2012结构与性能作业 材料结构与性能无机非课件
- 格式:ppt
- 大小:624.50 KB
- 文档页数:9
材料的结构与性能特点第一章材料的结构与性能固体材料的性能主要取决于其化学成分、组织结构及加工工艺过程。
所谓结构就是指物质内部原子在空间的分布及排列规律。
材料的相互作用组成物质的质点(原子、分子或离子)间的相互作用力称为结合键。
主要有共价键、离子键、金属键、分子键。
离子键形成:正、负离子靠静电引力结合在一起而形成的结合键称为离子键。
特性:离子键没有方向性,无饱和性。
NaCl晶体结构如图所示。
性能特点:离子晶体的硬度高、热膨胀系数小,但脆性大,具有很好的绝缘性。
典型的离子晶体是无色透明的。
共价键形成:元素周期表中的ⅣA、ⅤA、ⅥA族大多数元素或电负性不大的原子相互结合时,原子间不产生电子的转移,以共价电子形成稳定的电子满壳层的方式实现结合。
这种由共用电子对产生的结合键称为共价键。
氧化硅中硅氧原子间共价键,其结构如图所示。
性能特点:共价键结合力很大,所以共价晶体的强度、硬度高、脆性大,熔点、沸点高,挥发度低。
金属键形成:由金属正离子与电子气之间相互作用而结合的方式称为金属键。
如图所示。
性能特点:1)良好的导电性及导热性;2)正的电阻温度系数;3)良好的强度及塑性;4)特有的金属光泽。
分子键形成:一个分子的正电荷部位与另一分子的负电荷部位间以微弱静电引力相引而结合在一起称为范德华键(或分子键)。
特性:分子晶体因其结合键能很低,所以其熔点很低,硬度也低。
但其绝缘性良好。
材料的结合键类型不同,则其性能不同。
常见结合键的特性见表1-1。
晶体材料的原子排列所谓晶体是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
晶体的主要特点是:①结构有序;②物理性质表现为各向异性;③有固定的熔点;④在一定条件下有规则的几何外形。
理想的晶体结构1.晶体的基本概念(1) 晶格与晶胞晶格是指描述晶体排列规律的空间格架。
从晶格中取出一个最能代表原子排列特征的最基本的几何单元,称为晶胞。
晶胞各棱边的尺寸称为晶格常数。
(2) 晶系按原子排列形式及晶格常数不同可将晶体分为七种晶系(3) 原子半径原子半径是指晶胞中原子密度最大方向相邻两原子之间距离的一半。
材料概论材料的组成、结构与性能各种材料金属、高分子和无机非金属不论其形状大小如何,其宏观性能都是由其化学组成和组织结构决定的。
材料的性能与化学组成、工艺、结构的关系如下:第二章材料的组成、结构与性能2.1 材料的组成2.2 材料的结构2.3 材料的性能只有从不同的微观层次上正确地了解材料的组成和组织结构特征与性能间的关系,才能有目的、有选择地制备和使用选用材料。
化学组成工艺过程本征性能显微结构材料性能2.1 材料的组成材料通常都是由原子or分子结合而成的,也可以说是由各种物质组成的,而物质是由≥1种元素组成的。
按原子or分子的结合与结构分布状态的不同,可分成3类:第二章材料的组成、结构与性能组元、相和组织固溶体聚集体复合体2.1.2 材料的化学组成2.1.1 材料组元的结合形式固溶体、聚集体和复合体第二章材料的组成、结构与性能材料的组元:金属材料多为纯元素,如普通碳钢? Fe&C;陶瓷材料多为化合物,如Y2O3?ZrO2 ?Y2O3&ZrO2组成材料最基本、独立的物质,或称组分。
可以是纯元素or稳定化合物。
相: 具有同一化学成分并且结构相同的均匀部分。
1?m图2-150%ZrO2/Al2O3复合材料的SEM照片* 相与相之间有明显的分界面,可用机械的方法将其分离开。
第二章材料的组成、结构与性能ZrO2Al2O3*各晶粒间有界面隔开,但它们是由成分、结构均相同的同种晶粒构成的材料,仍属于同一相。
*在相界面上,性质的改变是突变的。
*1个相必须在物理和化学性质上都是完全均匀的,但不一定只含有1种物质。
例如:纯金属是单相材料,钢非纯金属在室温下由铁素体含碳的??Fe和渗碳体Fe3C为化合物组成;普通陶瓷:由晶相1种/几种与非晶相玻璃相组成。
*由成分、结构都不同的几种晶粒构成的材料,则它们属于几种不同的相。
材料的组织第二章材料的组成、结构与性能材料内部的微观形貌。
实际上是指由各个晶粒or各种相所形成的图案。
材料的结构与性能材料的结构对其性能有着重要的影响。
不同材料的结构差异导致了它们具有不同的性能。
例如,金属材料的结构通常为紧密排列的晶体结构,这使得金属具有良好的导电、导热、延展性和强度等性能。
而有机材料的结构则比较复杂,其中含有大量的碳、氢和氧等元素,使得有机材料具有较好的柔韧性、绝缘性和可塑性等性能。
材料的结构可以通过多种方法进行研究和表征。
例如,X射线衍射和电子显微镜等方法可以用来研究材料的晶体结构和晶粒尺寸,红外光谱和拉曼光谱等方法可以用来研究材料的分子结构和原子键的振动情况。
通过对材料结构的研究,可以了解材料内部的微观组织和性质分布,为材料的设计和改进提供有力的科学依据。
材料的性能是材料科学研究的核心问题之一、材料的性能可以分为力学性能、物理性能、化学性能等多个方面。
例如,力学性能包括强度、延展性、硬度等指标,物理性能包括导电性、导热性、磁性等指标,化学性能包括抗腐蚀性、耐高温性、催化活性等指标。
不同材料的性能表现也具有显著的差异,这是由于材料的结构和组成所决定的。
材料的性能可以通过多种途径进行改进和调控。
例如,通过材料的合金化可以提高材料的强度和硬度,通过控制材料的微观组织可以改善材料的塑性和韧性,通过添加杂质元素可以调节材料的导电性和磁性等。
通过合理的制备工艺和改良材料结构,还可以实现对材料性能的精确控制和调整。
材料的结构与性能之间存在着密切的相互关系。
材料的结构决定了材料的性能,而材料的性能又反过来影响和塑造着材料的结构。
例如,应力和温度等外界条件的变化可以引起材料内部原子、离子或分子的位置和排列的变化,从而导致材料性能的改变。
相反地,改变材料的结构也可以对其性能产生明显的影响。
因此,材料的结构与性能之间是一种相互作用的关系。
总之,材料的结构与性能是材料科学研究的核心问题之一、了解材料的结构可以帮助我们理解材料性能的形成机制,而通过对材料的性能进行优化和调控,可以实现材料功能的提升和性能的改进。
1. 应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
2 聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。
3玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。
4.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。
5.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。
6柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。
7 链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
8. 构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
8. 构象:由于单键内旋转而产生的分子在空间的不同形态。
9 高聚物的屈服:聚合物在外力作用下产生的塑性变形。
10.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
11.强迫高弹形变:玻璃态高聚物在的外力作用下发生的大形变,其本质跟橡胶的高弹形变一样,但表现的形式却有差别,为了与普通的高弹形变区别开来,通常称为强迫高弹形变。
本质相同:都是链段运动不同:强迫高弹形变外力除去不能自动回复,需要加热,受外力要大的多,发生在Tb-Tg之间。
橡胶的高弹形变12 非均相成核:即异相成核,以外来的杂质,未完全熔融的残余结晶聚合物,分散的小颗粒固体或容器的壁为中心,吸附熔体中的高分子链作有序排列而形成的晶核。
13. 均相成核:由熔体中的高分子链段靠热运动形成有序排列的链束的晶核。
14. θ溶剂:在某一温度下聚合物溶于某一溶剂中,其分子链段间的相互吸引力与溶剂化以及排斥体积效应所表现出的相斥力相等,无远程相互作用,高分子处于无扰状态,排斥体积为0,该溶液的行为符合理想溶液行为,此时溶剂的过量化学位为0,此时的溶液称为θ溶液。
无机材料的结构与性能分析无机材料是指在化学成分上以金属元素和非金属元素为主体的化合物或混合物。
它们在生活中应用广泛,比如建筑材料、电子元器件、光学玻璃、汽车部件等。
而无机材料的结构与性能分析是非常重要的,因为它们直接影响了无机材料的应用效果。
一、无机材料的结构分析无机材料的结构通常分为晶体结构和非晶体结构两类。
1.晶体结构晶体是由具有规则排列的原子、离子或分子组成的固体,表现出一定的外形和性质。
晶体的结构通常是由几何形体与晶格点构成的。
几何形体是指原子组成的三维块状结构,而晶格点是指在晶体中由原子、离子或分子占据的特定位置,它们通过共享价电子和形成离子键、共价键以实现紧密结合。
晶体的结构可以用X 射线、电子衍射和中子衍射等手段进行分析。
以具有代表性的金刚石为例,金刚石的晶体结构为立方晶系,其中每个碳原子与四个相邻的碳原子等距离相连,这种强的共价键使得金刚石晶体含有高硬度和高折射率等优良性质,可用于工业领域的切割和磨损材料。
2.非晶体结构与晶体不同的是,非晶体是没有规则排列结构和长程周期的无定形物质,具有随机分布的结构。
它们由于内部的不规则性,导致其物理性质与晶体存在较大差异。
非晶体通常通过玻璃化技术或溅射薄膜技术等手段进行制备。
虽然非晶体因其固态无规则性与制备难度等原因一度备受忽略,但在一些高科技领域如薄膜太阳能电池、固态电池和光纤通信等方面已经展现出了强大的实用价值。
二、无机材料的性能分析无机材料的性能分析通常从材料的物理学、化学和机械学三个方面进行考量。
1.物理性能物理性能是指材料在内部和周围环境下表现出来的响应。
它包括热容、热导率、电阻率、介电常数、磁性等特性。
其中,介电常数和磁性是重要的功能性材料性能,因为它们与电磁波和电子的交互作用有关,对于光学和电子应用方面的材料设计具有重要意义。
以具有代表性的二氧化硅为例,二氧化硅具有高折射率、低荧光和机械强度高等性质,使得它在微电子材料、纳米表面修饰和槽层制备等领域中具有广泛应用。