题库-高中物理牛顿运动定律经典练习题全集(含答案)
- 格式:pdf
- 大小:2.81 MB
- 文档页数:38
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
(物理)物理牛顿运动定律的应用练习题含答案一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B 离小车右端的距离;(2)从A 、B 开始运动计时,经t=6s 小车离原位置的距离。
【答案】(1)B 离右端距离(2)小车在6s 内向右走的总距离:【解析】(1)设最后达到共同速度v ,整个系统动量守恒,能量守恒解得:,A 离左端距离,运动到左端历时,在A 运动至左端前,木板静止,,解得B 离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a 向右加速:小车向右走位移接下来三个物体组成的系统以v 共同匀速运动了小车在6s 内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX += 物体离开秤盘时212x at =()k X x mg ma --= max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.3.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大?(3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv =解得:8m/s v ==(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.4.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,210/g m s =,求:(1)拉力撤去时,木板的速度v B ;(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--⋅=,得:24/B a m s =对木块有2A mg ma μ=,22/A a m s =所以木块相对木板滑动撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-22122B mgt mgt mv mv μμ--=-,可得20.2t s =,v=2.4m/s在撤掉F 之前,二者的相对位移11122B A v v x t t ∆=- 撤去F 之后,二者的相对位移22222B A v v v v x t t ++∆=- 木板长度12 1.2L x x m =∆+∆=(3)获得共同速度后,对木块,有22102A mgx mv μ-=-, 对木板有()2211202B mg mg x mv μμ-=- 二者的相对位移3A B x x x ∆=-木块最终离木板右端的距离1230.48d x x x m =∆+∆-∆=【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.6.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.7.如图所示,水平传送带长为L=11.5m,以速度v=7.5m/s沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=- 滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V8.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
2.(2013 年河南省十所名校高三第三次联考试题 , 2) 如图所示,两个物体以相同大小的初速度从 O 点同时分别向 x 轴正、负方向水平抛出, 它们的轨迹恰好满足抛物线方程 y = A .拉力做功的瞬时功率为 B .物块 B 满足牛顿运动定律练习一1.(2013 年河南省十所名校高三第三次联考试题 , 7) 如图甲所示,斜面体固定在水平面上, 倾角为 θ= 30°,质量为 m 的物块从斜面体上由静止释放,以加速度 a= 开始下滑,取出 动能 E k 、势能 E P 、机械能 E 、时间 t 、 发点为参考点,则图乙中能正确描述物块的速率 位移 x 关系的是 v 、 C . O 点的曲率半径为 k D . O 点的曲率半径为 2k3.( 湖北省七市 2013届高三理综 4 月联考模拟试卷 ,6) 不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的 5 倍,直径是地球直径的 1.5 倍。
设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为Ek1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为 Ek 2,则 Ek 1: Ek 2为A. 7.5B. 3.33C. 0.3D. 0.134.( 山东省淄博市 2013 届高三下学期 4 月复习阶段性检测 ,7) 在倾角为 的固定光滑斜面上 有两个用轻弹簧相连接的物块 A 、 B ,它们的质量分别为 m 1、 m 2,弹簧劲度系数为 k , C 为一 固定挡板, 系统处于静止状态。
现用一平行于斜面向上的恒力 F 拉物块 A 使之向上运动, 当 物块 B 刚要离开挡板 C 时,物块 A 运动的距离为 d ,速度为 v 。
则此时那么以下说法正确的是 (曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半C .物块 A 的加速度为A .物体被抛出时的初速度为B .物体被抛出时的初速度D .弹簧弹性势能的增加量为5. ( 山东省淄博市 2013 届高三下学期 4 月复习阶段性检测 ,1) 用比值法定义物理量是物理学 中一种很重要的思想方法,下列物理量由比值法定义正确的是( )A .加速度B .磁感应强度C .电容D.电流强度6. (四川成都市2013 届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。
最新高中物理牛顿运动定律的应用专项训练100( 附答案 )一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m=0.5 kg、长L=1 m的平板车 B 静止在圆滑水平面上,某时辰质量M=l kg 的物体 A(视为质点)以v0=4 m/s 向右的初速度滑上平板车 B 的上表面,在 A 滑上 B 的同时,给 B 施加一个水平向右的拉力.已知 A 与 B 之间的动摩擦因数μ=0.2,重力加快度 g 取 10 m/s 2.试求:(1)假如要使 A 不至于从 B 上滑落,拉力 F 大小应知足的条件;(2)若 F=5 N,物体 A 在平板车上运动时相对平板车滑行的最大距离.【答案】 (1) 1N F 3N(2)x0.5m【分析】【剖析】物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度,联合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界状况是A、 B 速度同样后,一同做匀加快直线运动,依据牛顿第二定律求出拉力的最大值,进而得出拉力 F 的大小范围.【详解】(1)物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度v1,则:v02 -v12v12+L2a A2a B又:v-v1 =v1 a A a B解得: a B=6m/s 2再代入 F+μMg=ma B得: F=1N若 F<1N,则 A 滑到 B 的右端时,速度仍大于 B 的速度,于是将从 B 上滑落,因此 F 一定大于等于 1N当 F 较大时,在 A 抵达 B 的右端以前,就与 B 拥有同样的速度,以后, A 一定相对 B 静止,才不会从 B 的左端滑落,则由牛顿第二定律得:对整体: F=(m+ M)a对物体 A:μMg=Ma解得: F=3N若F 大于 3N, A 就会相对 B 向左滑下综上所述,力 F 应知足的条件是 1N≤F≤3N(2)物体 A 滑上平板车 B 此后,做匀减速运动,由牛顿第二定律得:μ Mg=Ma A解得: a A=μg=2m/s 2平板车 B 做匀加快直线运动,由牛顿第二定律得:F+μMg=ma B解得: a B=14m/s2二者速度同样时物体相对小车滑行最远,有:v 0- a A t=a B t解得: t=0.25s1 215 A 滑行距离 x A =v 0t -a A t =m216B 滑行距离: x B = 1 a B t 2= 7m216最大距离: Δx =x A - x B =0.5m【点睛】解决此题的重点理清物块在小车上的运动状况,抓住临界状态,联合牛顿第二定律和运动学公式进行求解.2. 如下图,质量为 M =10kg 的小车停放在圆滑水平面上.在小车右端施加一个F=10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量 m=2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数 μ 0.20.假设小 = 车足够长.( 1)求经过多长时间煤块与小车保持相对静止 ( 2) 求 3s 内煤块行进的位移( 3)煤块最后在小车上留下的印迹长度【答案】 (1) 2s (2) 8.4m (3) 2.8m【分析】【剖析】分别对滑块和平板车进行受力剖析,依据牛顿第二定律求出各自加快度,物块在小车上停止相对滑动时,速度同样,依据运动学基本公式即能够求出时间.经过运动学公式求出位移.【详解】(1)依据牛顿第二定律,刚开始运动时对小黑煤块有:F Nma 1F N -mg =0代入数据解得: a 1=2m/s 2刚开始运动时对小车有:FF NMa 2解得: a 2=0.6m/s 2经过时间 t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v+a 2 t解得: t=2s;(2)在 2s 内小黑煤块行进的位移为:x11a1t 24m22s 时的速度为:v1 a1t1 2 2m/s 4m/s今后加快运动的加快度为:a F 5m/s23M m6而后和小车共同运动t 2=1s 时间,此 1s 时间内位移为:x2v1t21a3t22 4.4m 2因此煤块的总位移为:x1x28.4m (3)在 2s 内小黑煤块行进的位移为:x11a1t 24m2小车行进的位移为:x v1t 1a1t2 6.8m 2二者的相对位移为:x x x1 2.8m即煤块最后在小车上留下的印迹长度 2.8m.【点睛】该题是相对运动的典型例题,要仔细剖析两个物体的受力状况,正确判断两物体的运动状况,再依据运动学基本公式求解.3.如图,质量M=4kg 的长木板静止处于粗拙水平川面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v0=14m/s 的速度从一端滑上木板,恰巧未从木板上滑下,滑块与长木板的动摩擦因数μ2,求:2=0.5,g取10m/s(1)木块刚滑上木板时,木块和木板的加快度大小;(2)木板长度;(3)木板在地面上运动的最大位移。
牛顿运动定律一、基础知识回顾:1、牛顿第一定律一切物体总保持,直到有外力迫使它改变这种状态为止。
注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。
(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。
2、惯性物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。
3、对牛顿第一运动定律的理解(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。
(3)定律说明了任何物体都有一个极其重要的性质——惯性。
(4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。
4、对物体的惯性的理解(1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。
(2)惯性只与物体本身有关而与物体是否运动,是否受力无关。
任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。
质量是物体惯性的唯一量度。
(3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。
物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。
(4)惯性不是力。
5、牛顿第二定律的内容和公式物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。
公式是:a=F合/ m 或F合 =ma6、对牛顿第二定律的理解(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。
反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。
牛顿运动定律练习一1.(2013 年河南省十所名校高三第三次联考试题, 7) 如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为 m 的物块从斜面体上由静止释放,以加速度a= 开始下滑,取出发点为参考点,则图乙中能正确描述物块的速率 v、动能 E k、势能 E P、机械能 E、时间 t、位移 x 关系的是2.(2013 年河南省十所名校高三第三次联考试题, 2) 如图所示,两个物体以相同大小的初速度从O 点同时分别向x 轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的是(曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半径)A.物体被抛出时的初速度为B.物体被抛出时的初速度为C.O 点的曲率半径为kD.O 点的曲率半径为 2k 3.(湖北省七市 2013 届高三理综 4 月联考模拟试卷,6)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的 5 倍,直径是地球直径的 1.5 倍。
设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为 Ek1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为 Ek2,则 Ek1: Ek2为A. 7.5B. 3.33C. 0.3D. 0.134.(ft东省淄博市 2013 届高三下学期 4 月复习阶段性检测,7)在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块 A、B,它们的质量分别为 m1、m2,弹簧劲度系数为 k,C 为一固定挡板,系统处于静止状态。
现用一平行于斜面向上的恒力 F 拉物块 A 使之向上运动,当物块 B 刚要离开挡板 C 时,物块 A 运动的距离为 d,速度为 v。
则此时A.拉力做功的瞬时功率为B.物块 B 满足C.物块 A 的加速度为D.弹簧弹性势能的增加量为5.(ft东省淄博市 2013 届高三下学期 4 月复习阶段性检测,1)用比值法定义物理量是物理学中一种很重要的思想方法,下列物理量由比值法定义正确的是()A.加速度B.磁感应强度C.电容D.电流强度6.(四川成都市 2013 届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。
牛顿运动定律经典练习题一、选择题1.下列关于力和运动关系的说法中,正确的是 ( )A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现B .物体受力越大,运动得越快,这是符合牛顿第二定律的C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动C .竖直向上做减速运动D .竖直向下做减速运动3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( )A .速度方向、加速度方向、合力方向三者总是相同的B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( )A .等于人的推力B .等于摩擦力C .等于零D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反B .F 1、F 2、F 3大小相等,方向相同C .F 1、F 2是正的,F 3是负的D .F 1是正的,F 1、F 3是零6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。
现对M 施加一个水平力F ,则以下说法中不正确的是( )A .若两物体一起向右匀速运动,则M 受到的摩擦力等于FB .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmgC .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M aD .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。
高中物理题库(牛顿运动定律)1、如图所示,位于光滑固定斜面上的小物块P 受到一水平向右的推力F 的作用。
已知物块P 沿斜面加速下滑。
现保持力的方向不变,使其大小减小,则加速度( )A .一定变小B .一定变大C .一定不变D .可能变小,可能变大,也可能不变2、一质量为m 的人站在电梯中,电梯加速上升,加速度大小为g/3,g 为重力加速度。
则人对电梯底部的压力为( )A .mg 31B .2mgC .mgD .mg 34 3、如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。
每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放(初速为0),用t 1、t 2、t 3依次表示滑环到达d 所用的时间,则( ) A .t 1 < t 2 < t 3 B .t 1 > t 2 > t 3 C .t 3 > t 1 > t 2 D .t 1 = t 2 = t 34、下列哪个说法是正确的?( )A .体操运动员双手握住单杠吊在空中不动时处于失重状态;B .蹦床运动员在空中上升和下落过程中都处于失重状态;C .举重运动员在举起杠铃后不动的那段时间内处于超重状态;D .游泳运动员仰卧在水面静止不动时处于失重状态。
5、放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图所示。
取重力加速度g =10m/s 2。
由此两图线可以求得物块的质量m 和物块与地面之间的 动摩擦因数μ分别为( ) A .m =0.5kg ,μ=0.4 B .m =1.5kg ,μ=152 C .m =0.5kg ,μ=0.2D .m =1kg ,μ=0.26、如图2所示,跨在光滑圆柱体侧面上的轻绳两端分别系有质量为m A 、m B 的小球,系统处于静止状态.A 、B 小球与圆心的连线分别与水平面成60°和30°角,则两球的质量之比m A :m B 和剪断轻绳时两球的加速度之比a A :a B 分别为( )A .1:1 1:2B .1:1 1:3C .3:1 1:1D .3:1 1:37、在光滑水平面上,有一个物体同时受到两个水平力F 1与F 2的作用,在第1s 内物体保持静止状态。
完整)高中物理牛顿运动定律经典练习题对牛顿第三定律的理解总结牛顿运动定律是描述物体运动规律的基础定律,其中第一定律揭示了物体的惯性和静止状态与匀速直线运动状态的等价性;第二定律定量揭示了力与运动的关系,即力是改变物体运动状态的原因;第三定律揭示了力的相互作用性质,即物体间的相互作用力总是成对的,大小相等,方向相反,作用在同一条直线上。
这些定律为我们研究物理现象提供了基础理论和数学工具。
2.在拔出销钉M的瞬间,小球的加速度大小为12m/s,如果拔出销钉N,小球可能的加速度是(取g=10m/s):A。
22m/s,方向竖直向下;B。
22m/s,方向竖直向上;C。
2m/s,方向竖直向上;9.一物体受绳子拉力作用,由静止开始前进,先做加速运动,然后改为匀速运动,再改为减速运动。
下列说法中正确的是:A。
加速前进时,绳子拉物体的力大于物体拉绳子的力;B。
减速前进时,绳子拉物体的力小于物体拉绳子的力;C。
只有匀速前进时,绳子拉物体的力与物体拉绳子的力大小相等;10.一个物体放在水平桌面上,下列说法正确的是:A。
桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力;B。
物体所受的重力和桌面对它的支持力是一对作用力和反作用力;C。
物体对桌面的压力就是物体的重力,这两个力是同一性质的力;11.甲、乙两队进行拔河比赛,结果甲队获胜。
则比赛过程中:A。
甲队拉绳子的力大于乙队拉绳子的力;B。
甲队与地面间的摩擦力大于乙队与地面间的摩擦力;C。
甲、乙两队与地面间的摩擦力大小相等,方向相反;12.若在例题3中不计绳子的质量,则:A。
甲队拉绳子的力大于乙队拉绳子的力;B。
甲队与地面间的摩擦力大于乙队与地面间的摩擦力;C。
甲、乙两队与地面间的摩擦力大小相等,方向相反;1.下列物体的运动状态保持不变的是:A。
匀速行驶的列车;B。
地球同步卫星;C。
自由下落的小球;2.有关加速度的说法,正确的是:A。
物体加速度的方向与物体运动的方向不是同向就是反向;B。
高中物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v t a =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
高中物理牛顿运动定律专项训练100(附答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=2.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能;(3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.3.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1397/c v m s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:213/c v m s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+ 解得:133397/22max c v v m s == 同理得:313/2min v m s = 所以03313/397/22m s v m s ≤≤4.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
高中物理牛顿运动定律专项训练100(附答案)及解析一、高中物理精讲专题测试牛顿运动定律1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为0.8h m =。
在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不动,而货物继续运动,最后恰好落在光滑轨道上的B 点。
已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。
()1求货物从小车右端滑出时的速度;()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车的长度是多少?【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动,在竖直方向上:212h gt =, 水平方向:AB x l v t = 解得:3/x v m s =()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共,由能量守恒定律得:()2201122Q mgs mv m M v μ==-+共相对, 解得:6s m =相对,当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得:2211'22x mgs mv mv 共μ-=-,解得:'0.7s m =,车的最小长度:故L ' 6.7s s m =+=相对;3.某研究性学习小组利用图a 所示的实验装置探究物块在恒力F 作用下加速度与斜面倾角的关系。
物理牛顿运动定律练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
高考物理牛顿运动定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态;(2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ;(3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α= 斜面对木块的最大静摩擦力:13cos 4m f mg mg μα==由于:sin m f mg α>所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a ='由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高中物理牛顿运动定律的应用专项训练100(附答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围.【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a + 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μM g =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.3.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++代入数值得:L =16m由平均速度的定义得:168/2L v m s t ===(2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为:F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a 2=21=2m /s 2, 根据牛顿第二定律得:a 1=mgsin mgcos mθμθ+=gsinθ+μgcosθa 2= mgsin mgcos mθμθ-=gsinθ-μgcosθ联立两式解得:μ=0.5,θ=37°.(3)0-1s 内,物块的位移:x 1=12a 1t 12=12×10×1m =5m 传送带的位移为:x 2=vt 1=10×1m=10m则相对位移的大小为:△x 1=x 2-x 1=5m则1-2s 内,物块的位移为:x 3=vt 2+12a 2t 22=10×1+12×2×1m =11m 0-2s 内物块向下的位移:L =x 1+x 3=5+11=16m物块下降的高度:h =L sin37°=16×0.6=9.6m物块机械能的变化量:△E =12m v B 2−mgh =12×2×122−2×10×9.6=-48J 负号表示机械能减小.4.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J 滑块m 2在传送带上减速的加速大小413v a t '∆'=='∆m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J 系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .5.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2; 由速度时间关系得 t 1=11va =1s (2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22v x m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.6.如图所示,质量M =8kg 的小车放在光滑水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大? (2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t =1.5s 小物块通过的位移大小为多少?(取g =10m/s 2).【答案】(1)2m/s 2,0.5m/s 2(2)1s ,2m/s (3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.7.如图所示,水平传送带长为L=11.5m,以速度v=7.5m/s沿顺时针方向匀速转动.在传送带的A端无初速释放一个质量为m=1kg的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F=5N、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=-滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V8.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a )所示。
物理牛顿运动定律专题练习(及答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。
已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。
求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。
【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。
设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ;(3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.3.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ;(2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°4.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲 Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·M g cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得22221==1x h OP x h OQ ++甲乙5.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
牛顿运动定律练习一一、选择题1.(2013年河南省十所名校高三第三次联考试题, 7) 如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m的物块从斜面体上由静止释放,以加速度a=开始下滑,取出发点为参考点,则图乙中能正确描述物块的速率v、动能E k、势能E P、机械能E、时间t、位移x关系的是2.(2013年河南省十所名校高三第三次联考试题, 2) 如图所示,两个物体以相同大小的初速度从O点同时分别向x轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的是(曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半径)A.物体被抛出时的初速度为B.物体被抛出时的初速度为C.O点的曲率半径为kD.O点的曲率半径为2k3.(湖北省七市2013届高三理综4月联考模拟试卷,6)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的5倍,直径是地球直径的 1.5倍。
设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为Ek1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为Ek2,则Ek1: Ek2为A. 7.5B. 3.33C. 0.3D. 0.134.(山东省淄博市2013届高三下学期4月复习阶段性检测,7)在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。
现用一平行于斜面向上的恒力F拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v。
则此时A.拉力做功的瞬时功率为B.物块B满足C.物块A的加速度为D.弹簧弹性势能的增加量为5.(山东省淄博市2013届高三下学期4月复习阶段性检测,1)用比值法定义物理量是物理学中一种很重要的思想方法,下列物理量由比值法定义正确的是()A.加速度B.磁感应强度C.电容D.电流强度6.(四川成都市2013届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。
其工作原理为:货箱在轨道顶端A时,自动将货物装入货箱,然后货箱载着货物沿粗糙程度各处相同的轨道无初速度下滑,接着压缩弹簧,当弹簧被压缩至最短时,立即锁定并自动将货物卸下,卸完货物后随即解锁,货箱恰好被弹回到A,此后重复上述过程。
若滩簧为自由长度时右端对应的斜面位置是B,货箱可看作质点,则下列说法正确的是A.锁定前瞬间货箱所受合外力等于解锁后瞬间货箱所受合外力B.货箱由A至B和由B至A的过程中,在同一位置(除A点外)的速度大小不相等C.货箱上滑与下滑过程中克服摩擦力做的功相等D.货箱每次运载货物的质量必须相等7.(武汉市2013届高中毕业生四月调研测试, 7) 如图甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行。
t=0时,将质量m=1kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图象如图乙所示。
设沿传送带向下为正方向,取重力加速度g=10m/s2。
则A.传送带的速率v0=10m/sB.传送带的倾角θ=30°C.物体与传送带之间的动摩擦因数μ=0.5D.0? 2.0s摩檫力对物体做功W f=-24J8.(武汉市2013届高中毕业生四月调研测试, 5) 跳伞运动员从悬停的直升机上跳下,经过一段时间后拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图象。
若将人和伞看成一个系统A.系统先加速运动, 接着减速运动, 最后匀速运动B 系统受到的合外力始终向下C.系统的机械能守恒D.阻力对系统始终做负功9.(河北省石家庄市2013届高三一模,1)质量为m的物体静止在光滑的水平面上,受到水平恒力F的作用,在时间t内移动距离s, 下列说法中正确的是A.力F在时间t内可以使质量m的物体移动的距离为sB.力F在时间t内可以使质量m的物体移动的距离为sC.力F在时间3t内可以使质量3m的物体移动的距离为sD.F的力在时间t内可以使质量m的物体移动距离为s10.(山东潍坊市2013届高三3月第一次模拟考试,3)质量为1kg的物体静止于光滑水平面上.t=0时刻起,物体受到向右的水平拉力F作用,第ls内F=2N,第2s内F=1N. 下列判断正确的是A.2s末物体的速度是3m/sB.2s内物体的位移为3mC.第1s末拉力的瞬时功率最大D.第2s末拉力的瞬时功率最大11.(2013年长春市高中毕业班第二次调研测试,8)如图所示,小车在外力作用下沿倾角为θ的斜面做直线运动,小车的支架上用细线拴一个摆球,悬点为O, 现用水平虚线MN和竖直虚线PQ将竖直平面空间分成四个区间,则下列说法正确的是A.若小车沿斜面向上做匀速运动,则稳定后细线可在III区与竖直方向成一定夹角B.若小车沿斜面向下做匀加速运动,则稳定后细线可在IV区与竖直方向成一定夹角C.无论小车沿斜面向下的加速度多大,稳定后细线都不可能在I区与水平方向成一定夹角D.无论小车沿斜面向上的加速度多大,稳定后细线都不可能沿与ON重合的水平方向12.(上海市黄浦区2013届高三第一学期期末学科质量监测物理试卷,16)如图所示,一轻质弹簧一端固定在竖直墙壁上,另一自由端位于O点,现用一滑块将弹簧的自由端(与滑块未拴接)从O点压缩至A点后于t=0时刻由静止释放,滑块t1时刻经过O点,t2时刻运动到B点停止。
下列四个图像的实线部分能反映滑块从A运动B的v-t图像的是()13.(上海市黄浦区2013届高三第一学期期末学科质量监测物理试卷, 11) 如图所示,在验证向心力公式的实验中,质量相同的钢球①、②分别放在转盘A、B上,它们到所在转盘转轴的距离之比为2: 1。
a、b分别是与A盘、B盘同轴的轮。
a、b的轮半径之比为1:2,用皮带连接a、b两轮转动时,钢球①、②所受的向心力之比为()(A)8:1(B)4:1(C)2:1(D)1:214.(上海市黄浦区2013届高三第一学期期末学科质量监测物理试卷, 5) 静止在光滑水平面上的物体,受到一个大小不为零的水平拉力作用,若拉力开始作用瞬间物体的速度大小为v,加速度大小为a,则下列判断中正确的是()(A)v≠0,a≠0(B)v=0,a≠0(C)v≠0,a=0(D)v=0,a=015.(吉林普通中学2013届高三期末考试,6)如图所示,在竖直平面内有一个半径为R的圆弧轨道。
半径OA水平、OB竖直,一个质量为m的小球自A正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力,已知PA=2R,重力加速度为g,则小球()A.从B点飞出后恰能落到A点B.从P到B的运动过程中机械能守恒C.从P到B的运动过程中合外力做功mgRD.从P到B的运动过程中克服摩擦力做功mgR16.(辽宁省五校协作体2013届高三摸底考试理科综合试题,7) 如图所示,两个半径相同的半圆形轨道分别竖直放在匀强电场和匀强磁场中,轨道两端在同一高度上,轨道是光滑的.两个相同的带正电小球同时从两轨道左端最高点由静止释放,M、N为轨道的最低点,则()A.两小球到达轨道最低点的速度vM=vNB.两小球到达轨道最低点时对轨道的压力FM>FNC.小球第一次到达M点的时间大于小球第一次到达N点的时间D.在磁场中小球能到达轨道的另一端,在电场中小球不能到达轨道的另一端.17.(辽宁省五校协作体2013届高三摸底考试理科综合试题,1) 将“超市”所用的平板车固定在平地面上,用300N的水平力拖动一箱60kg的货物时,该货物刚好能在平板车上开始滑动。
若拖动平板车由静止开始加速前进,要保证此箱货物一定不从车上滑落,配送员拖车时,车的加速度的取值可以为( )A.3.5m/S2B.4m/S2C.7.5m/S2D.9.5m/S218.(重庆市2013届高三九校模拟,5)压敏电阻的阻值R随所受压力的增大而减小,某兴趣小组利用压敏电阻设计了判断电梯运动状态的装置,其装置示意图如图甲所示.将压敏电阻平放在电梯内,受压面朝上,在上面放一物体A,电梯静止时电压表示数为Uo,电梯在某次运动过程中,电压表的示数变化情况如图乙所示,下列判断中正确的是()A.乙图表示电梯可能做变减速下降B.乙图表示电梯可能做匀减速下降C.乙图表示电梯可能做变减速上升D.乙图表示电梯可能做匀速下降19.(重庆市2013届高三九校模拟,1)下列说法正确的有()A.匀速圆周运动是匀速运动B.瞬时速度的大小叫做瞬时速率;平均速度的大小叫做平均速率C.速度变化越快的物体惯性越大,匀速或静止时没有惯性D.有些材料在温度降低到一定值时其电阻会突然变为零20.(2013届阜宁中学高三期中考试,8)如图所示,bc为固定在车上的水平横杆,物块M串在杆上,靠摩擦力保持相对杆静止,M又通过细线悬吊着一个小铁球m,此时小车正以大小为a的加速度向右做匀加速直线运动,而M、m均相对小车静止,细线与竖直方向的夹角为θ,小车的加速度逐渐增大,M始终和小车保持相对静止,当加速度增加到2a时()A.细线与竖直方向的夹角的正切值增加到原来的2倍B.横杆对M的摩擦力增加了MaC.横杆对M弹力不变D.细线的拉力小于原来的2倍21.(2013届阜宁中学高三期中考试,5)一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a和速度的倒数(1/v)图象如图所示.若已知汽车的质量,则根据图象所给的信息,不能求出的物理量是()A.汽车的功率B.汽车行驶的最大速度C.汽车所受到阻力D.汽车运动到最大速度所需的时间22.(2013届阜宁中学高三期中考试,2)如图所示,小球从一个固定的光滑斜槽轨道顶端无初速开始下滑到底端,下面哪个图象正确的反映了小球的速度大小随时间变化的函数关系()23.(2013届河北唐山高三摸底考试,14)从16世纪末,随着人们对力的认识逐渐清晰和丰富,建立了经典力学理论,以下有关力的说法正确的有()A.物体的速度越大,说明它受到的外力越大B.物体的加速度在改变,说明它受到的外力一定改变C.马拉车做匀速运动,说明物体做匀速运动需要力来维持D.一个人从地面跳起来,说明地面对人的支持力大于人对地面的压力24.(2013届武汉部分学校高三11月联考,11)把质量为m的石块从高h处以初速度v斜向上抛出。
已知初速度v与水平方向成θ角,不计空气阻力,石块落地的时间与下列哪些物理量有关?A.m B.v C.θ D.h25.(2013届武汉部分学校高三11月联考,7)如图所示,轻绳的一端固定在O点,另一端系一质量为m的小球(可视为质点)。
当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力T、轻绳与竖直线OP的夹角θ满足关系式T=a+bcosθ,式中a、b为常数。