开关电源各种拓扑集锦
- 格式:doc
- 大小:560.50 KB
- 文档页数:12
开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck 拓扑型开关电源就是属于串联式的开关电源。
上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL 转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff 把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
开关电源各种拓扑集锦1、先给出六种基本DC/DC变换器拓扑依次为buck,boost,buck-boost,cuk,zeta,sepic变换器以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。
buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。
boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。
buck-boost是反激变换器的原型,属于升降压变换器。
后面三种电路不是很常用,都是升降压变换器。
从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。
也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。
2、正激变换器:A、绕组复位正激变换器B、LCD复位正激变换器C、RCD复位正激变换器D、有源钳位正激变换器E、双管正激F、无损吸收双正激:G、有源钳位双正激H、原边钳位双正激、I、软开关双正激评论:正激变换器是常用变换器之一,特别在中小功率场合。
正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。
但是开关管电压应力较大。
双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。
但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。
如果能不加入辅助管而实现软开关,一定超有前途。
正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。
3、推挽变换器A、推挽变换器B、无损吸收推挽变换器C、推挽正激推挽变换器:推挽变换器是双端变换器。
其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。
电源常见的拓扑结构精华汇总工程师不可不知的电源11种拓扑结构工程师不可不知的电源11种拓扑结构基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥■SEPIC■C’uk基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续 (斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续 (斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续 (斩波)。
■输出电流也不连续 (斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激特点■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。
开关电源的拓扑结构开关电源的拓扑结构是指功率变换电路的结构,也就是DC/DC变换器的结构。
拓扑结构不同,与之配套的PWM控制器类型和输出整流/滤波电路也有差异。
拓扑结构也基本决定了开关电源的工作原理及输出特性。
本章将对开关电源常用的拓扑结构及工作原理进行详细介绍,以便读者在设计、制作开关电源时选用。
第一节降压式变换器降压式变换器亦称Buck变换器,是最常用的DC/DC变换器之一。
降压式DC/DC变换器能将一种直流电压变换成更低的直流电压。
例如它可将+24V电源变换成+15V、+12V或+5V 电源,并且在变换过程中的电源损耗很小,在分布式电源系统中经常会用到。
1、降压式DC/DC变换器的拓扑结构降压式DC/DC变换器的拓扑结构如图2-1-1所示。
图中的开关S用来等效功率开关管,U1为直流输入电压,U o为直流输出电压,VD为续流二极管,L为输出滤波电感(也称储电感),C为输出滤波电容。
当S闭合时除向负载供电之外,还有一部分电能储存于电感L和电容C 中,L上的电压为U L,其极性是左端为正、右端为负,此时续流二极管VD截止。
当S断开时,L上产生极性为左端负、右端正的反向电动势,使得VD导通,L中的电能继续传送给负载和电容C。
降压式DC/DC变换器在功率开关管导通时向负载传输能量,属于正激式DC/DC 变换器。
图2-1-1 降压式DC/DC变换器的拓扑结构2、降压式DC/DC变换器的工作原理降压式DC/DC变换器可用一只NPN型功率开关管VT(或N沟道功率场效应管MOSFET)作为开关器件S,在脉宽调制(PWM)信号的控制下,使输入电压交替地接通、断开储能电感L。
降压式变换器的简化电路如图2-1-2(a)所示,脉宽调制信号控制功率开关管VT的导通与截止。
图2-1-2(b)、(c)显示出了开关闭合、断开时的电流路径。
图2-1-2 降压式DC/DC变换器的工作原理简化电路;(b)开关闭合时的电流路径;(c)开关断开时的电流路径当开关闭合时续流二极管VD截止,由于输入电压U1与储能电感L接通,因此输入---输出压差(U1---U o)就加在电感L上,使通过L的电流I L线性地增加。
开关电源常用拓扑电路开关电源常用拓扑电路开关电源作为现代电子设备中不可或缺的一部分,其功效和性能日益受到重视。
而在开关电源的实际应用中,各种拓扑电路被广泛采用。
本文将按照类别,对开关电源常用的三种拓扑电路进行介绍,并从其原理、优缺点等方面进行分析。
第一类拓扑电路——降压型开关电源降压型开关电源是最基础、应用最广泛的开关电源拓扑电路之一。
其主要原理是通过控制开关管的导通与断开,将输入电压转换为所需的输出电压。
其中最经典的降压型拓扑电路是Buck变换器。
与其他拓扑电路相比,Buck变换器具有转换效率高、体积小、成本低等优点。
而且,它的工作原理相对简单,电路结构较为简洁。
第二类拓扑电路——升压型开关电源既然有降压型开关电源,自然也有升压型开关电源。
升压型开关电源的主要功能是将较低的输入电压转换为较高的输出电压,以满足特定应用的电压需求。
最常见的升压型拓扑电路是Boost变换器。
Boost变换器的工作原理是通过改变开关管的导通与断开时间,将输入电压分段升高,并最终得到所需的输出电压。
Boost变换器具有快速动态响应、输入电流波动小等特点。
第三类拓扑电路——反激型开关电源反激型开关电源也是开关电源的一种常用拓扑电路。
它主要用于输入电压范围较宽、输出电压变化大的电子设备。
反激型拓扑电路中最广泛使用的是Flyback变换器。
这种拓扑电路具有结构简单、成本低、输出电压可调等特点。
它的工作原理是通过供能开关管的瞬态导通和均衡导通,使原来存储于变压器中的能量通过绕组变换到输出端。
综上所述,开关电源常用的拓扑电路主要包括降压型、升压型和反激型。
不同的拓扑电路具有不同的工作原理和特点,适用于不同的应用环境。
在电子设备的设计和制造中,我们需要根据具体需求灵活选择拓扑电路,以满足能量转换的高效、稳定和可靠性要求。
总而言之,开关电源拓扑电路的选择应根据具体应用需求来进行,以确保电子设备在性能、效能和可靠性等方面的全面满足。
相信通过对不同拓扑电路的了解和应用,我们能够在开关电源领域中不断创新,为人们的生活带来更多的便利和发展。
主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
开关电源中常见变换器主电路拓扑1.1 Buck变换器Buck变换器又称降压变换器,Buck型电路拓扑由有源开关(功率MOSFET)、续流二极管D(或由同步整流开关代替)、储能电感L、滤波电容C组成。
其电路如图1-1所示。
电感和输出电容组成一个低通滤波器,滤波后电压以很小的纹波呈现在输出端。
图1-1 Buck变换器拓扑结构1.2 Boost变换器Boost变器又称升压变换器,其电路如图1-2所示。
改变降压变换器中元件的位置就可把它变成升压变换器。
在升压变换器中,开关管导通时在电感中有斜波电流流过。
当开关管断开时,电感中的电流必须保持流动,电感上的电压改变极性,使二极管正向偏置,并释放能量到输出端和输出电容器。
图1-2 Boost变换器拓扑结构1.3 反激变换器反激变换器又称Flyback式变换器,其电路如图1-3所示。
由于反激变换器的电路拓扑结构简单,能提供多组直流输出和升降范围宽,因此广泛应用于中小功率变换场合。
其结构相当于在Boost变换器中,用一个变压器代替升压电感,即构成了反激式变换器。
图1-3 反激电路原理图V1213T111423131211109867451516R12C1R14VZ112R11C5C6VZ212R9R1C10R18R13C8VD312R15VD112R7C3N1MC33262VFB1Comp2Multi3CS 4Z c d5G N D6Dri 7Vcc 8R10R19VD212C7R6VCC Vpfc,inVpfc,out 当开关晶体管VS 被驱动脉冲激励而导通时,Vin 加在开关变压器T 的初级绕组L1上,此时次级绕组L2的极性使VD 处于反偏而截止,因此L2上没有电流流过,此时电感能量储存在L1中,当VS 截止时,L2上电压极性颠倒使VD 处于正偏,L2上有电流流过,在VS 导通期间储存在L1中的能量此时通过VD 向负载释放。
反激式变换器工作波形见图 1-4。
图1-4 反激式变换器工作波形2.PFC 电路PFC 的英文全称为Power Factor Correction ,意思是功率因数校正。
开关电源的拓扑
开关电源的拓扑主要有以下几种:
1. 单端正激式(Buck)拓扑:投入电压大于输出电压时,将电源输入关断,输出电容释放能量给负载;
2. 升压式(Boost)拓扑:投入电压小于输出电压时,通过开关周期性充放电操作,将输出电压升高;
3. 反激式(Flyback)拓扑:通过磁共振,利用辅助绕组将输入电能转移到输出端,适用于输出电压变化较大的场景;
4. 无互感式(Push-Pull)拓扑:利用两个互补的开关管周期性地切换,通过变压器将输入电能传递到负载端;
5. 电桥式(Full-Bridge)拓扑:利用四个开关管,通过变压器传递电能,具有较高的输出功率能力。
不同的拓扑结构适用于不同的应用场景,可以根据需要选择最合适的拓扑。
话题:开关电源各种拓扑集锦
先给出六种基本DC/DC变换器拓扑
依次为buck,boost,buck-boost,cuk,zeta,sepic变换器
第2帖2004-04-28 18:55: 输入电压变化为9~30VDC,输出要得到15VDC该选择哪种拓扑结构?
第3帖2004-04-28 19:24: 如果不隔离,可以在基本拓扑的后四种中选择
第5帖2004-04-28 19:36: 后面三种L1与L2应该是紧密耦合,绕在同一个电感或变压器中吧?
第7帖2004-04-29 02:19: 不是,是独立电感
第82帖2006-02-12 13:41: 六独立电感,还用标相位?
第54帖2005-05-20 08:34:
樓主,我感覺你應該告訴hualong為甚麼要這樣選,具體根據是甚麼,這樣下一次他在遇見這個問題,他自己就能解決了啊,我們也跟著學一下啊,如果有說的不對的地方,請見諒.謝謝
第30帖2004-05-14 14:40: 如果不要隔离选buck-boost
正激变换器
绕组复位正激变换器
LCD复位正激变换器
RCD复位正激变换器
有源钳位正激变换器
双管正激
还有很多,待补充无损吸收双正激
有源钳位双正激
原边钳位双正激
软开关双正激
第56帖2005-05-20 12:31: 有没有带同步整流的的正激变换器? 最好是实用图啊! 我想用这个做一个电源!
第16帖2004-05-01 21:26:
评论:正激变换器是常用变换器之一,特别在中小功率场合。
正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。
但是开关管电压应力较大。
双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。
但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。
如果能不加入辅助管而实现软开关,一定超有前途。
正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。
第19帖2004-05-06 21:28:
"但是在较高频率下其变压器磁通摆幅可以与双端变换器相当"?
不理解这句话,还请解释一下。
我的理解是若频率升高了,其磁通摆幅应该小呀。
第23帖2004-05-06 21:46:
对,你的理解没错啊,因为正激是单向磁化,受到饱和磁密的限制所以在低频的时候磁通摆幅一般最多是双端变换器的
一半。
但是随着频率提高,磁通摆幅减小,可以远离饱和磁密限制,这样正激虽然单向磁化,其磁通摆幅可以取到和双
端变换器一样,提高磁心利用率。
第29帖2004-05-11 23:24: 双管正激变换器有没有磁芯饱和现象?
第40帖2004-08-10 09:15:
在这里如何解释远离饱和磁密限制?deltB+Br
第80帖2006-02-08 20:43: 八思考中.........顶
第10帖2004-04-29 12:47: 推挽变换器
无损吸收推挽变换器
推挽正激
拓扑很多,待补充,希望大家也能补充,虽然有些不实用,拿来看看也不错
第11帖2004-04-29 21:14: sometimes,建议你针对以上线路一个一个讲过来
第14帖2004-05-01 21:04: 这个难度太大了吧~~要累死人的,不过我会做简单评论。
希望大家指正
第20帖2004-05-06 21:33:
个人意见:
基本拓扑就不要讲了吧(几乎每本开关电源书都会讲的),
还是讲讲应用型的,如果设计过的最好能讲讲一些设计心得,需要注意的问题,几种电路的对比和实用性如何。
第24帖2004-05-06 21:55:
应用的东西,论坛上讲的最多了,我这里只是抛砖引玉,给出一些
拓扑,让大家评论一下,这样可以给刚入门的朋友一个大致的概念。
而且
以后还会有很多书上没有的拓扑出现,呵呵,可能不实用,但是可能会给你灵感哦。
第17帖2004-05-01 21:33:
推挽变换器:推挽变换器是双端变换器。
其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。
但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。
而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。
如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。
其管子电压应力下降为输入电压。
其他等同。
推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题。
在VRM中有应用。
第13帖2004-05-01 21:03: 半桥变换器
半桥变换器
第18帖2004-05-01 21:41:
半桥变换器也是双端变换器,以上是两种拓扑。
半桥开关管电压应力为输入电压。
而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力。
但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题。
要需要其他方法来解决。
半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D。
就是所谓的不对称半桥,通常采用下面一种拓扑。
对于不对称半桥可以采用峰值电流控制。
第31帖2004-05-16 11:39:
你好,sometimes,我想问一下上面的第二个半桥变换器的工作原理是怎样的啊?怎么分析也分析不过来的啊!如果Q1关闭,Q2导通的话那怎样形成回路啊!!!
第32帖2004-05-16 11:56: 这个时候C2通过变压器对负载放电。
第34帖2004-07-19 13:01: 请问,何谓“单端”“双端”?请指教!多谢
第57帖2005-07-01 16:38: 可以把驱动电路给出吗因为现在我用的十三级管作驱动管,我向改成mos 馆的
第15帖2004-05-01 21:15:
评论:以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。
buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。
boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost变换器也有推挽,双电感,全桥等电路。
buck-boost是反激变换器的原型,属于升降压变换器。
后面三种电路不是很常用,都是升降压变换器。
从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。
也就是buck最佳占空比为1,boost为0,buck-boost为0.5。
第22帖2004-05-06 21:37:
全桥变换器
全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS
这里不多罗嗦了~具体可以参考阮新波的书。
接下去,会收集一些三电平变换器贴出来,在以后就给出boost族的
隔离变换器....反激变换器.....正反激变换器......APFC.....PPFC....
单级PFC.....谐振变换器等.....
第25帖2004-05-07 18:21:
三电平变换器(three level converter)
选了看起来比较舒服的两个拓扑,这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合。
而且可以通过全桥的移相控制方式实现软开关。
第26帖2004-05-07 21:09:
跟帖:五种隔离三电平DC/DC变换器
(a)Forward三电平DC/DC变换器
(b)Flyback三电平DC/DC变换器
(c)Push-Pull三电平DC/DC变换器
(d)半桥三电平DC/DC变换器
(e)全桥三电平DC/DC变换器
第27帖2004-05-08 13:07: boost族隔离变换器
双电感boost 全桥boost。