2[1].1抽样习题课
- 格式:ppt
- 大小:1.08 MB
- 文档页数:1
高一数学新授课课时安排表课程内容:高一(上)普通高中课程标准实验教科书数学必修1第一章集合与函数概念 8课时(包含习题课)1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ) 6课时(包含习题课)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用 4课时(包含习题课)3.1 函数与方程3.2函数模型及其应用小结:总结+习题 2课时普通高中课程标准实验教科书数学必修2第一章空间几何体 4课时(包含习题课)1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系 4课时(包含习题课)2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程 6课时(包含习题课)3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程 6课时(包含习题课)4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结:总结+习题 2课时高一(下)普通高中课程标准实验教科书数学必修3第一章算法初步 4课时(包含习题课)1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计 4课时(包含习题课)2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率 6课时(包含习题课)3.1 随机事件的概率3.2 古典概型3.3 几何概型小结+习题 4课时普通高中课程标准实验教科书数学必修4第一章三角函数 8课时(包含习题课)1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量 8课时(包含习题课)2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换 4课时(包含习题课)3.1 两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换小结+习题 4课时。
孙山泽抽样调查答案【篇一:北京大学数学教学系列丛书(本科生)】t>本科生数学基础课教材《抽象代数Ⅰ》赵春来徐明曜编著《高等代数简明教程》(上册)(第二版)蓝以中编著《数学分析》(第一册)伍胜健编著《数学分析》(第二册)伍胜健编著《数学分析》(第三册)伍胜健编著《高等代数简明教程》(上册)(第二版)蓝以中编著《高等代数简明教程》(下册)(第二版)蓝以中编著《金融数学引论》吴岚黄海编著《概率论》何书元编著《随机过程》何书元编著《抽样调查》孙山泽编著《应用多元统计分析》高惠璇编著《应用时间序列分析》何书元编著《测度论与概率论基础》程士宏编著《偏微分方程》周蜀林编著《偏微分方程数值解讲义》李治平编著《寿险精算基础》杨静平编著《非寿险精算学》杨静平编著《复变函数简明教程》谭小江伍胜健编著《实变函数与泛函分析》郭懋正编著《概率与统计》陈家鼎郑忠国编著【篇二:社会库存数理统计模型设计】西省白酒销售公司近三年的白酒销量分别为10.31万箱、10.73万箱、11.31万箱(1箱=250瓶)。
6个主要营销城市,分别为西安市、咸阳市、汉中市、铜川市、延安市和宝鸡市,白酒主要通过以下7类零售户进行销售:便利店、服务业、商场、其他、超市、烟酒店和食杂店。
各类零售户总量在各个市区的分布情况如下表。
为了了解各个市区合计2万多个零售户的白酒库存情况,公司让各地区130多名经理在不同的零售户类型中分别对大中小经营规模的10-15个零售户做了随机抽样调查,调查数据见附录,包括被调查的零售户的经营规模、其总库存量以及主要11种白酒的相应库存量。
问题:1)抽样的方式是否合理?样本数量是否足够,能否达到95%的置信区间?2)建立数学模型或提出一种算法,用给出的数据估计出每个市区、每种经营规模、每类零售户的总库存量。
(即采用什么样的计算模型推测总体)3)能否用当前的数据预测出下个月(3月份)各市区库存量?(可不做)4)如果需要开发一个程序,输入部分零售户的调查数据(总量和各个规格数量),输出为所有零售户的整体库存,(输出结果可以转换为excel文件),你会怎么做或有什么建议?要求1)首页信息:2)双面打印3)论文不要超过15页,按照数模论文格式和内容书写。
抽样技术课后习题_参考答案_金勇进第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r,r处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值y?9.5(千瓦时),s2?206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,?9.5,s2?2062?)?v(N)?N21?fs2?50000V(Yn1?300*206?1706366666 300v(??41308.19 该市居民用电量的95%置信区间为[[Ny?z?(y)]=[475000±1.96*41308.19]2即为(394035.95,555964.05)由相对误差公式u?2v()≤10%可得1.96*?n*206?9.5*10% n即n≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。