第五章基本统计分析
- 格式:ppt
- 大小:424.00 KB
- 文档页数:33
第五章时间序列分析一、单项选择题1.构成时间数列的两个基本要素是( C )(2012年1月)A.主词和宾词B.变量和次数C.现象所属的时间及其统计指标数值D.时间和次数2.某地区历年出生人口数是一个( B )(2011年10月)A.时期数列 B.时点数列C.分配数列D.平均数数列3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10)A.时期指标B.时点指标C.前者是时期指标,后者是时点指标D.前者是时点指标,后者是时期指标4.累计增长量( A ) (2010年10)A.等于逐期增长量之和B.等于逐期增长量之积C.等于逐期增长量之差D.与逐期增长量没有关系5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10)万元万元万元万元6.下列指标中属于时点指标的是( A ) (2009年10)A.商品库存量B.商品销售量C.平均每人销售额D.商品销售额7.时间数列中,各项指标数值可以相加的是( A ) (2009年10)A.时期数列B.相对数时间数列C.平均数时间数列D.时点数列8.时期数列中各项指标数值( A )(2009年1月)A.可以相加B.不可以相加C.绝大部分可以相加D.绝大部分不可以相加10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月)%+15%+18%%×15%×18%C.(108%+115%+118%)-1 %×115%×118%-1二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月)A.相邻两个环比发展速度之商等于相应的定基发展速度B.环比发展速度的连乘积等于定基发展速度C.定基发展速度的连乘积等于环比发展速度D.相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3.常用的测定与分析长期趋势的方法有( ABC ) (2011年1月)A.时距扩大法B.移动平均法C.最小平方法D.几何平均法E.首末折半法4.时点数列的特点有( BCD ) (2010年10)A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次登记取得的D.指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于( AC )(2010年1)A.增加一个百分点所增加的绝对量B.增加一个百分点所增加的相对量C.前期水平除以100D.后期水平乘以1%E.环比增长量除以100再除以环比发展速度6.计算平均发展速度常用的方法有( AC )(2009年10)A.几何平均法(水平法)B.调和平均法C.方程式法(累计法)D.简单算术平均法E.加权算术平均法7.增长速度( ADE )(2009年1月)A.等于增长量与基期水平之比B.逐期增长量与报告期水平之比C.累计增长量与前一期水平之比D.等于发展速度-1E.包括环比增长速度和定基增长速度8.序时平均数是( CE )(2008年10月)A.反映总体各单位标志值的一般水平B.根据同一时期标志总量和单位总量计算C.说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E.由动态数列计算三、判断题1.职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
第五章综合指标学习要点:了解各种指标的概念及作用,掌握相对指标、平均指标的特点及计算方法,变异指标的计算方法。
§1、总量指标§2、相对指标§3、平均指标§4、变异指标学习知识点:前言:1、总量指标是反映社会经济现象发展的总规模、总水平的综合指标。
将总体单位数相加或总体单位标志值相加,就可以得到说明在一定时间、空间条件下某种现象总体的总规模、总水平的指标,即总量指标。
如:2010年年年末为1339724852亿,反映是我国人口的总规模。
总量指标的作用:第一、总量指标可以用来反映一个国家的基本国情国力,反映一个地区、一个部门或一个单位的人力、物力和财力,是人们对客观事物认识的起点。
第二、总量指标可以用来作为制定政策、制定计划和实行科学管理的基本依据,也是检查政策、计划执行情况,反映社会经济活动绝对效果的重要指标。
第三、总量指标可以用来研究客观现象的数量表现及其发展的变化趋势。
第四、总量指标是计算相对指标和平均指标的基础。
一、总量指标的种类:1、按其反映现象总体内容的不同:• 总体单位总量(简称单位总量):指总体内所有单位的总数,表示总体本身规模的大小。
对于一个确定的统计总体,其总体单位总量是唯一确定的。
• 总体标志总量(简称标志总量):指总体中各单位标志值总和。
对于确定的统计总体,标志总量不是唯一的,而是随着标志的不同可计算不同的标志。
• 例:我们研究某市三级医院的基本情况,则全市三级医院的总数量是总体单位总量,而全部三级医院职工总人数、全部三级医院职工工资总额等就是总体指标总量。
2、按反映时间状况的不同,可分为时期指标和时点指标。
• 时期指标指反映某社会经济现象在一段时间活动结果的总量指标,它反映的是一段时间连续发生变化过程。
如产品总量、货物运输量、商品销售量、国内生产总量等。
• 时点指标是反映社会经济现象在某一时间(瞬间)状况上的总量指标。
如人口数、职工数、设备台数等。
第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。
(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。
全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。
(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。
社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。
样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。
一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。
在样本容量确定之后,样本的可能数目便完全取决于抽样方法。
抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。
抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。
在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。
样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。
统计学基础第五章动态数列分析【教学目的】1.区分不同种类的动态数列2.熟练掌握计算平均发展水平的各种方法3.掌握发展速度、增长速度的种类,运用它们之间的数量关系进行动态指标的相互推算4.理解趋势的意义,运用长期趋势测定方法对长期趋势进行测定5.计算季节比率,并且深刻理解季节比率的经济含义【教学重点】1.总量指标动态数列的种类和特点2.动态比较指标和动态平均指标的计算3.动态数列的分析方法【教学难点】1.绝对数时间数列中的时点数列平均指标的计算2.相对数、平均数时间数列动态平均指标的计算3.动态数列分析方法中的季节变动分析方法【教学时数】教学学时为12课时【教学内容参考】第一节动态数列的意义和种类一、动态数列的概念将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列,就形成了一个动态数列,也叫做时间数列。
动态数列一般由两个基本要素构成:一是被研究现象所属的时间;二是反映该现象的统计指标数值。
通过编制和分析动态数列,首先可以从现象的量变过程中反映其发展变化的方向、程度和趋势,研究其质量变化的规律性。
其次,通过对动态数列资料的研究,可以对某些社会经济现象进行预测。
第三,利用动态数列,可以在不同地区或国家之间进行对比分析。
编制和分析动态数列具有非常重要的作用,这种方法已成为对社会经济现象进行统计分析的一种重要方法。
【案例】下面图表列举了我国2004~2007年若干经济指标的动态数列。
表5-1 我国2004-2007年若干经济指标二、动态数列的种类按照构成动态数列的基本要素———统计指标的表现形式不同,动态数列可分为绝对数动态数列、相对数动态数列和平均数动态数列三种类型。
其中绝对数动态数列是基本的数列,相对数和平均数动态数列是派生数列。
(一)绝对数动态数列在这种动态数列中,统计指标值表现为总量指标。
根据指标值的时间特点,又可分为时期数列和时点数列。
国内生产总值就是时期数列,年底人口数就是时点数列。
1.时期数列时期数列中,每一指标值反映在一段时期内发展的结果,即“过程总量”。
第五章水文统计的基本知识及方法研究内容:主要有频率计算与相关分析。
频率计算,包括随机变量及其概率分布、水文频率曲线、适线法等;相关分析,包括简相关与复相关。
研究目的:研究河川径流的统计规律,预估径流的变化趋势,以满足水利水电工程规划、设计、施工和运行管理的需要。
第一节概述概率论与数理统计是一门研究客观事物偶然性(随机性)规律的学科。
由于水文现象一般都具有偶然性的特点,所以,可以用数理统计的原理和方法分析研究它的变化规律。
这种方法称为水文统计法。
工程水文计算中运用水文统计法,不仅合理,而且是必要的。
例如,流域开发,首先要搞清未来河流水量的多少;设计拦河坝、堤防工程需要知道未来时期当地洪水的大小。
这些都要求对未来长期的径流形势做出估计。
如果所建工程计划使用100年,那么就要对未来100年的径流形势做出估计。
但是,由于影响径流的因素众多,难以基于必然现象的规律,应用成因分析法对径流做出这样长期的时序定量预报,而只能基于统计规律,运用数理统计方法对径流做出概率预估,以满足工程设计的需要。
第二节概率的基本概念一、试验和事件在概率论中, 对随机现象的测验叫做随机试验,随机试验的特点是限定条件,重复做。
随机试验的结果称为事件。
根据事件发生的可能性,事件可以分为三类:1、必然事件:在一定试验条件下,试验结果中必然会发生的事件;2、不可能事件:在一定试验条件下,试验结果中决不会发生的事件;3、随机事件:在一定试验条件下,试验结果中可能发生也可能不发生的事件。
二、概率随机事件出现的可能性或机率叫概率。
随机事件A发生的概率用P(A)表示,以百分数计。
显然,必然事件概率为1;不可能事件的概率为0;随机事件的概率介于0和1之间。
如果某试验可能发生的结果总数是有限的,并且所有结果出现的可能性是相等的,称之为古典概型事件。
在古典概型事件中,如果可能发生的结果总数为n,而事件A有其中的m个结果,则随机事件A发生的概率P(A)为:P(A)=m/n 5-1水文事件一般不能归为古典概型事件。
第五章数理统计的基础知识在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。
知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。
在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。
但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。
例如:1、某种电子元件的寿命服从什么分布是完全不知道的。
2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0—1)分布,但其中的参数p 未知。
对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数.数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数.数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。
数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料.二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。
第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。
总体中所包含的个体的个数称为总体的容量. 容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系。
在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X .例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体.但在实际问题中,我们仅仅关心灯泡的使用寿命(记X 表示该批灯泡的寿命)。
统计学基础第五章动态数列分析【教学目的】1.区分不同种类的动态数列2.熟练掌握计算平均发展水平的各种方法3.掌握发展速度、增长速度的种类,运用它们之间的数量关系进行动态指标的相互推算4.理解趋势的意义,运用长期趋势测定方法对长期趋势进行测定5.计算季节比率,并且深刻理解季节比率的经济含义【教学重点】1.总量指标动态数列的种类和特点2.动态比较指标和动态平均指标的计算【教学难点】1.绝对数时间数列中的时点数列平均指标的计算2.相对数、平均数时间数列动态平均指标的计算【教学时数】教学学时为12课时【教学内容参考】第一节动态数列的意义和种类一、动态数列的概念将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列,就形成了一个动态数列,也叫做时间数列。
动态数列一般由两个基本要素构成:一是被研究现象所属的时间;二是反映该现象的统计指标数值。
通过编制和分析动态数列,首先可以从现象的量变过程中反映其发展变化的方向、程度和趋势,研究其质量变化的规律性。
其次,通过对动态数列资料的研究,可以对某些社会经济现象进行预测。
第三,利用动态数列,可以在不同地区或国家之间进行比照分析。
编制和分析动态数列具有非常重要的作用,这种方法已成为对社会经济现象进行统计分析的一种重要方法。
【案例】下面图表列举了我国2004~2007年假设干经济指标的动态数列。
表5-1 我国2004-2007年假设干经济指标二、动态数列的种类按照构成动态数列的基本要素———统计指标的表现形式不同,动态数列可分为绝对数动态数列、相对数动态数列和平均数动态数列三种类型。
其中绝对数动态数列是基本的数列,相对数和平均数动态数列是派生数列。
(一)绝对数动态数列在这种动态数列中,统计指标值表现为总量指标。
根据指标值的时间特点,又可分为时期数列和时点数列。
国内生产总值就是时期数列,年底人口数就是时点数列。
时期数列中,每一指标值反映在一段时期内发展的结果,即“过程总量”。