值。
【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。
∴∠A=30°。
∴∠B=60°。
∴sinB= 。
故选C。
2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。
数 学 试 题(2)参考公式:抛物线2y ax bx c =++的顶24(,)24b ac b a a-- 一、选择题(本大题共10小题,每小题3分,共30分。
1.16-的相反数是 A. 16 B. 6 C.-6 D. 16-2.若|2|a -与2(3)b +互为相反数,则ab 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体4.“一方有难。
八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元 B. 120.43710⨯元 C.104.3710⨯元 D.943.710⨯元5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值 A.2007 B.2008 C.2009 D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A.1201803x x =+ B. 1201803x x =- C. 1201803x x =+ D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。
2012年中考数学卷精析版——成都卷一、A卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(2012•成都市)﹣3的绝对值是()A.3 B.﹣3 C.D.考点:绝对值。
分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|﹣3|=﹣(﹣3)=3.2.(2012•成都)函数中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2D.x≠﹣2考点:函数自变量的取值范围。
分析:根据分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣2≠0,解得x≠2.故选C.点评:本题考查了函数自变量的取值范围,用到的知识点为:分式有意义,分母不为0.3.(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为()考点:简单组合体的三视图。
分析:根据主视图定义,得到从几何体正面看得到的平面图形即可.4.(2012•成都)下列计算正确的是()A.a+2a=3a2B.a2•a3=a5C.a3÷a=3D.(﹣a)3=a3B、a2•a3=a2+3=a5,故本选项正确;C、a3÷a=a3﹣1=a2,故本选项错误;D、(﹣a)3=﹣a3,故本选项错误.故选B点评:本题考查了合并同类项法则,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质和法则是解题的关键.5.(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于930 000有6位,所以可以确定n=6﹣1=5.解答:解:930 000=9.3×105.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.6.(2012•成都)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(2012•成都)已知两圆外切,圆心距为5cm,若其中一个圆的半径是3cm,则另一个圆的半径是()A.8cm B.5cm C.3cm D.2cm考点:圆与圆的位置关系。
2012年四川省成都市中考数学试卷一、A卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(3分)(2012•成都)﹣3的绝对值是()A.3B.﹣3 C.D.2.(3分)(2012•成都)函数中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≠﹣23.(3分)(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.4.(3分)(2012•成都)下列计算正确的是()A.a+2a=3a2B.a2•a3=a5C.a3÷a=3 D.(﹣a)3=a35.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元6.(3分)(2012•成都)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3.﹣5)D.(5,﹣3)7.(3分)(2012•成都)已知两圆外切,圆心距为5cm,若其中一个圆的半径是3cm,则另一个圆的半径是()A.8cm B.5cm C.3cm D.2cm8.(3分)(2012•成都)分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=49.(3分)(2012•成都)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.A B∥DC B.A C=BD C.A C⊥BD D.O A=OC10.(3分)(2012•成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=121二、A卷填空题(本大题共4个小题,每小题4分,共16分)11.(4分)(2012•成都)分解因式:x2﹣5x=_________.12.(4分)(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=_________.13.(4分)(2012•成都)商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是_________cm,中位数是_________cm.14.(4分)(2012•成都)如图,AB是⊙O的弦,OC⊥AB于C.若AB=,0C=1,则半径OB的长为_________.三、A卷解答题(本大题共6个小题,共54分)15.(12分)(2012•成都)(1)计算:(2)解不等式组:.16.(6分)(2012•成都)化简:.17.(8分)(2012•成都)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,(结果精确到0.1米,)测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.18.(8分)(2012•成都)如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(10分)(2012•成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_________,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_________;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).四、B卷填空题(本大题共5个小题,每小题4分,共20分)21.(4分)(2012•成都)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为_________.22.(4分)(2012•成都)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为_________(结果保留π)23.(4分)(2012•成都)有七张正面分别标有数字﹣3,﹣2,﹣1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是_________.24.(4分)(2012•成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=_________.(用含m的代数式表示)25.(4分)(2012•成都)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为_________cm,最大值为_________cm.五、B卷解答题(本大题共3个小题,共30分)26.(8分)(2012•成都)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(10分)(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.28.(12分)(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C 两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.2012年四川省成都市中考数学试卷参考答案与试题解析一、A卷选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(3分)考点:绝对值。
2012年四川省成都市高中阶段学校招生统一考试数学试题(含成都市初三毕业会考)A 卷(共100分) 第1卷(选择题.共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求) 1.3-的绝对值是( ) A .3 B .3-C .13D .13-2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x >B .2x <C .2x ≠D .2x ≠-3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )4.下列计算正确的是( )A .223a a a += B .235a a a ⋅=C .33a a ÷=D .33()a a -=5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A .59.310⨯万元B .69.310⨯万元 C .49310⨯万元D .60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P (3-,5)关于y 轴的对称点的坐标为( ) A .( 3-,5-) B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( ) A .8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x =B .2x =C .3x =D .4x =9.如图在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( )A .AB ∥DCB .AC=BDC .AC ⊥BDD .OA=OC10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( ) A .100(1)121x += B .100(1)121x -= C .2100(1)121x +=D .2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11.分解因式:25x x - =________.12.如图,将 ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,OC=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算:024cos45((1)π+-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分) 化简:22(1)b aa b a b-÷+- 17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数ky x=(k 为常数,且k ≠0),4).的图象交于A,B两点,且点A的坐标为(1(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a 时,P 、Q 两点间的距离 (用含a 的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________. 22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π )23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过点(1,0)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数ky x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若B E 1BF m=(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =_______.(用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分I0分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ;(2)若2KG =KD·GE ,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若si n ∠E=35,AK=FG 的长.28.(本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+(m 为常数)的图象与x 轴交于点A (3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M 是否为定值,并写出探究过程.。
成都市二○一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色的签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )(A )3 (B )3-(C )13 (D )13- 2.函数12y x =- 中,自变量x 的取值范围是( ) (A )2x > (B ) 2x <(C )2x ≠ (D )2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )4.下列计算正确的是( )(A )223a a a += (B )235a a a ⋅=(C )33a a ÷= (D )33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )(A )59.310⨯ 万元 (B )69.310⨯万元(C )49310⨯万元 (D )60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点(35)P -,关于y 轴的对称点的坐标为( )(A )(3-,5-)(B )(3,5)(C )(3,5-)(D )(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )(A )8cm (B )5cm (C )3cm (D )2cm 8.分式方程3121x x =- 的解为( ) (A )1x = (B )2x =(C )3x = (D )4x =9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) (A )AB DC ∥(B )AC BD =(C )AC BD ⊥(D )OA OC =10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )(A )100(1)121x += (B )100(1)121x -=(C )2100(1)121x += (D )2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)1l .分解因式:25x x -=________.12.如图,将ABCD Y 的一边BC 延长至E ,若110A ∠=°,则1∠=________.13则这________cm .14.如图,AB 是O ⊙的弦,OC AB ⊥于C .若AB =,1OC =,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos 458(π(1)-+- .(2)解不等式组:2021 1.3x x -<⎧⎪+⎨⎪⎩,≥16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.11.732 )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数ky x=(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(14)-,.(1)分别求出反比例函数及一次函数的表达式;(2)求点B 的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ∠=∠=°,DEF △的顶点E 与ABC △的斜边BC 的中点重合.将DEF △绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP AQ =时,求证:BPE CQE △≌△;(2)如图②,当点Q 在线段CA 的延长线上时,求证:BPE CEQ △≌△;并求当BP a = ,92CQ a =时,P 、Q 两点间的距离 (用含a 的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ .(结果保留π )23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,0)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM y ⊥轴于M ,过点F 作FN x ⊥轴于N ,直线EM 与FN 交于点C .若1BE BF m=(m 为大于l 的常数).记C E F △的面积为1S ,OEF △的面积为2S ,则12S S =________. (用含m 的代数式表示) 25.如图,长方形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBGH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm ,最大值为________cm .二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展 交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:028x <≤时,80V =;当辆/千米)的函数,且当28188x <≤时,V 是x的一次函数. 函数关系如图所示.(1)求当28188x <≤时,V 关于x 的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分10分)如图,AB 是O ⊙的直径,弦CD AB ⊥于H ,过CD 延长线上一点E 作O ⊙的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K .(1)求证:KE GE =;(2)若2KG KD GE =∙,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若sin E =35,AK =FG 的长.28.(本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点(30)A -,,与y 轴交于点C .以直线1x =为对称轴的抛物线2y ax bx c =++(a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使ACP △的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111()M x y , ,222()M x y ,两点,试探究2112P P M M M M ∙ 是否为定值,并写出探究过程.成都市二○一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案一、1. A2. C3. D4. B5. A6. B7. D8. C9. B 10. C二、11.(5)x x - 12.70° 13.39、40 14.2三、15.解:(1)原式4112=⨯-+ ······················································ (2分)11=+ ························································· (4分) 2=; ············································································ (6分)(2)解不等式①,得2x <, ·································································· (2分) 解不等式②,得1x ≥, ········································································· (4分) ∴综上所述,原不等式的解集为12x <≤. ··············································· (6分)16.解:原式22a b b a a b a b+-=÷+- ······························································ (2分) ()()a a b a b a b a +-=∙+ ··························································· (4分)a b =-. ············································································· (6分)17.解:由图知6BD EC ==米, 1.5DE BC ==米, ··································· (1分)在Rt AEC △中,tan AC AEC EC∠=, t a n 6t a n 606 1.732A C E C A E C ∴=∙∠=⨯⨯°≈≈米, ··················· (4分) 10.4 1.511A B A C B C A C D E ∴=+=+=+=米.······························· (7分) 答:旗杆AB 的高度约为11.9米. ························································· (8分)18.解:(1)点(14)A -,在反比例函数k y x=的图象上, 41k ∴=-,解得4k =-, ···································································· (1分) ∴反比例函数的表达式为4y x =-; ······················································· (2分) 点(14)A -,在一次函数2y x b =-+(b 为常数)的图象上,4(2)(1)b ∴=-⨯-+,解得2b =, ······················································ (3分) ∴一次函数的表达式为22y x =-+; ····················································· (4分)(2)由224y x y x =-+⎧⎪⎨=-⎪⎩,解得22x y =⎧⎨=-⎩或14x y =-⎧⎨=⎩, ······································ (6分) 点B 在第四象限,∴点B 的坐标为(22)-,.··········································· (8分)19.解:(1)50人,320人; ····································································· (4分)(2)画树状图如下:··············································· (7分) 由树状图可知:会产生12种结果,它们出现的机会相等,其中恰好抽到甲、乙两名同学有2种结果,P ∴(甲、乙)=21126=. ······································································ (10分) 20.证明:(1)点E 是等腰直角三角形斜边的中点,BE CE B C AB AC ∴=∠=∠=,,,···························································· (1分) AP AQ =,BP CQ ∴=, ························································································· (2分) BPE CQE ∴△≌△; ·············································································· (3分)(2)BEF C CQE BEF DEF BEP ∠=∠+∠∠=∠+∠,,C CQE DEF BEP ∴∠+∠=∠+∠,45C DEF ∠=∠=°,BEF CQE ∠=∠. ··············································································· (4分) B C ∠=∠,BPE CEQ ∴△∽△; ··············································································· (5分) BP BE CE CQ∴=, ························································································ (6分) 92BP a CQ a BE CE ===,,,BE ∴=3BC =······························································· (7分) 3sin 45322AB AC BC a PA a QA a ∴===∴==°,,, ··································· (8分) ∴在Rt PAQ △中52PQ a ===. ············································ (10分) 21.6.22.68π.23.37. 24.11m m -+ 25.2012+,26.解:(1)设当28188x <≤时,v 关于x 的一次函数表达式为v kx b =+,点(28,80)、(188,0)在这条直线上,28801880k b k b +=⎧∴⎨+=⎩,解得1294.k b ⎧=-⎪⎨⎪=⎩··························· (2分)∴当28188x <≤时,v 关于x 的一次函数表达式为1942v x =-+; ················· (3分) (2)车流速度v 不低于50千米/时,194502x ∴-+≥,解得88x ≤; ····························································· (4分) ①028x <≤时,80P x =,800k P =>∴,随x 的增大而增大,∴当28x =时,2240P =; ······································································ (5分) ②当28188x <≤时,22111(94)94(94)4418222P x x x x x =-+=-+=--+. 抛物线开口向下,∴当94x ≤时,P 随x 的增大而增大,而28188x <≤,∴当88x =时,21(8894)441844002P =--+=. ······································ (7分) 44002240>,∴当车流密度为88辆/千米时,车流量达到最大,最大值是4400辆/时. ············· (8分)27.解:(1)证明:连接OG ,则有OG OA =,OGA OAG ∴∠=∠,EF 与O ⊙相切于点G ,90OGE ∴∠=°,即90KGE OGA ∠=-∠°, ·········· (1分) CD AB ⊥,90GKE AKH OAG ∴∠=∠=-∠°,KGE GKE ∴∠=∠,KE GE ∴=; ····················································· (2分) (2)连接DG ,2KG GE KG KD GE KG KG =∙∴=,,即KG KE KD KG=, ············································· (3分) GKE ∠是公共角,KDG KGE ∴△∽△,E KGD ∴∠=∠,···················································································· (4分) ACH KGD ∠=∠,E ACH ∴∠=∠,AC EF ∴∥; ································· (5分) (3)连接OC ,由(2)中AC EF ∥可得CAK KGE ∠=∠,KGE GKE AKH ∠=∠=∠,AKH CAK CA CK ∴∠=∠∴=,, 33sin sin 55E C =∴=,, ········································································ (6分) 在Rt ACH △中,若设3AH x =,则有5AC CK x ==,4CH x =,HK x ∴=,在Rt AKH △中,有222(3)x x +=,解得x = ····························· (7分) 设O ⊙的半径为R ,在Rt OCH △中,有222(4)(3)R x R x =+-,解得256R x =,R ∴=. ························································································ (8分) Rt Rt F CAH OGF CHA ∠=∠∴,△∽△, ··············································· (9分) FG AH OG CH ∴=,即34FG x R x=.34FG R ∴==. ··········································································· (10分) 28.解:(1)点(30)A -,在一次函数54y x m =+的图象上, 5(3)04m ∴+⨯-=,解得154m =; ····························································· (1分) 一次函数的解析式为51544y x =+, 令0x =,得154y =, ∴点C 的坐标为15(0)4,, 抛物线2y ax bx c =++的对称轴为1,可设抛物线的解析式为2(1)y a x k =-+,依题意,得160154a k a k +=⎧⎪⎨+=⎪⎩,解得144a k ⎧=-⎪⎨⎪=⎩; ······························································· (2分) ∴抛物线的函数表达式21(1)44y x =--+或 21115424y x x x =-++. ··········································································· (3分) (2)存在. ···························································································· (4分) ①AF 为四边形的一边时,如图①:CE x ∴∥轴, 由抛物线的对称性,得15(2)4E ,, ······················ (5分) 此时四边形的面积为:1515242ACEF S =⨯=四边形. ·· (6分) ②AF 为四边形的对角线时,如图②:设AF 与CE 交于M 点,即M 为CE 的中点,设()E E E x y ,,()M M M x y ,, 则有22C E M C MM x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ M 在x 轴上,0M y ∴=, 154C y =,154E y ∴=-,又21(1)44E E y x =--+, 即2151(1)444Ex -=--+,解得1E x =1x =-,E ∴点的坐标为15(1)4-, ································································ (7分)此时四边形的面积为: 151052(16)444AFC ACEF S S AF OC ==∙=⨯=+△四边形. ·············· (8分) ③如图③,作C 关于1x =对称的点C ',有15(2)4C ',,直线AC '与1x =的交点即为P 点,则P 点就是使ACP △的周长取得最小值的点,直线AC '的表达式为3944y x =+, 当1x =时,3y =,(13)P ∴,,过(13)P ,的直线设为:3(1)y k x -=-,即3y kx k =-+, ····························· (9分) 由111()M x y ,,122()M x y ,可得:1M P =,2M P =,12M M =将3ykx k =-+代入,消去y 得:111M P x ==-,221M P x ==-,1212M M x x ==-,∴1212121212()1x x x x M P M P M M x x -++∙==-, ······································································································ (10分)联立解析式,得方程21(1)443y x y kx k ⎧=--+⎪⎨⎪=-+⎩, 整理得2(42)430x k x k +---=,2224(42)4(43)16160 b ac k k k-=-++=+>,∴此方程有两个不相等的实数根,∴由根与系数的关系可得:1224x x k+=-,1243x x k=--;·······················(11分)将1224x x k+=-,1243x x k=--代入1212M P M PM M∙==1==.1212M P M PM M∙∴有定值,且定值为1. ·························································(12分)。
四川各市2012年中考数学试题分类解析汇编专题1:实数一、选择题1. (2012四川成都3分)-3的绝对值是【】A.3 B.3-C.13D.13-【答案】A。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-3到原点的距离是3。
,所以-3的绝对值是3。
,故选A。
2. (2012四川成都3分)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为【】A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元【答案】A。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。
930 000一共6位,从而930 000=9.3×105。
故选A。
3. (2012四川乐山3分)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作【】A.﹣500元B.﹣237元C.237元D.500元【答案】B。
【考点】正数和负数。
【分析】根据题意收入为正,支出为负,支出237元应记作﹣237元。
故选B。
4. (2012四川乐山3分)如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是【】A.ab>0B.a+b<0C.(b﹣1)(a+1)>0D.(b﹣1)(a﹣1)>0【答案】C。
【考点】数轴,有理数的混合运算。
【分析】根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可:由a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0。
四川省成都市2012年高中阶段教育学校统一招生考试试卷(含成都初三毕业会考)数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】A【解析】解:3()|33|=--=-.【提示】根据一个负数的绝对值等于它的相反数得出. 【考点】绝对值. 2.【答案】C【解析】解:根据题意得,20x -≠,解得2x ≠. 【提示】根据分母不等于0列式计算即可得解. 【考点】函数自变量的取值范围. 3.【答案】D【解析】解:从正面看得到2列正方形的个数依次为2,1,故选:D. 【提示】根据主视图定义,得到从几何体正面看得到的平面图形即可. 【考点】简单组合体的三视图. 4.【答案】B【解析】解:A.23a a a +=,故本选项错误; B.23235a a a a +==,故本选项正确; C.3312a a a a -=÷=,故本选项错误; D.33()a a -=-,故本选项错误.【提示】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方的性质对各选项分析判断后利用排除法求解.【考点】同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方. 5.【答案】A【解析】解:59300009.310=⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值是易错点,由于第Ⅱ卷是O的弦,OBC中,OB【提示】先根据垂径定理得出BC()(b a b a+-a+-a b a()(b a【提示】首先计算括号内的式子,然后把除法转化成乘法运算,最后计算分式的乘法即可tan606CE︒=【提示】先根据锐角三角函数的定义求出sin453BC︒=△是等腰直角三角形,易得ABCME EW FN DF =,1πFN =, 2111(1)222MC CN m xy ME MO FN NO ----,2111(1)222mx my m xy x my y mx ----,KD GE,即KGKD设O半径为(3)r t-+EF为KD GE,利用两a-,解得3(5)15+;4S=ACEFACE F S ''=的周长最小,只需AP 212()x x -22221212()41(24)4(43)x x x x k k k ++=+----121121(1)x -221(1)x -222222121212(1)(1)(1)(1)[()1]P M P k x x k x x x x =+--=+-++)[43k --21P M P M M =21P M P M M =为定值21P M P M M =为定值【考点】二次函数综合题.。
成都市二0一二年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OC10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)1l .分解因式:25x x - =________.12.如图,将 ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13.商店某天销售了ll 件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos45((1)π+-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.11.732≈)18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1-,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B 的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE ≌△CQE ;(2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=92a 时,P 、Q 两点间的距离 (用含a 的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π )23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.(本小题满分I0分)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE ;(2)若2KG =KD ·GE ,试判断AC 与EF 的位置关系,并说明理由;(3) 在(2)的条件下,若sinE=35,AK=FG 的长.28.(本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P P M M M M ⋅ 是否为定值,并写出探究过程.2012成都中考数学参考答案A 卷 1-5 ACDBA 6-10 BDCBC11、x(x-5) 12、70° 13、39、40 14、2 15、2,21<≤x16、a-b 17、11.9米 18、xy x y 4,22-=+-= B(2,-2) 19、50,320,61 20、(1)CQ=BP,BE=EC,C B ∠=∠,SAS (2)C B CEQ BPE ∠=∠∠=∠,,故相似 a PQ a AQ a AP a AB a BE CE BP CQ BE 25,23,2,3,223,====== B 卷21、6(简单的代数运算)22、68π(圆锥圆柱展开图求面积)23、73(先求出a 的取值,再求符合条件的a ) 24、11+-m m (k 的几何意义,线段比的转化,面积的几种求法) 25、20,13412+(MN 最短就是AB 一半,最长就是AB 中点到C 距离)26、(1)v=9421+-x (2))8828(94212≤≤+-=x x x p x 取88时,有最大值4400 27、(1)KGE OGA OAG AKC EKG ∠=∠-=∠-=∠=∠009090 所以KE=GE(2)EF AC C E KGD KEG KGD KGGE KD KG 平行相似∴∠=∠=∠∴∆∆∴= (3).3305,=∆AB ACH 3353533,===∆∆BG AG KG AGB AHK ,,相似 31),(,2==+=∆∆AG BG FG FB AB FB FB FG GFB AFG 相似,8305=FG 28、(1)m=415,41521412++-=x x y (2)715,415,211=⎪⎭⎫ ⎝⎛S E .43115105,415,31122+=⎪⎭⎫ ⎝⎛-+S E (3)定值1。