电力电子技术—三相可控整流
- 格式:ppt
- 大小:5.75 MB
- 文档页数:7
课程设计报告题目三相可控整流技术的工程应用学院名称电气信息学院专业班级 xxxxxxxxxxxxxxx学号 xxxxxxxxxx学生姓名 xxxxx指导教师 xxxxxxx2012年1月12日摘要电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。
因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。
关键词:电力电子三相桥式可控电路整流AbstractPower electronics technology has a very wide range of applications in the power system. It is estimated that in developed countries more than 60% of the electrical energy at least through the end-use of electricity, more than once device processing power electronic converters. Power system in the process leading to the modern power electronics technology is one of the key technologies. It is no exaggeration to say that, if you leave power electronics technology, the modernization of the electric power system is unthinkable.Rectifier circuit technology has very wide application in industrial production. Such as voltage variable speed DC power supply, electrolysis and electroplating DC power. The rectifying circuit is the AC power is converted to DC power circuit. Most of the rectifier circuit by the transformer, rectifier circuit, and filters. It has been widely used in the field of DC motor speed control, generator excitation regulator, electrolysis, electroplating.Rectifier circuit, especially the three-phase bridge controlled rectifier circuit is the most important and the most widely used application circuit in the power electronics technology is not only used in general industrial, is also widely used in the transportation, electric power systems, communication systems, energy systems and other fields. Comparative analysis and study of the three-phase bridge controlled rectifier circuit parameters and the different nature of the work load has great practical significance, this is not only an important part of the learning power electronic circuit theory and engineering practice The practical application of predictive and guiding role.Key words:Power electronic Three-phase bridge controlled circuit Rectifier目录摘要 (2)一.设计任务书 (5)二.设计说明 (6)2.1设计目的 (6)2.2作用 (6)2.3技术指标 (6)三.设计方案的选择 (7)3.1三相桥式可控整流电路原理 (7)3.2三相桥式可控整流电路原理图 (7)3.3三相桥式可控整流电路工作波形 (8)3.4总设计框图 (10)四.触发电路的设计 (11)五.保护电路的设计 (12)5.1过电压保护 (12)5.2过电流保护 (13)六.参数的计算 (14)七.器件选择清单 (15)八.三相桥式可控整流电路的工程应用 (16)九.心得体会 (16)参考文献 (17)一.设计任务书院系:xxxxxxxxx年级:xxxxxx专业班级:xxxxxxxxxx二.设计说明2.1设计目的合理运用所学知识,进行电力电子电路和系统设计的能力,理解和掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。
一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。
整流电路是四种变换电路中最基本的变换电路,应用非常广泛。
对于整流电路,当其带不同负载情况下,电路的工作情况不同。
此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。
在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。
该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。
二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:,,整流,,逆变,,临界注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。
电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。
双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。
(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。
整流电路是一种把交流电源电压转换成所需的直流电压的电路。
AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。
采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。
2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。
②全波整流电路:全波整流电路中每根电源进线流过双方向电流,又称为桥式整流电路或双拍整流电路。
(2)按电源相数分类①单相整流电路:又分为单脉波整流电路和双脉波整流电路。
摘要可控整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
由晶闸管等组成的可控整流主电路,其输出端的负载,可以是电阻性负载(如电炉,电热器,电焊机,和白炽灯等)、大电感性负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)以及反电动势负载(如直流电动机的电枢反电动势,充电状态下的蓄电池等)。
以上负载往往要求整流能输出在一定范围内变化的直流电压。
为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。
该系统以可控硅三相桥式全控整流电路构成系统的主电路,根据三相桥式全控整流电路对触发电路的要求,采用同步信号为锯齿波的触发电路,设计时采用恒流源充电,输出为双窄脉冲(也可为单窄脉冲),脉冲宽度在8°左右。
本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输出。
此外,还有双窄脉冲形成环节。
同时考虑了保护电路和缓冲电路,通过参数计算对晶闸管进行了选型,也对直流电动机进行了简单的介绍。
关键词可控整流晶闸管触发电路缓冲电路目录前言 (9)第1章主电路设计 (10)1.1 主电路的选取方案 (10)1.2 工作原理 (10)1.3 对触发脉冲的要求 (11)第2章主电路元件选择 (13)第3章整流变压器额定参数计算 (15)3.1 二次相电压U2 (15)3.2 一次与二次额定电流及容量计算 (16)第4章平波电抗器电感的计算 (18)第5章触发电路的设计 (19)5.1 形成与脉冲放大环节 (20)5.2 锯齿波形成与脉冲移相环节 (21)5.3 同步信号与主回路的相位关系 (23)5.4 脉冲形成和放大 (23)第6章驱动电路与保护电路的设计 (25)6.1 电力电子器件驱动电路概述 (25)6.2 典型全控型器件的驱动电路 (25)6.3 电力电子器件的保护 (26)第7章缓冲电路的设计 (28)第8章直流电机的构造及工作原理 (31)8.1 直流电动机的构造 (31)8.2 直流电机的工作原理 (32)第9章总结 (33)参考文献 (35)前言当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是自动控制系统的主要形式。
三相可控整流原理
三相可控整流是一种根据三相交流电压来调整直流输出电压的电力变换装置。
它使用可控硅器件作为开关元件,通过控制和改变可控硅的导通角来实现对输出电压的调节。
在三相可控整流中,三相交流电源首先经过输入电抗器进行干扰滤波和降低故障电流的作用。
然后,经过整流桥电路,将交流电转化为直流电,并通过滤波电感对直流电进行滤波,使其更加平滑。
在整流桥电路中,三相可控整流装置采用了六个可控硅器件,分别连接在正、负电压的两组对角点上。
这样的连接方式使得它能够实现对输出电压的控制。
在控制电路的控制下,通过逐个控制可控硅的导通角,可以控制整流桥电路的导通时刻和导通角度。
通过调整可控硅的导通角,可以改变整流桥中电流的导通时间,从而实现对输出电压的调节。
通过控制可控硅的导通角度,可以改变整流桥的平均输出电压,从而实现对直流电压的调节。
同时,通过控制可控硅的导通时刻,可以改变整流桥的功率因数,实现对输出功率的控制。
总的来说,三相可控整流利用可控硅器件的导通控制特性,通过控制导通时刻和导通角度,实现对输出电压的调节,从而满足各种功率调节需求。
这种技术在工业领域中得到广泛应用,可用于电机控制、变频调速、能源回馈等方面。