2019年全国1卷文科数学
- 格式:docx
- 大小:454.42 KB
- 文档页数:12
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。
2019年普通高等学校招生全国统一考试(新课标Ⅰ)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =( ) A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则( )A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cma b c <<a c b <<c a b <<b c a <<5.函数2sin ()cos x xf x x x +=+在[—π,π]的图像大致为( )A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°=( ) A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+D .112A A=+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C c B b A a sin 4sin sin =- ,41cos -=A ,则bc =( )A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国一卷数学文科12题解析
根据题目,我们知道椭圆的一个焦点是F1(0,1),另一个焦点是F2(0,-1),且椭圆的一条渐近线的倾斜角为130°。
我们可以利用以下几个步骤来求出椭圆的方程:第一步,根据渐近线的倾斜角,我们可以求出渐近线的斜率,即tan130°=-√3。
第二步,根据椭圆的性质,我们可以知道渐近线的斜率等于-b/a,其中a是椭圆的半长轴,b是椭圆的半短轴。
因此,我们有-b/a=-√3,即b=√3a。
第三步,根据椭圆的定义,我们可以知道椭圆上任意一点P到两个焦点的距离之和等于2a。
因此,我们有PF1+PF2=2a。
第四步,根据坐标系中的距离公式,我们可以将PF1和PF2分别表示为√((x-0)^2+(y-1)2)和√((x-0)2+(y+1)2),代入第三步得到的等式,得到√((x-0)2+(y-1)^2)+√((x-0)^2+(y+1)^2)=2a。
第五步,对第四步得到的等式进行平方和化简,得到x^4+y^4-2x2y2-4ax^2+4a^2=0。
第六步,根据第二步得到的关系b=√3a,我们可以将b2用3a2代替,并将其代入椭圆的标准方程x2/a2+y2/b2=1,得到x2/a2+y2/(3a2)=1。
第七步,将第五步和第六步得到的两个方程联立消元,得到a=√3/3或a=-√3/3。
由于a是半长轴,所以只取正值,即a=√3/3。
第八步,将a=√3/3代入第六步得到的标准方程,得到x^2/(1/3)+y^2=1,即3x^2+y^2=1。
这就是所求的椭圆的方程。
以上就是这道题目的解析过程。
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x =…,则(A B =I ) A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}2.(5分)若(1)2z i i +=,则(z = ) A .1i --B .1i -+C .1i -D .1i +3.(5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14 C .13D .124.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.85.(5分)函数()2sin sin 2f x x x =-在[0,2]π的零点个数为( ) A .2B .3C .4D .56.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =) A .16B .8C .4D .27.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( ) A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于( )A .4122-B .5122-C .6122-D .7122-10.(5分)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为( )A .32B .52C .72D .9211.(5分)记不等式组6,20x y x y +⎧⎨-⎩……表示的平面区域为D .命题:(,)p x y D ∃∈,29x y +…;命题:(,)q x y D ∀∈,212x y +„.下面给出了四个命题 ①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④12.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>二、填空题:本题共4小题,每小题5分,共20分。
2019年全国1卷文科数学编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年全国1卷文科数学)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年全国1卷文科数学的全部内容。
C.185 cm.....某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,中用系统抽样方法等距抽取名学生进行体质测验.若46号学生被抽到记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.19.(本小题满分12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点。
(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.已知函数,为的导数.x x x x x f --=cos sin 2)()(x f ')(x f (1)证明:在区间(0,π)存在唯一零点;)(x f '(2)若x ∈[0,π]时,,求a 的取值范围.ax x f ≥)(已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.。
cos sin 1,()cos x x x g x x x '=+-=。
专业文档_ -__ - ___-__:-号-学-__-___ -___-____线__封__密___ - _:-名姓---班 - ___-___ - _年 -____线__封_密__-___ - ___-___ - ___-___ - ___ -:校-学-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本试卷共23 小题,满分150 分,考试用时120 分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题5 分,共 60 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设 z3i,则 z =12iA. 2 B .3C.2D. 12.已知集合 U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,则B e AUA. 1,6B. 1,7C. 6,7D. 1,6,73.已知 a log2 0.2,b 20.2, c0.20.3,则A. a b c B. a c bC. c a b D. b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之专业文档比是51( 5 1 ≈ 0.618,称为黄金分割比例 ),著名 22的 “断臂维纳斯 ”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 .若某人满足 2上述两个黄金分割比例,且腿长为 105cm ,头顶至脖子下 端的长度为 26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5. 函数 f(x)= sin x x 2 在 [—π, π]的图像大致为cos x xA. B.C. D.6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1, 2, ⋯ , 1 000,从这些新生中用系统抽样方法等距抽取 100 名学生进行体质测验 .若 46 号学生被抽到,则下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C . 616 号学生D .815 号学生7.tan255 =° A .-2-3B .-2+ 3C .2- 3D .2+ 3-1--2-专业文档12B-SX-00000228.已知非零向量a, b 满足 a = 2b ,且( a–b)b,则 a 与 b 的夹角为ππ 2 π 5 πA .B.C. D .6336 19. 如图是求21的程序框图,图中空白框中应填入2121 A. A=A2B. A=21A1C. A=2 A1D. A=112 Ax2y21(a 0,b0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C:b2a2离心率为A . 2sin40 °B . 2cos40 °C.11D.cos50 sin5011.△ABC 的内角 A, B, C 的对边分别为a, b,c,已知 asinA- bsinB=4csinC,cosA=-1,则b=4cA . 6B . 5C. 4D. 312.已知椭圆 C 的焦点为 F1( 1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点 .若|AF |2|F B|, |AB| |BF|,则 C 的方程为221专业文档A. x2y21B. x2y21232x2y21x2y21C.3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年全国统一高考数学试卷(文科)(新课标Ⅱ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x>−1},B={x|x<2},则A∩B=()A. (−1,+∞)B. (−∞,2)C. (−1,2)D. ⌀2.设z=i(2+i),则z−=()A. 1+2iB. −1+2iC. 1−2iD. −1−2i3.已知向量a⃗=(2,3),b⃗ =(3,2),则|a⃗−b⃗ |=()A. √2B. 2C. 5√2D. 504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. 23B. 35C. 25D. 155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为().A. 甲、乙、丙B. 乙、甲、丙C. 丙、乙、甲D. 甲、丙、乙6.设f(x)为奇函数,且当x≥0时,f(x)=e x−1,则当x<0时,f(x)=()A. e−x−1B. e−x+1C. −e−x−1D. −e−x+17.设α,β为两个平面,则α//β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面8.若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()A. 2B. 32C. 1 D. 129.若抛物线y2=2px(p>0)的焦点是椭圆x23p +y2p=1的一个焦点,则p=()A. 2B. 3C. 4D. 810.曲线y=2sinx+cosx在点处的切线方程为()A. x−y−π−1=0B. 2x−y−2π−1=0C. 2x+y−2π+1=0D. x+y−π+1=011.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=()A. 15B. √55C. √33D. 2√5512.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为()A. √2B. √3C. 2D. √5二、填空题(本大题共4小题,共20.0分)13.若变量x,y满足约束条件{2x+3y−6≥0,x+y−3≤0,y−2≤0,则z=3x−y的最大值是______.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.15.△ABC的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=______.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题(本大题共7小题,共84.0分)17.如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E−BB1C1C的体积.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.20.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.21.已知函数f(x)=(x−1)lnx−x−1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.22.在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π时,求ρ0及l的极坐标方程;3(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.已知f(x)=|x−a|x+|x−2|(x−a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.答案和解析1.【答案】C【解析】【分析】本题考查交集及其运算,是基础题.直接利用交集运算得答案.【解答】解:由A={x|x>−1},B={x|x<2},得A∩B={x|x>−1}∩{x|x<2}={x|−1<x<2},即A∩B=(−1,2).故选C.2.【答案】D【解析】【分析】本题考查复数四则运算及共轭复数,是基础题.利用复数代数形式的乘除运算化简,再由共轭复数的概念即可得答案.【解答】解:∵z=i(2+i)=−1+2i,∴z−=−1−2i,故选D.3.【答案】A【解析】【分析】本题考查平面向量的坐标运算,考查向量模的求法,是基础题,利用向量的坐标减法运算求得a⃗−b⃗ 的坐标,再由向量模的公式求解,【解答】解:∵a⃗=(2,3),b⃗ =(3,2),∴a⃗−b⃗ =(2,3)−(3,2)=(−1,1),∴|a⃗−b⃗ |=√(−1)2+12=√2.故选A.4.【答案】B【解析】【分析】本题主要考查概率的求解,属于基础题.利用列举法求解即可.【解答】解:记3只测量过某项指标的兔子分别为A,B,C,没有测量过某项指标的兔子为D,E,则从这5只兔子中随机取出3只的所有情况为(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E),共10种,恰有2只测量过该指标的所有情况有6种,∴概率为610=35.故选:B.5.【答案】A【解析】【分析】本题主要考查合情推理,属于基础题.因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾,从而得出正确结果.【解答】解:由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测:如果乙预测正确,则丙预测正确,不符合题意;如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意;∴只有甲预测正确,乙、丙预测不正确,则有甲>乙,乙>丙.故选A.6.【答案】D【解析】【分析】本题考查函数奇偶性的应用,是基础题.设x<0,则−x>0,代入已知函数解析式,结合函数奇偶性可得x<0时的f(x).【解答】解:设x<0,则−x>0,∵f(x)为奇函数,∴f(x)=−f(−x)=−(e−x−1)=−e−x+1,故选D.7.【答案】B【解析】【分析】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题.由充要条件的定义结合面面平行的判定定理可得结论.【解答】解:对于A,α内有无数条直线与β平行,α与β相交或α//β;对于B,α内有两条相交直线与β平行,则α//β;对于C,α,β平行于同一条直线,α与β相交或α//β;对于D,α,β垂直于同一平面,α与β相交或α//β.故选B.8.【答案】A【解析】【分析】本题考查了三角函数的图象与性质,关键是根据条件得出周期,属于基础题.x1=π4,x2=3π4是f(x)两个相邻的极值点,则周期T=2(3π4−π4)=π,然后根据周期公式即可求出ω.【解答】解:∵x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,∴T=2(3π4−π4)=π=2πω∴ω=2,故选A.9.【答案】D【解析】【分析】本题考查了抛物线与椭圆的性质,属基础题.根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得3p−p=(p2)2,解得p=8.故选D.10.【答案】C【解析】【分析】本题考查利用导数研究过曲线上某点处的切线方程,熟记基本初等函数的导函数是关键,属于基础题.求出原函数的导函数,得到函数在x=π时的导数,再由直线方程点斜式得答案.【解答】解:由y=2sinx+cosx,得y′=2cosx−sinx,∴y′|x=π=2cosπ−sinπ=−2,∴曲线y=2sinx+cosx在点(π,−1)处的切线方程为y+1=−2(x−π),即2x+y−2π+1=0.故选:C.11.【答案】B【解析】【分析】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.由二倍角公式化简已知条件可得4sinαcosα=2cos2α,结合角的范围可求得sinα> 0,cosα>0,可得cosα=2sinα,根据同角三角函数基本关系式即可解得sinα的值.【解答】解:∵2sin2α=cos2α+1,由二倍角公式可得4sinαcosα=2cos2α,∵α∈(0,π2),∴sinα>0,cosα>0,∴cosα=2sinα,则有sin2α+cos2α=sin2α+(2sinα)2=5sin2α=1,解得sinα=√55.故选B .12.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,属于中档题.方法一:根据题意画图,由图形的对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.方法二:由题意画出图形,先求出PQ ,再由|PQ|=|OF|列式求C 的离心率. 【解答】 方法一:解:设PQ 与x 轴交于点A ,由对称性可知PQ ⊥x 轴 又∵|PQ|=|OF|=c , ∴|PA|=c2,∴PA 为以OF 为直径的圆的半径, ∴A 为圆心,|OA|=c2∴P (c 2,c2),又P 点在圆x 2+y 2=a 2上,∴c 24+c 24=a 2,即c 22=a2,∴e 2=c 2a 2=2∴e =√2,故选A .方法二:如图,以OF 为直径的圆的方程为x 2+y 2−cx =0, 又圆O 的方程为x 2+y 2=a 2, ∴PQ 所在直线方程为.把x =代入x 2+y 2=a 2,得PQ =,再由|PQ|=|OF|,得,即4a 2(c 2−a 2)=c 4,∴e 2=2,解得e =.故选A . 13.【答案】9【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件{2x +3y −6≥0x +y −3≤0y −2≤0作出可行域如图:化目标函数z=3x−y为y=3x−z,由图可知,当直线y=3x−z过A(3,0)时,直线在y轴上的截距最小,z有最大值为9.故答案为9.14.【答案】0.98【解析】【分析】本题考查加权平均数公式等基础知识,属于基础题.利用加权平均数公式直接求解.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:(10×0.97+20×0.98+10×0.99)=0.98.x−=110+20+10故答案为0.98.15.【答案】3π4【解析】【分析】本题主要考查了正弦定理,同角三角函数基本关系式,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由正弦定理化简已知等式可得sinAsinB+sinAcosB=0,由于sinA>0,化简可得tanB=−1,结合范围B∈(0,π),可求B的值为3π.4【解答】解:∵bsinA+acosB=0,∴由正弦定理可得:sinAsinB+sinAcosB=0,∵A∈(0,π),sinA>0,∴可得:sinB+cosB=0,可得:tanB=−1,∵B∈(0,π),∴B=3π.4故答案为3π.416.【答案】26;√2−1【解析】【分析】本题考查了几何体的内接多面体,属中档题.中间层是一个正八棱柱,有8个侧面,上层是有8+1个面,下层也有8+1个面,故共有26个面;中间层正八棱柱的棱长加上两个棱长的√22倍等于正方体的棱长.【解答】解:该半正多面体中间层是一个正八棱柱,有8个侧面,故该半正多面体共有8+8+ 8+2=26个面;设其棱长为x,因为每个顶点都在边长为1的正方体上,则x+√22x+√22x=1,解得x=√2−1.故答案为26;√2−1.17.【答案】解:(1)证明:由长方体ABCD−A1B1C1D1,可知B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,∴B1C1⊥BE,∵BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,∴BE⊥平面EB1C1;(2)由(1)知BE⊥平面EB1C1,∵B1E⊂平面EB1C1,∴B1E⊥BE,∴∠BEB1=90°,由题设可知Rt△ABE≌Rt△A1B1E,∴∠AEB=∠A1EB1=45°,∴AE=AB=3,AA1=2AE=6,∵在长方体ABCD−A1B1C1D1中,AA1//平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,∴E到平面BB1C1C的距离d=AB=3,∴四棱锥E−BB1C1C的体积V=13×3×6×3=18.【解析】本题考查了线面垂直的判定定理和性质,考查了四棱锥体积的求法,属于中档题.(1)由线面垂直的性质可得B1C1⊥BE,结合BE⊥EC1利用线面垂直的判定定理可证明BE⊥平面EB1C1;(2)由条件可得AE=AB=3,然后得到E到平面BB1C1C的距离d=3,再求四棱锥的体积即可.18.【答案】解:(1)设等比数列的公比为q,由a1=2,a3=2a2+16,得2q2=4q+16,即q2−2q−8=0,解得q=−2(舍)或q=4.∴a n=a1q n−1=2×4n−1=22n−1.(2)b n=log2a n=log222n−1=2n−1,∵b1=1,b n+1−b n=2(n+1)−1−2n+1=2,∴数列{b n}是以1为首项,以2为公差的等差数列,则数列{b n}的前n项和T n=n×1+n(n−1)×22=n2.【解析】本题考查等差数列与等比数列的通项公式及前n项和,考查对数的运算性质,属于基础题.(1)设等比数列的公比,由已知列式求得公比,则通项公式可求;(2)把(1)中求得的{a n}的通项公式代入b n=log2a n,得到b n,说明数列{b n}是等差数列,再由等差数列的前n项和公式求解.19.【答案】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:14+7100=0.21=21%,产值负增长的企业频率为:2100=0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数y−=1100(−0.1×2+0.1×24+0.3×53+0.5×14+ 0.7×7)=0.3=30%,产值增长率的方程s2=1100∑n i5i=1(y i−y−)2=1100[(−0.4)2×2+(−0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s=√0.0296=0.02×√74≈0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.【解析】本题考查了样本数据的平均值和方程的求法,考查运算求解能力,属基础题.(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可.20.【答案】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=√3c,于是2a=|PF1|+|PF2|=(√3+1)c,故曲线C的离心率e=ca=√3−1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:12|y|⋅2c=16,yx+c⋅yx−c=−1,x2 a2+y2b2=1,即c|y|=16①x2+y2=c2 ②x2 a2+y2b2=1③由②③及a2=b2+c2得y2=b4c ,又由①知y2=162c,故b=4,由②③得x2=a2c2(c2−b2),所以c2≥b2从而a2=b2+c2≥2b2=32,故a≥4√2,当b=4,a≥4√2时,存在满足条件的点P.所以b=4,a的取值范围为[4√2,+∞).【解析】本题主要考查了椭圆的性质和直线与圆锥曲线的位置关系,解答本题的关键是掌握相关知识,逐一分析解答即可.(1)根据△POF2为等边三角形,可得在△F1PF2中,∠F1PF2=90°,在根据直角形和椭圆定义可得;(2)根据三个条件列三个方程,解方程组可得b=4,根据x2=a2c2(c2−b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4√2,21.【答案】证明:(1)∵函数f(x)=(x−1)lnx−x−1.∴f(x)的定义域为(0,+∞),f′(x)=x−1x +lnx−1=lnx−1x,∵y=lnx在(0,+∞)上单调递增,y=1x在(0,+∞)上单调递减,∴f′(x)在(0,+∞)上单调递增,又f′(1)=−1<0,f′(2)=ln2−12=ln4−12>0,∴存在唯一的x0∈(1,2),使得f′(x0)=0.当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,∴f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=−2,又f(e2)=e2−3>0,∴f(x)=0在(x0,+∞)内存在唯一的根,记为x=a,由a>x0>1,得0<1a<1<x0,∵f(1a )=(1a−1)ln1a−1a−1=f(a)a=0,∴1a是f(x)=0在(0,x0)的唯一根,综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.【解析】本题考查函数有唯一的极值点的证明,考查函数有且仅有两个实根,且两个实根互为倒数的证明,考查导数性质、函数的单调性、最值、极值等基础知识,考查化归与转化思想、函数与方程思想,考查运算求解能力,属于较难题.(1)推导出f(x)的定义域为(0,+∞),f′(x)=lnx−1x,从而f′(x)单调递增,进而存在唯一的x0∈(1,2),使得f′(x0)=0.由此能证明f(x)存在唯一的极值点;(2)由f(x0)<f(1)=−2,f(e2)=e2−3>0,得到f(x)=0在(x0,+∞)内存在唯一的根x=a,由a>x0>1,得0<1a <1<x0,从而1a是f(x)=0在(0,x0)的唯一根,所以f(1a )=(1a−1)ln1a−1a−1=f(a)a=0,由此能证明f(x)=0有且仅有两个实根,且两个实根互为倒数.22.【答案】解:(1)如图:∵M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,当θ0=π3时,,且由图得|OP|=|OA|cosθ0=2,在直线l上任取一点(ρ,θ),则有,即,故l的极坐标方程为ρcos(θ−π3)=2;(2)设P(ρP,θP),则在Rt△OAP中,有|OP|=|OA|cosθP即ρP=4cosθP,∵P在线段OM上,且AP⊥OM,∴θP∈[π4,π2 ],其中π4为P点与M点重合时的角度,由4cosθP=4sinθP得到,故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[π4,π2 ].【解析】本题考查曲线的极坐标方程及其应用,数形结合能力,是中档题.(1)由θ0=π3可得|OP|=2,在直线l上任取一点(ρ,θ),利用三角形中边角关系即可求得l的极坐标方程;(2)设P(ρ,θ),在Rt△OAP中,根据边与角的关系得答案.23.【答案】解:(1)当a=1时,f(x)=|x−1|x+|x−2|(x−1),∵f(x)<0,∴当x<1时,f(x)=−2(x−1)2<0,恒成立,∴x<1;当x≥1时,f(x)=(x−1)(x+|x−2|)≥0恒成立,∴x∈⌀;综上,不等式的解集为(−∞,1).(2)∵x∈(−∞,1)时,f(x)=|x−a|x−(x−2)(x−a).当a≥1时,f(x)=2(a−x)(x−1)<0在x∈(−∞,1)上恒成立;当a<1时,若x∈(−∞,a),f(x)=2(a−x)(x−1)<0,∴f(x)<0,成立;若x∈(a,1),则f(x)=2(x−a)>0,不满足题意;所以当a<1时,不满足题意;综上,a的取值范围为[1,+∞).【解析】本题考查了绝对值不等式的解法,考查了分类讨论思想,关键是掌握相关知识,逐一分析解答即可,属于中档题.(1)将a=1代入得f(x)=|x−1|x+|x−2|(x−1),然后分x<1和x≥1两种情况讨论f(x)<0即可;(2)根据条件分a≥1和a<1两种情况讨论即可.。
2019年普通高等学校招生全国统一考试(新课标Ⅰ)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =( ) A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则( )A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cma b c <<a c b <<c a b <<b c a <<5.函数2sin ()cos x xf x x x +=+在[—π,π]的图像大致为( )A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°=( ) A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+D .112A A=+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C c B b A a sin 4sin sin =- ,41cos -=A ,则bc =( )A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 14.记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 15.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离,那么P 到平面ABC 的距离为___________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(本小题满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.19.(本小题满分12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.已知函数x x x x x f --=cos sin 2)(,)(x f '为)(x f 的导数. (1)证明:)(x f '在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,ax x f ≥)(,求a 的取值范围.已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4−4:坐标系与参数方程](本小题满分10分)在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.[选修4−5:不等式选讲](本小题满分10分)已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.2cos sin 110ρθθ++=2019年普通高等学校招生全国统一考试文科数学·参考答案一、选择题 1.C 2.C 3.B 4.B 5.D 6.C 7.D8.B9.A10.D11.A12.B二、填空题13.y =3x 14.5815.−416三、解答题 17.解:(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯. 由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异. 18.解:(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N .19.解:(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E CH =.从而点C 到平面1C DE 的距离为17.20.解:(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫ ⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减. 又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x .又当0,[0,π]a x ∈时,ax ≤0,故()f x ax .因此,a 的取值范围是(,0]-∞.21.解:(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a .故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值.理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .22.解:(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-. l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=. 当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l. 23.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++. 所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.。