曲柄摇杆机构运动特性
- 格式:pptx
- 大小:2.59 MB
- 文档页数:2
栏杆机四杆机构运动学分析1 四杆机构运动学分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。
1.2 机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
三台设备测绘数据分别如下:第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm, L3=103.4mm,L4=103.52mm最短杆长度+最长杆长度(125.36+73.4) <其余两杆长度之和(103.4+103.52)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-1 II-1型栏杆机机构测绘及其运动位置图第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm最短杆长度+最长杆长度(125.36+50.1) <其余两杆长度之和(109.8+72.85)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-2 II-2型栏杆机机构测绘及其运动位置图第三组(3代)四杆机构L1=163.2mm,L2=64.25mm,L3=150mm,L4=90.1mm最短杆长度+最长杆长度(163.2+64.25) <其余两杆长度之和(150+90.1)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-3 III型栏杆机机构测绘及其运动位置图在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
机械原理课程机构设计实验报告题目:曲柄滑块机构的运动分析及应用小组成员与学号:刘泽陆(********)陈柯宇(11071177)熊宇飞(11071174)张保开(11071183)班级:1107172013年6月10日摘要 (3)曲柄滑块机构简介 (4)曲柄滑块机构定义 (4)曲柄滑块机构的特性及应用 (4)曲柄滑块机构的分类 (8)偏心轮机构简介 (9)曲柄滑块的动力学特性 (10)曲柄滑块的运动学特性 (11)曲柄滑块机构运行中的振动与平衡 (14)参考文献 (15)组员分工 (15)摘要本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。
最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。
关键字:曲柄滑块动力与运动分析振动与平稳性ABSTRACTThe paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.曲柄滑块机构简介曲柄滑块机构定义曲柄滑块机构是铰链四杆机构的演化形式,由若干刚性构件用低副(回转副、移动副)联接而成的一种机构。
☼ 6-1-2《平面连杆机构》练习题(二)☼班级姓名学号一、填空题:1、曲柄摇杆机构能将主动件的运动转换成摇杆的。
2、曲柄摇杆机构也能将摇杆的转换为曲柄的运动。
3、曲柄摇杆机构中,以曲柄为主动件的实例有、、和,以摇杆为主动件的实例有。
4、双曲柄机构是当主动曲柄作转动时,从动曲柄随之作转动。
5、当两曲柄的长度相等而且平行时,称为双曲柄机构,两曲柄的旋转方向,角速度也。
6、双曲柄机构如果对边杆长度都相等,但互不平行,则称为双曲柄机构,两曲柄的旋转方向,且角速度。
7、两个构件之间以面接触的运动副称为,其中如果两构件间只能作相对转动时,称为。
8、曲柄摇杆机构产生“死点”位置的条件是:摇杆为件,曲柄为件或者是把运动转换成运动。
9、曲柄摇杆机构出现急回运动特性的条件是:摇杆为件,曲柄为件或者是把运动转换成运动。
10、曲柄摇杆机构的不等于00,则急回特性系数,机构就具有急回特性。
11、连杆机构的“死点”位置,将使机构在传动中出现或发生运动方向等现象。
12、在实际生产中,常常利用急回运动这个特性,来缩短的时间,从而提高机械的。
13、曲柄摇杆机构的摇杆作主动件时,将与从动件的位置称为曲柄的“死点”位置。
14、曲柄摇杆机构只有当为主动件时,机构才会出现“死点”。
若以为主动件时,则无“死点”。
二、判断题:()1、当机构的极位夹角θ=00时,机构无急回特性。
()2、在有曲柄的平面连杆机构中,曲柄的极位夹角θ,可以等于00,也可以大于00。
()3、机构是否存在死点位置与机构取那个构件为原动件无关。
()4、曲柄的极位夹角θ越大,机构的急回特性系数K也越大,机构的急回特性也越显著。
()5、对曲柄摇杆机构,当取摇杆为主动件时,机构有死点位置。
()6、极位夹角是衡量机构急回特性的重要指标。
极位夹角越大,则机构的急回特性越明显。
()7、在曲柄摇杆机构中,曲柄和连杆共线,就是“死点”位置。
()8、在平面连杆机构中,只要曲柄和连杆共线,这个位置就是曲柄的“死点”位置。
曲柄摇杆机构的特点及应用曲柄摇杆机构是一种常见的机械传动机构,由曲柄连杆和摇杆组成。
曲柄部分是一个能够旋转的柱体,摇杆则是通过连杆与曲柄相连,可以在一定范围内摇摆。
这种机构具有以下特点及广泛的应用:1. 简单可靠:曲柄摇杆机构结构简单,制造成本低,且使用可靠。
可通过简单的构造来实现复杂的动作,适用于大多数应用场景。
2. 可控性强:曲柄摇杆机构可以通过调整曲柄的旋转角度和摇杆的长度来改变机构的运动轨迹和速度。
这种可控性使得曲柄摇杆机构可以适应不同的工作需求,具有较高的灵活性。
3. 负载能力强:曲柄摇杆机构可以承受较大的负载。
曲柄作为主动件,能够高效地转化输入的旋转运动为输出的直线运动,从而实现多种工作需要。
4. 可实现多种运动方式:曲柄摇杆机构可以实现多种不同的工作运动,如简单的往复运动、旋转运动、振动运动等。
这种多样性使得曲柄摇杆机构可以应用在多种领域,满足不同的工作需求。
曲柄摇杆机构的应用广泛:1. 发动机:曲柄摇杆机构在汽车发动机中起到了关键的作用。
曲柄摇杆机构将来自汽缸的气体压力通过连杆传递给曲柄,将往复运动转化为旋转运动,从而驱动发动机工作。
2. 机械钟表:曲柄摇杆机构也广泛应用于机械钟表。
通过调整曲柄的旋转角度和连杆的长度,可以实现钟表的时间调整和精准控制。
3. 石油钻井设备:曲柄摇杆机构在石油钻井设备中用于扩孔和钻孔操作。
通过调整曲柄的运动轨迹和速度,实现对地下油气资源的开采。
4. 工业生产设备:曲柄摇杆机构在工业生产设备中起到了重要作用。
例如,用于控制拉压机的动臂,实现对金属板材的加工;用于控制注塑机的模板,实现对塑料制品的生产。
5. 柴油机:柴油机中的喷油器系统就采用了曲柄摇杆机构。
曲柄通过连接杆将旋转运动转化为直线运动,驱动喷油器实现燃油的喷射。
总结起来,曲柄摇杆机构作为一种简单可靠、负载能力强、可控性强的机械传动机构,被广泛应用于各个领域。
无论是在发动机、钟表、石油钻井设备,还是在工业生产设备和柴油机等领域,曲柄摇杆机构都起到了重要的作用。
具有急回特性的平面四杆机构的比较与应用研究王美蓉【摘要】摘要:分析了四种典型的平面四杆机构的急回特性,对这四种机构急回程度的可变性、运动变化方式和机构的动力传递等方面进行了比较分析,有助于更好地理解具有急回特性的平面四杆机构的特性;结合实例讨论了平面四杆机构的应用问题,可为工程实践中合理选用平面四杆机构提供理论依据。
【期刊名称】机械制造与自动化【年(卷),期】2014(000)006【总页数】3【关键词】关键词:平面四杆机构;急回特性;传动角0 引言急回特性是具有曲柄的平面四杆机构的重要特性,急回特性能提高机构在非工作行程中的速度,缩短非工作时间,提高工作效率,因此其在工程机械中得到广泛应用[1]。
目前对于各种典型的平面四杆机构的急回特性研究的比较多,但通过对具有急回特性的四杆机构进行比较,从而根据机构的不同特点,选用合适的机构用于工程实践的研究还不多。
本文在对具有急回特性的典型四杆机构特性进行比较的基础上,总结出不同类型急回四杆机构的优缺点,可供工程机械上的选用提供理论依据。
1 几种典型四杆机构的急回特性分析急回特性是指当主动件曲柄做等速转动时,从动件在两极限位置间运动的平均速度不同,出现了速度差[2]。
从定义可以看出具有急回特性的四杆机构一定具有曲柄,所以下面对几种具有曲柄的四杆机构进行分析。
1.1 曲柄摇杆机构的急回特性曲柄摇杆机构分为Ⅰ型、Ⅱ型两种[3],如图1所示。
当曲柄AB为主动件时,在曲柄AB和摇杆CD共线的两个位置,摇杆处于两极限位置C1D和C2D,曲柄和摇杆的运动参数见表1。
从表1中可知,在工作行程和空回行程中从动件摇杆摆动的角度均为ψ,弧长为C1C2,因此,空回行程C点的平均速度大于工作行程C 点的平均速度,机构具有急回特性。
1.2 曲柄滑块机构的急回特性曲柄滑块机构分为对心曲柄滑块机构和偏置曲柄滑块机构两种[4],如图2所示。
曲柄滑块机构的急回特性分析与曲柄摇杆机构相同,在图2(a)所示的对心曲柄滑块机构中,当摇杆BC处于两极限位置时,曲柄AB转过的角度相同,所用时间相同,滑块在工作行程和空回行程的速度相同,因此无急回特性;而在图2(b)所示的偏置曲柄滑块机构中,当摇杆BC处于两极限位置时,曲柄AB转过的角度不同,所用时间不同,滑块在工作行程和空回行程的速度不同,因此有急回特性。