固体物理答案
- 格式:docx
- 大小:155.00 KB
- 文档页数:6
《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
固体物理简答题及答案简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性与范德瓦耳斯性结合力的特点。
答案: 离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力与吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子云与原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就就是依靠这瞬时偶极矩的互作用而结合的。
2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目就是否就是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似、在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动、每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它就是晶格振动模式中最简单最基本的振动方式、原子的振动, 或者说格波振动通常就是这3N 个简正振动模式的线形迭加、简正振动数目、格波数目或格波振动模式数目就是一回事, 这个数目等于晶体中所有原子的自由度数之与, 即等于3N、3、长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征就是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式、长声学支格波的特征就是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速就是一常数、任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波、4、长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化, 其根源就是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移、长声学格波的特点就是, 原胞内所有的原子没有相对位移、因此, 长声学格波不能导致离子晶体的宏观极化、5、何谓极化声子? 何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 称长光学纵波声子为极化声子、由本教科书的(3、103)式可知, 长光学横波与电磁场相耦合, 使得它具有电磁性质, 人们称长光学横波声子为电磁声子、6、什么就是声子?答案: 晶格振动的能量量子。
1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。
注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。
根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。
证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。
解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。
因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。
1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。
若立方边长为a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。
(1)共价键结合的特点?共价结合为什么有“饱和性”和“方向性”?之答禄夫天创作饱和性和方向性饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。
N<4,有n个共价键;n>=4,有(8-n)个共价键。
其中n为电子数目。
方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。
(2)如何理解电负性可用电离能加亲和能来表征?电离能:使原子失去一个电子所必须的能量其中A为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B为释放的能量,也可以标明原子束缚价电子的能力,而电负性是用来暗示原子得失电子能力的物理量。
故电负性可用电离能加亲和势能来表征。
(3)引入玻恩-卡门条件的理由是什么?在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。
这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。
而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不克不及用中间的原子的运动方程来描述。
波恩—卡门条件解决上述困难。
(4)温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多?对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多?温度一定,一个声学波的声子数目多。
对于同一个振动模式,温度高的声子数目多。
(5)长声学格波能否导致离子晶体的宏观极化?不克不及。
长声学波代表的是原胞的运动,正负离子相对位移为零。
(6)晶格比热理论中德拜(Debye)模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么?在甚低温下,不但光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。
长声学格波即弹性波。
德拜模型只考虑弹性波对热容德贡献。
因此,在甚低温下,德拜模型与事实相符,自然与实验相符。
爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差别,依照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。
第一章 晶体结构1.1、(1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.3证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r213422()()4a b i j k i j k a aππ∴=⨯⨯-++=-++r r rr r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,;(2)体心立方,6π;83(3)面心立方,(4)六角密积,;62;62π(5)金刚石结构,;163[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度=ρVr n 334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433a V r a ==面1.2简立方晶胞晶胞内包含1个原子,所以=ρ6)(33234π=a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为晶胞内包含2个原子,所以,,433a V r a ===ρππ83(*2334334=aa图1.3体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为,1个晶胞内包含4个原子,所以3,42a V r a ===.ρ62(*4334234ππ=a a图1.4面心立方晶胞(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5六角晶胞图 1.6正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a ==晶胞体积V =,222360sin ca ca =�一个晶胞内包含两个原子,所以ρ=.ππ62)(*22233234=ca a(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O 原子与中心在1,2,3,4处的原子相切,因为,83r a =晶胞体积,3a V=图1.7金刚石结构一个晶胞内包含8个原子,所以ρ=.163)83(*83334ππ=aa 2.在立方晶胞中,画出(102),(021),(1),和(2)晶面。
简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。
答案:离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。
2. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N.3. 长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.4. 长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化. 5. 何谓极化声子? 何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 称长光学纵波声子为极化声子.由本教科书的(3.103)式可知, 长光学横波与电磁场相耦合, 使得它具有电磁性质, 人们称长光学横波声子为电磁声子.6、什么是声子?答案:晶格振动的能量量子。
固体物理简答题及答案简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。
答案:离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
XXX耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。
2.什么叫简正振动形式?简正振动数量、格波数量或格波振动形式数量是不是是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似.在简谐近似下,由N个原子构成的晶体的晶格振动,可等效成3N个独立的谐振子的振动.每个谐振子的振动模式称为简正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式.原子的振动,或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等于3N.3.长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.4.长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶体的宏观极化.5.何谓极化声子?何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移,离子的相对位移产生出宏观极化电场,称长光学纵波声子为极化声子.由本教科书的(3.103)式可知,长光学横波与电磁场相耦合,使得它具有电磁性质,人们称长光学横波声子为电磁声子.6、什么是声子?答案:晶格振动的能量量子。
固体物理学·习题指导配合《固体物理学(朱建国等编著)》使用2020年6月21日第1章晶体结构 0第2章晶体的结合 (13)第3章晶格振动和晶体的热学性质 (22)第4章晶体缺陷 (35)第5章金属电子论 (39)第1章晶体结构有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f和R b代表面心立方和体心立方结构中最近邻原子间的距离,试问R f/R b等于多少答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于面心的原子与顶角原子的距离为:R f=2a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,Rf Rb晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点若ABC面的指数为(234),情况又如何答:晶面族(123)截a1,a2,a3分别为1,2,3等份,ABC面是离原点O最近的晶面,OA的长度等于a1的长度,OB的长度等于a2长度的1/2,OC的长度等于a3长度的1/3,所以只有A 点是格点。
若ABC面的指数为(234)的晶面族,则A、B和C都不是格点。
二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型,两晶轴ba、,夹角ϕ,如下表所示。
4长方2,πϕ=≠ba简单长方(图中4所示)有心长方(图中5所示)1mm,2mm1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵在六方晶系中,晶面常用4个指数(hkil)来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a1,a2,a3上的截距a1/h,a2/k,a3/i,第四个指数表示该晶面的六重轴c上的截距c/l.证明:i=-(h+k)并将下列用(hkl)表示的晶面改用(hkil)表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil)的晶面间距为d,晶面法线方向的单位矢量为n°。
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
单选题1.在倒格子空间中以某一倒格点为原点,作所有倒格矢的中垂面,围成的一个个封闭多面体称为A.原胞B.晶胞C.布拉伐格子D.布里渊区答案:D2.晶体学中考虑到晶体对称性,将晶体结构划分为()个晶系,()种布拉伐格子.A.7,7B.7,14C.14,7D.14,14答案:B3.在长波极限情况,()晶体的长光学波可以与电磁波发生共振,引起远红外光在共振频率附近的强烈吸收.A.离子B.分子C.共价D.金属答案:A4.结构介于晶体和非晶体之间,具有准周期结构的称为().A.晶体B.非晶体C.准晶体D.固体答案:C5.长波近似情况下,一维双原子链的相邻原子的振动振幅比为1,表明A.长声学波的相邻原子相对振动;B.长声学波描述原胞质心的振动;C.长光学波描述原胞中原子的相对振动;D.长光学波的原子做相对振动,且质心不动;答案:B6.晶体中体积最小的周期性结构单元常称()A.原胞B.晶胞C.布拉伐格子D.晶格答案:A7.晶体中的原子、离子实际上不是静止在晶格平衡位置上的,而是围绕平衡位置作微振动,称为A.简谐振动B.晶格振动C.原子振动D.分子振动答案:B8.冰和固态氟化氢是典型的()结合类型晶体.A.离子B.金属C.氢键D.范德瓦尔斯答案:C9.()代表正格子空间中的一族晶面.A.一个格点B.一个倒格点C.一个原子D.一个原子团答案:B10.布里渊区的特征之一是所有布里渊区都是()对称的.A.轴B.线C.面D.中心答案:D11.简立方结构的配位数是A.12B.8C.6D.4答案:C12.晶体的对称性A.分为宏观对称性和微观对称性;B.是指晶体宏观对称性,由晶体的点对称操作来描述;C.是指晶体微观对称性;D.是指布喇菲原胞的对称性;答案:A13.()是典型的混合键类型的晶体,具有范德瓦尔斯键,金属键和共价键.A.金刚石B.石墨C.冰D.固态氟化氢答案:B14.离子晶体的长光学波可以与电磁波发生共振,可以引起远红外光在()附近的强烈吸收.A.光波频率B.共振频率C.电磁波频率D.晶格振动频率答案:B15.原子的动能加原子间的相互作用势能之和称为晶体的A.相互作用势能B.晶体结合能C.动能D.内能答案:D16.早在两世纪前,人们就开始了对晶体结构的研究。
3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为:
sin()
nj j j j j a t naq μωδ=++
j δ为任意相位因子。
并已知在较高温度下每个格波的平均能量为B k T 。
具体计算每
个原子的平方平均位移。
解:(1)根据2011
sin ()2
T j j j t naq dt T ωδ⎰++= 其中2j
T π
ω=
为振动周期,
所以222
21
sin ()2
nj j j j j j a t naq a μωδ=++=
(2) 第j 个格波的平均动能 (3) 经典的简谐运动有:
每个格波的平均动能=平均势能=1
2格波平均能量=12
B k T 振幅222B j j k T a Nm ω=
, 所以 2
22
12B nj j j
k T a Nm μω==。
而每个原子的平方平均位移为:222221
()2
B n nj nj j j
j
j
j
j
k T
a Nm μμμω====∑∑∑∑。
3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。
当m M =时与一维单原子链一一对应。
解:(1)一维双原子链: 22q a a
π
π
-
≤<
声学波:1
222
2
411sin ()m M mM aq mM m M ωβ-⎧⎫⎡⎤+⎪⎪=--⎨⎬⎢⎥+⎣⎦⎪⎪
⎩⎭
当m M =时,有
2
224(1cos )sin 2
aq
aq m m ββω-=
-= 。
光学波:1
222
2
411sin ()m M mM aq mM m M ωβ+⎧⎫⎡⎤+⎪⎪=+-⎨⎬⎢⎥+⎣⎦⎪⎪
⎩⎭
当m M =时,有
2
2
24(1cos )cos 2
aq
aq m m ββω+=
+= 。
(2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq a
a
m βωπ
π
βω-+⎧=⎪⎪-
≤<
⎨
⎪=⎪⎩
与一维单原子链的解 224sin 2
aq
q m a
a
βπ
π
ω=-
≤<
是一一对应的。
3.5已知NaCl 晶体平均每对离子的相互作用能为: 其中马德隆常数 1.75,9a n ==,平衡离子间距0 2.82r =。
(1) 试求离子在平衡位置附近的振动频率。
(2) 计算与该频率相当的电磁波的波长,并与NaCl 红外吸收频率的测量只值
61μ进行比较。
解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏差0r r δ=-的二次方项。
224
00002
00
()()1()()()2U r U r U r U r O δδδδδδδδδδ==∂+∂++=+⋅+⋅+∂∂ (1) 其中
00
()
0U r δδδ=∂+=∂ 为平衡条件。
由0r 已知可确定β:
2
10n q r n
αβ-=。
(2)
根据(1)式,离子偏离平衡位置δ所受的恢复力为:
2'
002
()()U r U r F δδδδβδδδ=∂+∂+=-=-⋅=-∂∂ (3)
故恢复力常数为0
2'
2
23
()1r U r n q r r βα∂-==∂。
(4) 对于离子晶体的长光学波,
(0)ω+=
= (5) 将Na 的原子质量2423 1.6610m g -=⨯⨯, Cl 的原子质量2435.5 1.6610M g -=⨯⨯, 基本电荷电量104.80310q esu -=⨯ 代入上式,得 (2) 相对应的电磁波波长为
8614
22 3.14 2.998101710171.1110
c m m π
λμω-⨯⨯⨯===⨯=⨯ (6) 对应与远红外波,与NaCl 红外吸收频率测量值在同一数量级。
[注:如采用国际单位制进行计算,因在(2)式前乘一因子
90
18.99104k πε=
=⨯牛顿米2
/库仑 ]
3.6 求出一维单原子链的频率分布函数()ρω。
解:一维单原子链的色散关系为: 222
2
4sin sin 22
m aq aq m βωω=
=,
其中m ω= sin
2
m aq
ωω=,
振动模式的数目:2222cos
22
m Na Na d dn dq a aq ωωππω=⨯
=⨯⨯=
所以()0m m
g ωωωωω≤=>⎩
3.7设三维晶格的光学振动在0q =附近的长波极限有:
求证:频率分布函数为 12
023/201()()40V g A ωωωωωπωω⎧-<⎪=⎨⎪≥⎩
证明:由20()q Aq ωω=-, 得()2q q Aq ω∇=。
故频率分布函数为 12
023/201()()40V g A ωωωωωπωω⎧-<⎪=⎨⎪≥⎩
3.8有N 个相同原子组成面积为S 的二维晶格,在德拜近似下,计算比热,并讨论在低温极限比热正比于2T 。
解:(1)q 空间的状态密度为
2
(2)
S
π。
每个q 对应一个纵波,c q ω=, 每个q 对应一个横波,c q ω⊥=。
所以d ω范围的状态数应包括纵波和横波的状态数: 其中
2
221111()2c c c
⊥
=
+ 由于晶格振动模数有限,则晶格振动最高频率由
决定。
由此得12
4()D N c S
πω=。
比热2
2
2
2
2
(
)(
)()2(1)(1)B B D
D
B B k T
k T
B B V B B k T k T e
e
k T
k T
S c k g d k d c
e e ω
ω
ωωω
ω
ω
ω
ωωωωπ==--⎰⎰
令B x k T
ω
=
, D B D k ω=Θ, D Θ—德拜温度。
322
04()(1)D x
T v B x D T x e c Nk dx e Θ=Θ-⎰。
(2)在低温极限 0T →,
D
T
Θ→∞,
322
22
04()24()(1)x v B B x D D
T x e T c Nk dx Nk T e ∞==∝Θ-Θ⎰, 与三维情况下的德拜3T 律相对应。
3.10设晶体中每个振子的零点震动能
1
2
ω,试用德拜模型求晶体的零点振动能。
解: 根据德拜理论,cq ω=,可得晶格频率分布函数为
223
3()2V
g c
ωωπ=。
存在m ω,在m ωω≤范围的振动都可用弹性波近似,m ω则根据自由度确定如下:
2
230
3()32m
m V g d d N c ωωωωωωπ==⎰
⎰。
或1
3
26()m N c V ωπ⎡⎤=⎢⎥⎣
⎦。
因此固体总的零点振动能为
00
19
()28
m m E g d N ωωωωω==⎰。
3.11一维复式格子245 1.6710m g -=⨯⨯,4M
m
=, 1.510/N m
β=⨯(即41.510/)dyn cm ⨯,求:
(1) 光学波max O ω,min O ω, 声学波max A ω。
(2) 相应声子能量是多少电子伏特。
(3) 在300K 时的平均声子数。
(4) 与max O ω相对应的电磁波在什么波段。
解:(1) (2)ε=ω
(3)在300T K =相应的能量:
因此在室温只能激发声学声子,平均声子数为
(4)8513
max
22 3.14 2.98810 2.810286.7010
O c
m m πλμω-⨯⨯⨯=
==⨯=⨯。
此波长处在红外波段。