演示文稿悬索桥构造及设计
- 格式:ppt
- 大小:12.44 MB
- 文档页数:30
悬索桥构造简介11.4 悬索桥构造简介1. 桥塔桥塔也称主塔,它是支承主缆的主要构件,分担主缆所受的竖向荷载,并传递到下部的塔墩和基础。
另外,在风荷载和地震荷载的作用下,还可对全桥的总体稳定提供安全保证。
按采用材料分,桥塔有混凝土塔和钢塔,因混凝土塔价格较低,一般都采用混凝土桥塔。
按桥塔外形分,在横桥向一般有刚构式、桁架式和混合式三种结构形式,如图11.6所示。
刚构式简洁明快,可用于钢桥塔或混凝土桥塔,桁架式和混合式由于交叉斜杆的施工对混凝土桥墩有较大困难,只能用于钢桥塔。
(a). 桁架式;(b) 刚构式;(c). 混合式图11.6 桥塔横桥向示意图在顺桥向,按力学性质可分刚性塔、柔性塔和摇柱塔三种结构形式。
刚性塔可做成单柱形或A 字形,一般多用于多塔悬索桥中,可提高结构纵向刚度,减小纵向变位,从而减小梁内应力;柔性塔允许塔顶有较大的变位,是现代悬索桥中最常用的桥塔结构,一般为塔柱下端做成固结的单柱形式;摇柱塔为下端做成铰接的单柱形式,一般只用于跨度较小的悬索桥。
2. 主缆主缆通过塔顶的鞍座悬挂于主塔上并锚固于两端锚固体中。
主缆的布置形式一般是采用每桥两根,平行布置于加劲梁两侧吊点之上。
现代大跨度悬索桥多采用平行钢丝主缆,它是由平行的高强、冷拔、镀锌钢丝组成。
钢丝直径大都在5mm 左右。
视缆力大小,每根主缆可以包含几千乃至几万根钢丝。
为便于施工安装和锚固,主缆通常被分成束股编制架设(一般每根主缆可分成几十乃至几百股,每股内的丝数大致相等),并在两端锚碇处分别锚固。
为了保护钢丝,并使主缆的形状明确,主缆的其余区段则挤紧成规则的圆形,然后缠以软质钢丝捆扎并进行外部涂装防腐。
对一座具体的桥梁而言,如果钢丝直径已经选定,主缆所含钢丝总数n 就是确定的。
但组成具有n 根钢丝的主缆应编制成多少股钢束n l 和每股钢束含多少根钢丝n 2,则根据主缆的编制方法确定。
钢丝束股的编织方法通常有空中编丝组缆(Air Spinning )法和预制平行钢丝束股(Prefabricated Parallel Strands )法。
(1)悬索桥的构造组成: 悬索桥是由主缆、加劲梁、桥塔、鞍座、锚固构造、吊索等构件构成的柔性悬吊组合体系。
成桥后,主要由主缆和桥塔承受结构的自重,结构共同承受外荷载作用,受力按刚度分配。
(2)主缆:主缆是悬索桥的主要承重构件,除承受自身恒载外,缆索本身通过索夹和吊索承受活载和加劲梁(包括桥面系)的荷载。
除此以外主缆还承担一部分横向风荷载,并将它传递到桥塔顶部。
主缆不仅可以通过自身弹性变形,而且可以通过其几何形状的改变来影响体系平衡,表现出大位移非线性的力学特征,这是悬索桥区别于其他桥梁结构的重要特征之一。
主缆在恒载作用下具有很大的初始张拉力,对后续结构形状提供强大的“重力刚度”,这是悬索桥跨径得以不断增大、加劲梁高跨比得以减小的根本原因。
主索鞍:主索鞍在桥塔上,用来支承和固定主缆,通过它可以使主缆的拉力以垂直力和不平衡力的方式均匀地传递到塔顶。
(2)悬索桥的结构特点①主缆是几何可变体,只承受拉力作用。
主缆通过自身的弹性变形和几何形状的改变来影响体系的平衡。
所以悬索桥的平衡应建立在变形后的状态上。
②主缆在初始恒载作用下,具有较大的初拉力,使主缆保持着一定的几何形状。
当外荷载作用时,缆索发生几何形状的改变。
初拉力对在外荷载作用下产生的位移存在着抗力,它和位移有关,反映出缆索几何非线性的特性。
③改变主缆的垂跨比将影响结构的受力和刚度。
垂跨比增大,则主缆的拉力减小,刚度减小,恒、活载作用产生的挠度增大。
④悬索桥的跨度越大,加劲梁所受竖向活载的影响越小,竖向活载引起的变形也越小。
⑤增大加劲梁的抗弯刚度对减小悬索桥竖向变形的作用不大,这是因为竖向变形是悬索桥整体变形的结果。
加劲梁的挠度受到主缆变形的影响,跨度增大时加劲梁在承受竖向荷载方面的功能逐渐减小到只能将活荷载传递给主缆,其自身刚度的贡献较小。
这一点和其他桥型中主要构件截面面积总是随着跨径的增大而显著增大不同。
⑥边跨的不同形式对悬索桥有很大的影响,通常悬索桥边跨与中跨跨径比对悬索桥的挠度和内力有影响,当边跨与中跨跨径比减小时,其中跨的跨中和L/4处的挠度和弯矩值减小,而主缆拉力有所增加。