膜过滤技术
- 格式:ppt
- 大小:1.66 MB
- 文档页数:1
水处理膜过滤技术深度解析及优缺点比较如今,超过 23 亿人生活在水资源紧张的国家,如何尽可能有效地管理这一宝贵资源?这个问题显得尤为重要。
现如今,水过滤过程依赖于高性能而又节约成本的膜材料,高性能的水处理膜材料能够承受高压、高温环境和持续的化学暴露。
纳滤膜:能截留纳米级(0.001微米)的物质。
纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。
纳滤膜的运行压力一般3.5-30bar。
反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大于100的有机物,同时允许水分子通过。
反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。
超滤膜:能截留1-20nm之间的大分子物质和蛋白质。
超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,超滤膜的运行压力一般1-5bar。
超滤膜及纳滤和反渗透的区别超滤膜:超滤膜是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。
纳滤:纳滤,介于超滤与反渗透之间。
现在主要用作水厂或工业脱盐。
脱盐率达百分之90以上。
反渗透脱盐率达99%以上但若对水质要求不是特别高,利用纳滤可以节约很大的成本。
反渗透:反渗透,是利用压力表差为动力的膜分离过滤技术,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。
用作太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子等行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。
膜过滤技术原理及应用天津大学化工学院王志教授内容1、固液分离膜2、微滤过程3、超滤过程4、渗滤过程5、纳滤过程6、膜过滤通量衰减及其防治7、膜器及膜过程设计1、固液分离膜¾微滤膜:膜孔径0.02-10μm ¾超滤膜:膜孔径1-100nm膜结构¾膜结构的层次形态结构结晶态结构分子态结构形态结构表层结构¾无孔,致密,平滑¾球形小瘤¾聚集体,凹凸¾开放的网络孔¾孔洞,针孔,亮点过渡层与支撑层结构¾近似球形孔(海绵状结构)¾指状孔或大孔穴不同类型膜横断面示意图不对称聚砜超滤膜横截面——海绵状(蜂窝状)孔结构指状孔结构陶瓷微滤膜(a)阳极氧化法(表面)(b)烧结法(图上部为横断面)微孔陶瓷膜扫描电镜照片聚合物微滤膜(a)相转化法, (b)拉伸法;(c)径迹蚀刻法中空纤维超滤膜2 微滤过程2.1 特性1. 分离目的: 得到不含粒子的液体或气体2. 截留物的尺寸与性质:0.02-10 mm 粒子3.透过膜的物质:不含粒子的液体或气体4. 推动力: 压力差, ∼0.2 MPa5. 传质/选择性机理: 筛分6. 供料和渗透物的相态: 液体或气体7. 流动形式: “死端过滤(dead-endfiltration)”或“错流过滤(cross-flow filtration)”2.2 死端过滤与错流过滤的比较2.3 微滤应用¾制药工业的消毒:制药产品中细菌的去除;去除制药产品及其原料中的有机和无机粒子。
¾抗生素的澄清¾哺乳动物细胞的微过滤¾饮料的澄清:啤酒,葡萄酒,矿泉水。
¾半导体生产工业中流体的纯化:空气过滤,化学试剂过滤,去离子水过滤。
¾分析化验:微生物化验,粒子污染的监测,微孔膜上细胞生长的研究。
¾反渗透或超滤的预处理。
3 超滤过程3.1 特性1.分离目的:得到无大分子溶质的溶液,无小分子溶质的大分子溶质溶液,或大分子溶质的分级。
微孔滤膜过滤技术摘要:微孔滤膜过滤技术作为一门新型的高效分离、浓缩、提纯及净化技术, 近30 年来发展迅速, 已经在石油化工、轻工纺织、食品、医药、环保等多个领域得到广泛应用[1] 。
膜分离技术具有操作简单、占地面积小, 处理过程中无相变及不会产生新的污染物质、分离效果好等优点, 近年来在水处理领域中得到广泛应用。
本文就膜过滤的研究进展,膜材料以及它的应用作简要综述。
关键词:微孔滤膜; 过滤技术; 除菌;应用正文:20 世纪80 年代以来,生命科学和生物工程技术的发展日新月异,生物产品(如酶、抗体、抗原、受体) 的种类越来越多. 这些制品通常是从发酵液中或天然产品中提取,再经纯化而得到的产品. 由于目标产物产量小,通常又与底物、细胞等混杂在一起,浓度很低,且生物产品与传统的化工产品不一样,它们一般都具有生物活性,对分离操作条件要求比较苛刻. 传统的化工分离方法如精馏、沉降、结晶等都难以达到要求.膜分离是20 世纪60 年代以来发展较快的一项分离技术,它具有操作条件温和、无污染、无相变等特点,在许多方面都得到了应用,象微滤、超滤已应用于生物化工和医药行业中. 膜分离是根据分子大小不同来实现分离的,一般相对分子质量相差10倍以上的物系才具有分离作用,因此它还远远不能满足生化分离的需要. 而生物亲和作用是生物分子之间的可逆专一性识别作用,具有极高的选性.[2]20 世纪70 年代以来,利用生物亲和相互作用,分离蛋白质等生物大分子的亲和纯化技术迅速发展. 其中亲和层析技术已得到广泛应用,但是亲和层析法亦存在许多难以克服的缺点: 1) 亲和载体价格昂贵,使用寿命短;2) 色谱柱易堵塞和污染,需对原料进行预处理以除去颗粒性杂质;3) 难以实现连续操作和规模放大. 目前亲和层析法仅局限于价值极高的生物活性物质的小批量纯化. 为克服膜过滤和亲和层析的缺点,发展了亲和2膜过滤技术,不仅利用了生物分子的识别性能,分离低浓度的生物制品,而且微孔滤膜的渗透性及通量大,能在纯化的同时实现浓缩,此外还有操作方便、设备简单、便于大规模生产的特点,发展前景引人瞩目。
膜过滤技术
膜过滤技术是指利用特定的膜来将高分子物质和低分子物质分离的技术。
膜过滤技术被广泛地应用在石油、化工、冶金、食品、矿产资源、医药、生物和环保等领域,被广泛用于过滤、分离、浓缩和回收的地方,可
有效的改善过滤性能和仪器的性能。
膜过滤技术包括逆流膜过滤、渗透膜过滤、微滤膜过滤以及混合膜过
滤等多种,其中,微滤膜过滤是应用最多的,它和渗透膜过滤共同被使用
于水处理领域,可以有效地去除悬浮物、有机物、病原体等,从而实现水
质的净化。
此外,膜过滤技术在食品加工领域也占有重要的地位,可以有效的过
滤掉悬浮物、细菌、微生物等,保留食品饱和营养成分,使食品口感更好,也可以用于发酵产物的膜浓缩,从而节省大量的用水。
因此,膜过滤技术的出现和发展,不仅提高了水质的淨化效果,而且
改善了食品的质量,提高了能源的利用率,也减少了病原体对人类健康的
危害,因而受到了广泛的欢迎。
生物医药膜过滤参数生物医药膜过滤是一种常见的分离和纯化技术,广泛应用于生物医药、食品、化工等领域。
膜过滤技术通过选择合适的膜孔大小和膜材料,实现对溶液中颗粒、细菌、病毒等微生物的分离和除去。
本文将重点介绍生物医药膜过滤中的参数。
1. 膜孔大小膜孔大小是决定膜过滤效果的重要参数之一。
通常使用的膜孔大小范围从0.1微米到0.45微米,这个范围内的膜可以有效地过滤掉大多数细菌、病毒和微粒。
选择膜孔大小需要考虑待处理液体中微生物的大小,同时也要充分考虑到通过膜的速度以及对膜的损伤程度。
2. 通量通量是指单位时间内通过膜滤器单位面积的液体量。
通量的大小直接影响到膜过滤的效率和生产能力。
常见的通量单位有L/(m²·h)或g/(cm²·h),通量的大小与膜的材料、膜孔大小、操作条件等因素密切相关。
在实际应用中,需要根据具体的处理要求和设备性能来选择合适的通量。
3. 保持力保持力是指膜对微粒的截留能力,它取决于膜材料的选择和膜孔大小。
保持力越大,膜过滤效果越好,但也会增加液流的阻力。
因此,在选择膜时需要平衡保持力和通量之间的关系,确保既能有效过滤微生物,又能保持合理的通量。
4. 渗透压渗透压是指膜上下两侧溶液的浓度差,决定了溶质从高浓度侧通过膜向低浓度侧扩散。
在生物医药膜过滤中,渗透压常常用于反渗透膜的选择。
通过调节反渗透膜两侧的渗透压差,可以实现对离子、有机物等的去除,达到纯化水质的目的。
5. pH值溶液的pH值对膜的稳定性和过滤效果有一定影响。
过高或过低的pH值可能导致膜材料的腐蚀或损伤,降低过滤效果。
因此,在选择膜材料和操作条件时,需要考虑溶液的pH值范围,以保证膜的稳定性和使用寿命。
6. 温度温度对膜过滤的效果和设备寿命也有一定影响。
适宜的温度可以提高膜的通量和抗污染能力,但过高的温度可能导致膜材料的老化和膜孔的扩大。
在实际应用中,需要根据具体要求选择合适的温度范围。