中央空调制冷剂R407C优缺点分析资料报告
- 格式:doc
- 大小:30.00 KB
- 文档页数:10
R22a、R407c R410a三种冷媒使用综合性能分析制冷剂R22与R134a的应用比较(时间:2008-4-9 9:00:23 共有933人次浏览)摘要:目前全社会越来越重视环保问题,部分地区政府相关职能部门也发出了全面禁氟的政策法令,但禁氟不仅是错误的概念,也导致了广大用户和生产厂家的应用困惑。
本文从氟利昂概念、国际公约、国家政策、应用特性入手对常用制冷剂R22和R134a做全面分析,以明确制冷剂R22的优势地位。
关键词:制冷剂R22 R134a 禁氟环保冷媒一、氟利昂的概念目前,国内很多用户都要求生产厂家采用R134a等环保冷媒,拒绝使用氟里昂R22冷媒,理由是响应国家号召保护环境。
其实R22和R134a都是氟利昂家族的成员,属于氢氯氟烃类。
氟里昂是饱和烃类(碳氢化合物)的卤族衍生物的总称。
从氟里昂的定义可以看出,现在人们所谓的环保冷媒R134a、R410A及R407C等其实都属于氟里昂家族。
所以禁氟这一概念把该禁不该禁的内容混为一谈。
氟里昂之所以能够破坏臭氧层是因为制冷剂中含有CL元素,而且随着CL原子数量的增加对臭氧层破坏能力也增加,随着H元素含量的增加对臭氧层破坏能力降低;造成温室效应主要是因为制冷剂在缓慢氧化分解过程中,生成大量的温室气体,如CO2等。
根据分子结构的不同,氟里昂制冷剂大致可以分为以下三大类:1.氯氟烃类:简称CFC,主要包括R11、R12、R113、R114、R115、R500、R502等,由于其对臭氧层的破坏作用最大,被《蒙特利尔议定书》列为一类受控物质。
此类物质目前已被我国逐步禁止使用。
2.氢氯氟烃:简称HCFC,主要包括R22、R123、R141b、R142b等,臭氧层破坏系数仅仅是R11的百分之几,因此,《中国消耗臭氧层物质逐步淘汰国家方案》将HCFC类物质视为CFC类物质的最重要的过渡性替代物质。
3.氢氟烃类:简称HFC,主要包括R134a,R125,R32,R407C,R410A、R152等,臭氧层破坏系数为0,但是气候变暖潜能值较高。
HFC-407c一.产品简要介绍:产品名称: R407C产品类别: HFC化学成份:四氟乙烷/五氟乙烷/二氟甲烷混合物安全等级: A1UN编号: 811-97-2CAS号: 811-97-2/354-33-6/75-10-5包装规格:一次性钢瓶25lb/11.3kg;可回收钢瓶400L,926L;ISO-坦克。
二.产品详细介绍:R407C是替代R-22的HFC类制冷剂,应用于容积式系统,如新型或现有住宅、商用空调及热泵中。
R407C提供相似于R-22的性能表现,可用于替换现有R-22空调系统。
R407C也可用于现有的蒸发温度高于+20°F (-7℃)的中温应用中替代R-502。
1.产品信息:R-407C 替换 R-222.应用:(1)容积式系统:(2)新型或现有的住宅、商用空调;(3)新型或现有的住宅、商用热泵(4)现有中温应用。
3.优点: 制冷能力及能效与R-22相似。
4.润滑油使用建议: POE5.产品物理性质及质量指标产品名称:混合制冷剂R407C物理性质:分子量86.2沸点, °C-43.8临界温度, °C87.3临界压力, Mpa 4.63液体比热, 30°C, [KJ/(kg•°C)] 1.51破坏臭氧潜能值(ODP)0全球变暖系数值(GWP)0.17包装规格:一次性钢瓶25lb/11.3kg;可回收钢瓶400L,926L;ISO-坦克。
质量指标:纯度, %≥99.8水份, PPm≤10酸度, PPm≤1蒸发残留物, PPm≤100外观无色,不浑浊气味无异臭用途:可替代R22。
R407c的用法非共沸混合制冷剂R407C 替代技术的研究进展张小艳,田怀璋,袁秀玲1 前言目前还没有各方面性质都比较理想的纯工质来替代R22 ,主要采用二元或三元非共沸或近共沸混合工质作为替代物。
对于新型的替代工质,不仅要研究其热力学性质、环保及安全性等,还要对传热性能及应用中出现的一系列特殊问题进行深入细致的研究,R22 替代工质的研究也正是从这几个方面展开的,目前国际上广为关注,且研究较多的近期替代物为非共沸混合工质R407C。
2 R407C 的热物性分析2.1安全环保性根据美国标准ANS1/ ASHRAE34 - 1989 ,对制冷剂的安全性主要考虑毒性和可燃性。
R407C 是由R32、R125、R134a 组成的非共沸混合工质,低毒不可燃,属安全性制冷剂。
制冷剂的环保性能主要由两个重要的环境指标来体现,即臭氧衰减指数ODP 和温室效应指数GWP ,R407C 的ODP 为0 , GWP 约为0. 05 , 均优于R22 ( ODP 为0. 04 ~0. 06 , GWP 为0. 32~0. 37) ,即R407C 的环保性能优于R22。
2.2 热力性能热力性能是制冷剂筛选的主要依据, 替代工质的热力性能不能与原制冷剂有太大的差异。
R407C 的蒸发、冷凝温度与R22 很相似,容积制冷量、能效比以及冷凝压力都与R22 非常接近, 压力也比较适中:一方面蒸发压力稍高于大气压,避免了空气向系统中的渗入;另一方面冷凝压力不是很高,减小了制冷设备的承受压力及制冷剂外泄的可能性。
2.2.1非共沸特性R407C 是一种非共沸混合制冷剂,相变过程中气相和液相浓度会发生变化,使制冷空调系统在运行、维护等过程中出现一些新的问题,这就要求在设计系统时要认真处理相变过程中产生的组份变化,消除由此引起的系统性能不稳定。
另外,R407C泄漏时冷媒成份发生变化,会引起制冷能力的下降。
研究表明:R407C 工质发生泄漏时,追加冷媒液体后制冷能力最多下降5 % , 这一点完全可以接受。
r407c和r22冷凝温度摘要:1.了解r407c和r22冷凝温度的基本概念2.比较r407c和r22冷凝温度的差异3.分析r407c和r22冷凝温度在实际应用中的优缺点4.总结r407c和r22冷凝温度在我国空调行业的现状及发展趋势正文:在空调行业中,冷凝温度是衡量制冷系统性能的一个重要参数。
本文将围绕r407c和r22这两种制冷剂的冷凝温度进行比较和分析,以期为读者提供有益的参考。
首先,我们来了解一下r407c和r22的基本概念。
r407c是一种环保型制冷剂,适用于家用和商用空调系统。
它由三种成分组成,分别是丙烷(R227)、氟利昂(R125)和溴化乙烯(R134a),其冷凝温度一般在40℃左右。
而r22是一种传统的制冷剂,冷凝温度在50℃左右。
接下来,我们比较一下r407c和r22的冷凝温度差异。
从上面的介绍可以看出,r407c的冷凝温度要低于r22。
这意味着在同等条件下,r407c的制冷效果更好,能更好地满足用户的需求。
此外,r407c的环保性能也优于r22,因为它几乎不含有氯氟碳化合物(CFCs),对臭氧层的破坏较小。
然而,r407c和r22在实际应用中也存在一定的优缺点。
对于r407c来说,它的优点在于环保性能好、制冷效果强,但缺点是传热性能较差,对空调系统的能效比有一定影响。
而r22的优点在于传热性能较好,适合于高温环境,但缺点是环保性能较差,对臭氧层破坏较大。
在我国,随着环保政策的不断完善,r407c等环保制冷剂的应用逐渐增多。
尽管r22仍然在一些地区和领域使用,但总体来看,r407c的市场份额正在逐步扩大。
此外,一些新型制冷剂如r32、r1234yf等也在市场上崭露头角,未来有望成为空调行业的主流制冷剂。
总之,r407c和r22冷凝温度在空调行业中具有重要意义。
在选择制冷剂时,应综合考虑其环保性能、制冷效果、能效比等因素,以满足市场需求和政策要求。
环保制冷剂(R407C)浅析1 前言目前还没有各方面性质都比较理想的纯工质来替代R22 ,主要采用二元或三元非共沸或近共沸混合工质作为替代物。
对于新型的替代工质,不仅要研究其热力学性质、环保及安全性等,还要对传热性能及应用中出现的一系列特殊问题进行深入细致的研究,R22 替代工质的研究也正是从这几个方面展开的,目前国际上广为关注,且研究较多的近期替代物为非共沸混合工质R407C。
2 R407C 的热物性分析2.1 安全环保性根据美国标准ANS1/ ASHRAE34 - 1989 ,对制冷剂的安全性主要考虑毒性和可燃性。
R407C 是由R32、R125、R134a 组成的非共沸混合工质,低毒不可燃,属安全性制冷剂。
制冷剂的环保性能主要由两个重要的环境指标来体现,即臭氧衰减指数ODP 和温室效应指数GWP ,R407C 的ODP 为0 , GWP 约为0. 05 , 均优于R22 ( ODP 为0. 04 ~0. 06 , GWP 为0. 32~0. 37) ,即R407C 的环保性能优于R22。
2.2 热力性能热力性能是制冷剂筛选的主要依据, 替代工质的热力性能不能与原制冷剂有太大的差异。
R407C 的蒸发、冷凝温度与R22 很相似,容积制冷量、能效比以及冷凝压力都与R22 非常接近, 压力也比较适中:一方面蒸发压力稍高于大气压,避免了空气向系统中的渗入;另一方面冷凝压力不是很高,减小了制冷设备的承受压力及制冷剂外泄的可能性。
2.2.1 非共沸特性R407C 是一种非共沸混合制冷剂,相变过程中气相和液相浓度会发生变化,使制冷空调系统在运行、维护等过程中出现一些新的问题,这就要求在设计系统时要认真处理相变过程中产生的组份变化,消除由此引起的系统性能不稳定。
另外,R407C 泄漏时冷媒成份发生变化,会引起制冷能力的下降。
研究表明:R407C 工质发生泄漏时,追加冷媒液体后制冷能力最多下降5 % , 这一点完全可以接受。
R410a、R134a、R407C、R22特点比较与世界各国制冷剂淘汰时间表一、R410a、R134a、R407C、R22特点比较R134a是一种单一成分制冷剂,而R407C和R410A是混合制冷剂。
其中R410A 是R32和R125的混合物,R407C是R32,R125和R134a的混合物。
混合制冷剂的优点在于,可以根据使用的具体要求,对各种性质如易燃性、容量、排气温度和效能加以考虑,量身合成一种制冷剂。
选择制冷剂需要考虑的因素很多,因为选择任何一种制冷剂都会对系统的整体运行情况、可靠性、成本和市场接受度造成一定影响。
(本文来源制冷百科公众号)制冷剂由于其热传递和压降的不同而导致制冷剂传输性能的不同,这会最终在系统设计和系统性能上产生重大的影响。
下面列出了各制冷剂一些重要性质的比较,接下来我们将简要探讨其重要的性能特点。
R134a的容量比R22小,压力比R22低。
由于这些特点,相同能力的R134a空调需要配置一台更大排气量的压缩机,更大的蒸发器、冷凝器和管路。
最终所导致的是,制造和运行一个和R22相同冷量的系统,R134a系统会需要更高的成本。
R407C的容量和压力都和R22比较接近。
因此,只要简单调整系统设计就能使原R22系统也适用于R407C系统。
不过,系统能效比会较原系统降低约5%。
这是由于相对于其他制冷剂,R407C会有高达6度的温度漂移。
因此R407C系统在同等标准冷凝器和蒸发器时均会减少热传递,影响系统能效比。
R410A的容量和压力高于R22,运行压力高出50%-60%。
高压力和高气体密度带来的结果是,不但可以用更小排气量的压缩机,还可以用更小直径的管路和阀门。
高压排气阀的使用消除了系统冷凝高压带来的隐患。
厚压缩机壳体使系统经受更高的运行压力。
压缩机造得厚重些还有一个好处,即R410A的运行噪声比R22压缩机明显地低2-4个分贝。
与R22系统相比,R410A系统有个显著的热传递优势—蒸发器的热传递高35%,冷凝器高5%。
R22制冷机组整改R407C制冷机组可行性分析R407C是作为R22的替代制冷剂开发出来的,且他们的容量、压力、温度、物理特性都很相似,这就为R22系统能够采用R407C制冷剂提供了最基本的保证,现对替换进行如下的可行性分析。
一、机组整体性能分析虽说R407在诸多物理特性方面与R22相近,但由于是非共沸混合物,加上温度滑移,如果要求R407系统的制冷能力和COP与R22系统的相当,一般需要从设计上做一些变化,如加大两器的换热面积,换热器采用逆对向流设计等。
但由于是现场替换,采用原来的R22原始换热器,因此现场换成R407系统后,制冷能力和COP相对于R407专用设计,制冷能力和COP下降会多一些。
以下是对一组风冷涡旋压缩机的冷水机组进行制冷剂现场替换,不进行任何设计更改的实验数据。
从表1可以看出,由于直接采用了R22系统的两器换热器,中大型风冷冷水机组制冷能力下降了大约9%左右,COP下降了约15%。
考虑其他因素如果不更换换热器,能力下降大约在10%左右。
冷凝性能也由于R407C中混合成分R32的影响,比R22高,在45度冷凝温度下,冷凝压力大约有1bar的上升。
热泵机组,低温环境下,由于受R407C容易结霜的影响,结霜和化霜比较频繁,可能需要修改原机组除霜设定。
二、润滑油方面能否成功替换的重要因素是润滑油。
R22使用的压缩机润滑油是矿物油,而R407C使用的是人工合成的POE油,这2种油完全不能通用。
如果R22旧系统中矿物油残留于R407的系统中,那么对于对于R407C系统将是致命的,因此,整改系统后需要氮气吹洗原来的管路系统,尽可能的排干净原来的润滑油,并更换R407专用压缩机。
三、水汽管理方面由于人工合成的POE油对水汽有很强的亲和力,一旦有水分、杂志混入,就会产生异物。
这些异物附着在毛细管内壁,越积越多,容易产生冰堵和脏堵现象,需要更换高效的干燥过滤器,建议选用分子筛,主要是保证系统中残留的水分能够被全部吸收。
环保制冷剂(R407C)浅析1 前言目前还没有各方面性质都比较理想的纯工质来替代R22 ,主要采用二元或三元非共沸或近共沸混合工质作为替代物。
对于新型的替代工质,不仅要研究其热力学性质、环保及安全性等,还要对传热性能及应用中出现的一系列特殊问题进行深入细致的研究,R22 替代工质的研究也正是从这几个方面展开的,目前国际上广为关注,且研究较多的近期替代物为非共沸混合工质R407C。
2 R407C 的热物性分析2.1 安全环保性根据美国标准ANS1/ ASHRAE34 - 1989 ,对制冷剂的安全性主要考虑毒性和可燃性。
R407C 是由R32、R125、R134a 组成的非共沸混合工质,低毒不可燃,属安全性制冷剂。
制冷剂的环保性能主要由两个重要的环境指标来体现,即臭氧衰减指数ODP 和温室效应指数GWP ,R407C 的ODP 为0 , GWP 约为0. 05 , 均优于R22 ( ODP 为0. 04 ~0. 06 , GWP 为0. 32~0. 37) ,即R407C 的环保性能优于R22。
2.2 热力性能热力性能是制冷剂筛选的主要依据, 替代工质的热力性能不能与原制冷剂有太大的差异。
R407C 的蒸发、冷凝温度与R22 很相似,容积制冷量、能效比以及冷凝压力都与R22 非常接近, 压力也比较适中:一方面蒸发压力稍高于大气压,避免了空气向系统中的渗入;另一方面冷凝压力不是很高,减小了制冷设备的承受压力及制冷剂外泄的可能性。
2.2.1 非共沸特性R407C 是一种非共沸混合制冷剂,相变过程中气相和液相浓度会发生变化,使制冷空调系统在运行、维护等过程中出现一些新的问题,这就要求在设计系统时要认真处理相变过程中产生的组份变化,消除由此引起的系统性能不稳定。
另外,R407C 泄漏时冷媒成份发生变化,会引起制冷能力的下降。
研究表明:R407C 工质发生泄漏时,追加冷媒液体后制冷能力最多下降5 % , 这一点完全可以接受。
2.2.2 变温换热特性R407C 在蒸发过程中温度逐渐升高,而在冷凝过程中温度逐渐降低,即在定压相变过程中存在着温度滑移(约为7 ℃) , 这一变温特性为通过对换热器改型增强换热,进一步改善制冷性能提供了可能。
2.3 对现有制冷空调系统的适应性从热力性能来看, R407C 对现有制冷空调系统有着较好的适应性,除更换润滑油、调整系统的制冷剂充注量及节流元件外,对压缩机及其余设备可以不做改动。
如果要运用其变温特性实现节能的目的,则需要设计新的蒸发盘管、选择不同的使用场合,来有效发挥温度滑移高,以接近劳伦茨循环达到节能效果。
如果单从对现用设备的适应性方面来看,R407C 可作为R22 的一种近期替代3 R407C 换热性能的实验研究沸腾与凝结换热是制冷、空调及其它许多工业设备中非常重要的换热过程, 设计换热器的通常方法是先估算出换热管两侧流体的平均换热系数,计算总换热系数,所以制冷工质的两相换热特性对于换热器的设计尤为重要。
R407C 的相变换热是一个变温过程,由于存在汽液相组分浓度上的差异,换热特性较单一工质更为复杂,这就为换热系数和流体性能的预测带来了一定的难度。
目前的手段和对问题的认识还不足以对这类工质进行比较完全的理论分析和计算,因此研究工作主要集中在对换热规律的实验研究,并根据实验结果综合出换热系数的经验计算式上。
国外许多学者已对R407C 的两相换热规律进行了实验研究[1~12]3.1 沸腾换热3.1.1 管流动沸腾换热制冷剂在管的流动沸腾换热是蒸发器中典型的换热过程, 根据蒸发器的结构, 对R407C 管流动沸腾换热也进行了许多研究工作。
(1) 水平管:水平管是组成蒸发器的常用管型,制冷剂在水平管的蒸发过程,是研究制冷剂流动沸腾换热性能,从而进行蒸发器设计的基础,所以对于这一换热情况国外已进行了比较多的研究。
Boissieux 等对R407C 在外径为9. 52mm 的水平光管的流动沸腾换热特性进行了实验研究[1 ] ,得出混合工质的沸腾换热系数沿管长的典型变化过程,指出当蒸气干度增加到约65 %~80 %时,局部换热系数增加到一个最大值,然后急剧减小,用Kattan 流型图可以准确预测出这一关键干度的位置点[13 ] 。
在换热系数的预测方面,基于文献[13 ]得出的kattan 模型,并对实验数据进行详细分析,得出了适用于一定质量流率、一定热流率和蒸发温度围的修正的Kattan 模型来估算R407C 的蒸发换热系数。
Lisheng Zhang 等对R407C 和R32/ R134a 在外径为7. 0mm 的水平光管的沸腾换热进行了实验研究[2 ] ,得出了两者的沸腾换热系数随干度和质量流率的变化情况。
并与R32、R125、R134a 进行了比较,指出由于汽液界面上传质阻力的存在,R407C 和R32/ R134a 的平均换热系数比R134a 约低30 % , 尤其是在低干度和低质量流率区, 换热系数降低的更多, 由此提出了一种考虑传质影响和核态沸腾作用的关系式来预测三元制冷剂混合物的换热系数。
Lallemand 等对R22 和R407C 在水平光管和微肋管的沸腾换热系数进行了实验研究[3 ] ,指出换热系数在低干度时主要依赖于热流率,而在高干度时主要依赖于质量流率,R407C 在光管和微肋管中的换热系数分别比R22 低15 %、35 % ,且在低热流和低质量流率时换热强化效果最好。
(2)U 型管:制冷空调系统多数热交换器都包含有U 型管,其传热性能明显不同于直管冷剂在U 型管中传热性能的研究很少有文献报道,但对R407C 在这类管中的换热规律却已有研究。
Keumnam 等对R407C 及油的混和物在一U型微肋管中的沸腾换热及压降特性进行了实验研究[4 ] 。
测得的R407C 换热系数低于R22 ,降低程度与实验条件相关。
在U 型弯曲的90°位置处换热系数最大,且外侧大于侧;所测的实验段的压降随注入油浓度、入口干度和质量流率的增加而增加,换热系数随油浓度的变化情况依赖于入口干度、质量流率和热流率。
另外, 还对R22 和R407C 在光管和微肋管蒸发器的U 型弯曲和直段部分的换热特性进行了研究[5 ] 。
实验得出U 型弯曲段的平均换热系数比直管段高4 %~33 %;在直管段部分,微肋管的平均换热系数比光管高19 %~49 % , 在U 型弯曲段, 比光管高33 %~69 %;在光管中,R407C 的平均换热系数比R22 低33 %~41 % , 而对微肋管, 则比R22 低17%~29 %。
3.1.2 其它形式的沸腾换热制冷剂在蒸发器中的沸腾换热, 除管流动沸腾外,根据蒸发器的结构形式,还有制冷剂在管外沸腾换热的情况,文献[6 ]就基于满液式蒸发器中制冷剂的换热情况,对R407C 等制冷剂在光管和W2TX、W2B 两种不同参数的强化管外沸腾换热的情况进行了研究,其中W2B 管的翅片间距和翅片高度都较小。
研究表明:R407C 在W2B 管外的沸腾换热系数低于几种纯质制冷剂,但在W2TX管外却并非如此,文献[ 6 ]对这一强化现象进行了理论分析。
文献[7 ]也对R407C 在水平管外的核态池沸换热进行了研究, 得出换热系数随热流率的变化关系, 并将实验数据与几种关系式的计算结果进行比较。
3.2 凝结换热非共沸混合制冷剂的凝结换热过程也不同于纯工质,而这一换热过程也是制冷空调系统中重要的换热过程,与沸腾换热相比,制冷剂混合物的凝结换热研究相对较少。
文献[8 ]对R407C 在外径为9. 52mm 的水平光管的凝结换热进行了实验研究,得出了在一定的饱和温度、质量流率和热流率下,R407C 的管冷凝换热系数随干度的变化关系,并将实验据与已有关系式进行了比较,指出Dobson 和Chato关系式能很好的预测非共沸混合工质的凝结换热系数[9 ] 。
文献[9 ]虽研究了纯工质在水平光管的凝结换热,但基于流型所提出了换热关系式具有较宽的适用围,并且也适用于R407C 等混合工质的凝结换热,这一结论也在文献[8 ]中得到了验证。
成昌锐等对R407C 在水平单管外的凝结换热进行了实验研究[10 ] ,实验采用了一根光管和两根双侧强化管, 分别在32 ℃、35 ℃、37 ℃、38 ℃、40 ℃五种冷凝温度下,测定了R22 和R407C 的换热系数,得出了管外凝结换热系数随热流密度的变化关系,R407C 的管外凝结换热系数随热流密度的增加而增加(这一变化趋势与纯工质相反) ,且强化管增长程度比光管要强烈,但始终远小于R22 ,指出这是由于R407C这一非共沸工质在冷凝时所形成的气体扩散膜的阻碍作用造成的。
3.3 强化换热技术制冷空调系统的小型化、节能化促进了换热强化技术的发展, 非共沸混合工质与纯和共沸工质相比,由于传质阻力等因素的影响,存在着传热恶化的现象, 而这种传热损失可用制冷剂侧换热表面的强化技术来补偿, 所以非共沸混合工质的出现也促进了换热强化技术。
对换热表面的强化目前研究较多的是螺纹管或肋片管,文献[3~5 ]对R407C 在螺纹强化管中的沸腾换热特性进行研究,文献[ 6 ]对R407C在外肋管表面的核态沸腾性能进行研究,文献[10 ]对R407C 在双侧强化的低肋管外的凝结换热进行研究。
近年来,基于螺纹管的强化机理又发展起来了几种传热效果更好的表面强化技术, 如人字型螺纹管、变参数螺纹管、交叉螺纹管[11、12、14 ] 等。
不同的螺纹间距、形状、高度、排列方式、旋转角度等对换热效果有着不同的影响, 而换热效果的增强一般是以压降的增加为代价的, 所以换热面强化技术的发展趋势是向高换热效果、低压降的方向努力。
以上分析可见, R407C 两相换热性能的研究已经比较全面,研究结果表明:R407C 的两相换热性能比R22 差。
在研究中所涉及的影响因素也很多,如制冷剂的热物理性质、热流密度、质量流率、流型、干度、温度、压力、润滑油,换热管的形状、尺寸及表面状况等。
4 整机性能及零部件适应性的研究当对新制冷剂的基础研究取得一定进展后,就应对制冷剂替代后整机性能进行实验研究, 以了解制冷空调系统应用新制冷剂后的整机的运行情况、性能变化及存在的问题,为新制冷剂全面替代提供参考。
另外,由于系统是针对原制冷剂设计的,故替代后必然存在一些零部件的适应性问题,所以也应对这一问题进行详细分析与认真研究,使替代研究更为全面,更为深入。
4.1 整机性能的研究制冷系统都是针对一定的制冷剂设计的, 虽然R407C 的蒸气压曲线与R22 很接近,但其热物性、迁移性质、传热性能等都与R22 有所不同, 这对制冷空调系统的性能都会产生影响, 所以必须经过整机试验, 在系统结构上进行一些局部的调整或改进,使系统的制冷/ 热量、能效比、性能系数等指标达到较高的水平。