偶极矩的测定ppt课件
- 格式:ppt
- 大小:768.50 KB
- 文档页数:21
物理化学实验 偶极矩的测定一. 目的要求1. 理解折射法测定偶极矩的原理2. 掌握折射法测定偶极矩的主要实验技术 3. 用折射法测定乙酸乙酯的偶极矩 二. 基本原理1. 偶极矩和极化率分子由带正电荷的原子核和带负电荷的电子组成,正负电荷的重心可能重合,也可能不重合,前者称为非极性分子,后者称为极性分子。
表征分子电荷分布的两个最重要的物理量是偶极矩和磁化率。
1912德拜(Debye )提出用偶极矩μ来度量分子极性的大小,两个带电荷为+q 和-q 的质点,相距d 远时,体系偶极矩的大小为d q ⋅=μ (1)偶极矩是一个矢量,在化学中,它的方向规定为从正到负,偶极矩的SI 制单位是库伦·米(C·m ),因为分子中原子间距离的数量级为10-10 m ,电荷的数量级为10-20C ,所以μ的数量级为10-30C·m ,习惯上还用“德拜”作单位,记做D 。
两者关系是1D =3.33563×10-30 C·m 。
分子在电场影响下极化,极化有转向极化和诱导极化两类,极性分子在不加电场时,由于分子的热运动,偶极矩指向各方面的概率相同,故大量分子的总的平均偶极矩等于零,在加电场时,极性分子与电场的相互作用能θμcos F E =∆ (2)式中F 是分子所在位置的有效电场强度,θ是μ和F 间夹角,为使体系能量最低,分子尽可能定向,使θ在180。
左右,而热运动会破坏分子定向,使θ取任意角度,由转向而产生的平均偶极矩r μ,与F 、μ和T 的关系如下:F kTr 32μμ=式中,k 为玻耳兹曼(1.3806×10-23J·K -1)常数;T 为热力学温度。
令kT32μαμ=,故F r μαμ=,μα称为转向极化率,SI 制单位为C ·m 2∕V 。
非极性分子没有永久偶极矩μ,故在电场中没有转向极化,无论是极性分子还是非极性分子在电场中都有变形变化。
实验36偶极矩的测定实验36 偶极矩的测定一、实验目的1、掌握测量偶极矩的原理和方法;2、了解偶极矩仪的使用方法;3、掌握用正丁醇做溶剂测定环己烷偶极矩的方法。
二、实验原理电介质分子处于电场中,电场会使非极性分子的正负电荷中心发生相对位移而变得不重合;电场也会使极性分子的正负电荷中心间距增大,这样会使分子产生附加的偶极矩(诱导偶极矩)。
这种现象称为分子的变形极化,可以用平均诱导偶极矩m 来表示变形极化的程度。
在中等强度的电场下设m=αD E 内式中E 内为作用于个别分子上的强场,αD 为变形极化率。
因为变形极化产生于两种因素:分子中电子相对于核的移动和原子核间的微小移动,所以有αD =αE +αA 式中αE 、αA 分别称为电子极化率和原子极化率。
设n 为单位体积中分子的个数,根据体积极化的定义(单位体积中分子的偶极矩之矢量和)有P=nm=nαD E 内为了计算E 内,考虑匀强电场中分子受到的静电力:维持匀强电场的电荷σ所产生的力F 1,电介质极化产生的感生电荷σ’产生的力F 2,单个分子周围的微小空隙界面上的感生电荷产生的力F 3,各分子间的相互作用F 4 (忽略)E 内=E 1+E 2+E 3=4πσ+4πP +43P π=E+43P π 式中σ为极板表面电荷密度。
平行板电容器内电量为定值的条件下:ε=C/C 0=E 0/E ,式中ε,C 分别为电介质的介电常数和电容器的电容;脚标0对应于真空条件下的数值因为E=4πσ-4πσ’=E 0-4πσ’ 又E 0=εE可得E --='πεσ41式中σ’为感生电荷的面电荷密度。
体积极化的等价定义为“单位立方体上下表面的电荷σ’与其间距的积”,所以P=1×σ’=σ’ 因此E P --=πε41,即14-=επpE 可得E 内=34123414pp p πεεπεπ?-+=+- P=nαDE 内=1234D -+?εεαπn P ,即D3421απ=+ε-εn上式两边同乘分子量M 和同除以介质的密度ρ,并注意到nM/ρ=N0,即得D03421απρεεN M =?+- 这就是Clausius-Mosotti 方程。
溶液法测定极性分子的偶极矩I. 目的与要求一、用溶液法测定乙酸乙酯的偶极矩二、了解偶极矩与分子电性质的关系三、掌握溶液法测定偶极矩的实验技术I I. 基本原理一、偶极矩与极化度分子结构可以近似地被石成是由电子。
和对于骨架(原子核及层电子)所构成的。
由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。
图1 电偶极矩示意图1912年,德拜(Debye)提出“偶极矩”μ的概念来度量分子极性的大小,如图1所示,其定义是dq⋅=μ(1)式中 q 是正、负电荷中心所带的电荷量,d为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。
因分子中原子间距离的数量级为1010-m,电荷的数量级为2010-C,所以偶极矩的数量级是3010-C·m。
通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。
这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P来衡量。
转向P与永久偶极矩平方成正比,与热力学温度T成反比kTL kT L P 2294334μπμπ=⋅=转向 (2) 式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。
在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。
显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。
诱导P 与外电场强度成正比,与温度无关。
如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。
当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和P = 转向P + 电子P + 原子P (3)当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。
偶极矩的测定一、实验目的:1.用溶液法测定CHCl 3的偶极矩2.了解介电常数法测定偶极矩的原理3.掌握测定液体介电常数的实验技术二、基本原理:1. 偶极矩与极化度分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。
分子极性大小常用偶极矩来度量,其定义为:qd =μ(1)其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ为向量,其方向规定为从正到负。
因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。
极性分子具有永久偶极矩。
若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。
这时我们称这些分子被极化了。
极化的程度可用摩尔定向极化度P u 来衡量。
P u 与永久偶极矩平方成正比,与热力学温度T 成反比kTN kT L P A 2294334μπμπμ==(A N kTP πμμ49=) (2)式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。
在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。
显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为:P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa外电场若是交变电场,则极性分子的极化与交变电场的频率有关。
当电场的频率小于1010s -1的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。
而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。