并行算法3-4阶龙格库塔法
- 格式:doc
- 大小:115.50 KB
- 文档页数:4
《四阶龙格—库塔法的原理及其应用》
龙格—库塔法(又称龙格库塔法)是由一系列有限的、独立的可能解组成的无穷序列,这些解中每个都与原来的数列相差一个常数。
它是20世纪30年代由匈牙利著名数学家龙格和库塔提出的,故得此名。
1.它的基本思想是:在n 阶方阵M 上定义一个函数,使得当n 趋于无穷时,它在m 中所表示的数值为M 的某种特征值,从而构造出一族具有某种特性的可计算函数f (x)= Mx+ C (其中C 为任意正整数)。
例如,若f (x)=(a-1) x+ C,则称之为(a-1) x 的龙格—库塔法。
2.它的应用很广泛,可以求解各类问题,且能将大量的未知数变换成少数几个已知数,因此它是近似计算的一种重要工具。
3.
它的优点主要有:(1)可以将多项式或不等式化成比较简单的形式;(2)对于同一问题可以用不同的方法来解决,并取得同样的结果;(3)适合处理高次多项式或者不等式,尤其适合处理多元函数的二次型。
MATLAB是一种用于算法开发、数据分析、可视化和数值计算的高级技术计算语言和交互式环境。
作为一个强大的工具,MATLAB提供了许多数值计算方法,其中4级4阶Runge-Kutta方法就是其中之一。
1. Runge-Kutta方法简介Runge-Kutta方法是求解常微分方程(ODE)的数值方法之一。
在MATLAB中,用户可以使用内置的ode45函数来调用4级4阶Runge-Kutta方法。
具体来说,4级4阶Runge-Kutta方法是一种单步迭代方法,通过在每个步骤中计算斜率来逐步逼近解析解。
它的优点是数值稳定性好,适用于多种类型的微分方程。
2. Runge-Kutta方法的公式4级4阶Runge-Kutta方法的一般形式如下:$$k_1 = hf(t_n, y_n)$$$$k_2 = hf(t_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$$$k_3 = hf(t_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$$$k_4 = hf(t_n + h, y_n + k_3)$$$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$其中,$t_n$是当前的独立变量值,$y_n$是当前的解向量,h是步长,$f(t_n, y_n)$是给定点$(t_n, y_n)$处的斜率。
通过不断迭代上述公式,可以逐步求解微分方程的数值解。
3. MATLAB中的4级4阶Runge-Kutta方法的应用在MATLAB中,用户可以使用ode45函数调用4级4阶Runge-Kutta方法来求解常微分方程。
使用ode45函数的基本语法如下:```matlab[t, y] = ode45(odefun, tspan, y0)```其中,odefun是用户定义的ODE函数句柄,tspan指定了求解的时间范围,y0是初始条件。
四阶龙格库塔法(Runge-Kutta )求解微分方程张晓颖(天津大学 材料学院 学号:1012208027)1 引言计算传热学中通常需要求解常微分方程。
这类问题的简单形式如下:{),(')(00y x f y y x y == (1)虽然求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些特殊类型的方程,实际问题中的多数微分方程需要采用数值解法求解。
初值问题(1)的数值解法有个基本特点,它们采取“步进式”,即求解过程顺着节点排序一步一步向前推进。
这类算法是要给出用已知信息y n 、 y n −i ……计算y n +1的递推公式即可。
2 龙格库塔法(Runge-Kutta )介绍假设对于初值问题(1)有解 y = y (x ) ,用 Taylor 展开有:......)(!3)(!2)()()(321+'''+''+'+=+n n n n n x y h x y h x y h x y x y (2) 龙格库塔法(Runge-Kutta )实质上是间接的使用 Taylor 级数法的一种方法。
对于差商hx y x y n n )()(1-+,根据微分中值定理,存在 0 < θ < 1 ,使得:)()()(1h x y hx y x y n n θ+'=-+ (3)于是对于 y = y (x ) ,可得到:))(,()()(1h x y h x hf x y x y n n n n θθ+++=+ (4)设))(,(*h x y h x f K n n θθ++=,为区间 [x n , x n +1 ] 上的平均斜率。
四阶龙格库塔格式中的*K 由下式计算得到:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()2,2()2,2(),()22(6342312143211hK y h x f K K h y h x f K K h y h x f K y x f K K K K K h y y n n n n nn n n n n (5) 四阶龙格库塔法(Runge-Kutta )的每一步需要四次计算函数值f ,其截断误差更低,计算的精度更高。
—科教导刊(电子版)·2019年第24期/8月(下)—259四阶龙格-库塔方法的程序设计与应用罗丽珍吴庆军(玉林师范学院数学与统计学院广西·玉林537000)摘要本文通过介绍四阶龙格-库塔方法,通过预报斜率和泰勒展开式推导出龙格—库塔格式。
了解它的基本思想与算法步骤、MATLAB 语言编写的程序。
列举一些例子,运用四阶龙格-库塔方法的MATLAB 程序在软件中运行,求解出常微分方程的数值解,同时将求解出的数值解与精确解进行比较。
关键词龙格-库塔方法常微分方程数值解中图分类号:TP337文献标识码:A 0引言从17世纪以来国内外数学家对常微分方程的研究取得了很多的成果.欧拉在研究中指出常微分方程存在唯一解和无数解,他用近似值求解微分方程,发现用积分因子求解微积分方程的特殊算法。
拉格朗日建立了一阶微分方程理论,他将参数变法应用到四阶非齐次方程的求解。
我们生活中许多问题的解决都运用到常微分方程,常微分方程的数值解法中经常使用的方法是四阶龙格-库塔方法。
各个领域和工程问题中的原理和演变规律都是用常微分方程来描述的,如在物理方面的电路中电流变化的规律、航天航空方面卫星运转问题、经济方面物品供给以及需求与物价的之间的关系、军事方面研究深水炸弹在水下的运动等。
对这些事物、现象变化规律的描述、认知和分析,需要运用常微分方程来解决。
人们使用常微分方程数值解法的四阶龙格-库塔方法去研究这些问题很实用,而且具有很重要的应用价值。
目前,常微分方程在解决我们生活中的问题很实用,许多问题都运用常微分方程来求解。
中国科学技术大学学者倪兴在常微分方程的研究中写了关于欧拉法、方法等几种方法,他运用常微分计算卫星运动的初轨,把方法运用到卫星轨道改进的例子中;扬州大学学者冯建强和孙诗一研究四阶方法的推导,他写出了如何推导的过程。
在高校数值分析、数值计算方法与实验等教材中,许多作者都出版关于常微分方程初值问题数值解法的教材书,欧拉方法、改进欧拉法和方法等,同时在教材书中写入各种实际问题的例子,运用这些方法去解决常微分方程的初值问题。
四阶龙格——库塔法2013-2014(1)专业课程实践论文题目:四阶龙格—库塔法一、算法理论由定义可知,一种数值方法的精度与局部截断误差()po h有关,用一阶泰勒展开式近似函数得到欧拉方法,其局部截断误差为一阶泰勒余项2()o h,故是一阶方法,完全类似地若用p阶泰勒展开式2'''()11()()()......()()2!!pp p n n n n n h h y y x hy x y x y x O h p ++=+++++ 进行离散化,所得计算公式必为p 阶方法,式中'''''()(,),()(,)(,)(,)....x y x f x y y x f x y f x y f x y ==++由此,我们能够想到,通过提高泰勒展开式的阶数,可以得到高精度的数值方法,从理论上讲,只要微分方程的解()y x 充分光滑,泰勒展开方法可以构造任意的有限阶的计算公式,但事实上,具体构造这种公式往往相当困难,因为符合函数(,())f x y x 的高阶导数常常是很烦琐的,因此,泰勒展开方法一般不直接使用,但是我们可以间接使用泰勒展开方法,求得高精度的计算方法。
首先,我们对欧拉公式和改进欧拉公式的形式作进一步的分析。
如果将欧拉公式和改进的欧拉公式改写成如下的形式:欧拉公式{111(,)n n n n y y hK K f x y +==+改进的欧拉公式11211()22n n y y h K K +=++, 1(,)n n K f x y =,21(,)n n K f x h y hK =++。
这两组公式都是用函数(,)f x y 在某些点上的值的线性组合来计算1()n y x +的近似值1n y +,欧拉公式每前进一步,就计算一次(,)f x y 的值。
另一方面它是1()n y x +在n x 处的一阶泰勒展开式,因而是一阶方法。
改进的欧拉公式每前进一步,需要计算两次(,)f x y 的值。