2020-2021九年级上学期期末数学试卷
- 格式:doc
- 大小:1.53 MB
- 文档页数:11
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分) 1.在﹣2,0,2,﹣3这四个数中,最小的数是( ) A .2 B .0 C .﹣2 D .﹣32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学记数法表示为( )A .30.1×108B .3.01×108C .3.01×109D .0.301×10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( ) A .x ﹣6=﹣4 B .x ﹣6=4 C .x+6=4 D .x+6=﹣44.设a=2﹣1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个( )A .2个B .3个C .4个D .6个6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( )A .99.60,99.70B .99.60,99.60C .99.60,98.80D .99.70,99.607.如图为抛物线y=ax 2+bx+c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是( )A .ac <0B .a ﹣b=1C .a+b=﹣1D .b >2a8.如图,过▱ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的▱AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 2密封线内9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.1210.附加题:如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A. B. C.D.二、填空题(本大题共4小题,每小题5分,满分20分.11.的平方根是.12.因式分解:a2b+2ab+b= .13.如图,在直角三角形ABC中,∠ACB=90°,AC=1,BC=2,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为.14.如图,等腰直角△ABC腰长为a,现分别按图1,图2在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC意截取一个正方形的面积为S3,则S3≤S1是.三、(本大题共2小题,每小题8分,满分16分)15为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣然后请你自选一个合理的数代入求值.16.如图,在平面直角坐标系中,△ABC上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2出点A2的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、(本大题共2小题,每小题8分,满分16分) 17.2014年3月8日凌晨,马来西亚航空公司一架航班号为MH370的波音777客机于凌晨零点左右从吉隆坡飞往北京,计划6:30抵达北京首都国际机场,却在凌晨1:30分失去联系.已知该飞机起飞时油箱内存有15000升油,起飞后一直保持速度为400km/h 匀速直线运动,且每千米的耗油量为5升,请用不等式的知识求出该飞机在失去联系后能最多航行多少千米?18.如图,矩形ABCD 中,AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…,第n 次平移将矩形A n ﹣1B n ﹣1C n ﹣1D n ﹣1沿A n ﹣1B n ﹣1的方向平移5个单位,得到矩形A n B n C n D n (n >2).(1)求AB 1和AB 2的长.(2)若AB n 的长为56,求n .五、(本大题共2小题,每小题10分,满分20分) 19.一透明的敞口正方体容器ABCD ﹣A ′B ′C ′D ′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图所示).探究 如图1,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ 与BE 的位置关系是 ,BQ 的长是 dm ;(2)求液体的体积;(参考算法:直棱柱体积V 液=底面积S △BCQ ×高AB );(3)求液面到桌面的高度和倾斜角α的度数.(注:sin37°=,tan37°=).20.面对即将到来的五一小长假,胡老师一家计划用两天时间参观岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区中的两个;第一天从4个景区中随机选择一个,第二天从余下3个景区中再随机选择一个,如果每个景区被选中的机会均等.(1)请画树状图或表格的方法表示出所有可能出现的结果; (2)求滨湖湿地公园被选中的概率.六、(本题满分12分)21.已知:如图,在△ABC 中,AB=AC ,AE 是角平分线,BM 平分∠ABC 交AE 于点M ,经过B ,M 两点的⊙O 交BC 于点G ,交AB 于点F ,FB 恰为⊙O 的直径.(1)求证:AE 与⊙O 相切;(2)当BC=4,cosC=时,求⊙O 的半径.七、(本题满分12分)22.自2010年6月1消费者在购买政策限定的新家电时,部分由政府提供,其中三种家电的补贴方式如下表: 补贴额度新家电销售价格的10%说明:电视补贴的金额最多不超过400元/台; 洗衣机补贴的金额最多不超过250元/台; 冰箱补贴的金额最多不超过300元/台.为此,某商场家电部准备购进电视、洗衣机、冰箱共100这批家电的进价和售价如下表: 家电名进价(元/台) 售价(元/台)密学校 班级 姓名 学号密 封 线 内 不 得 答 题称电视39004300 洗衣机 1500 1800 冰箱20002400设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价﹣进价)(1)请分别求出y 与x 和w 与x 的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?八、(本题满分14分)23.如图1,在正方形ABCD 中,点M 、N 分别在AD 、CD 上. (1)若∠MBN=45°且∠ABM=∠CBN ,则易证 .(选择正确答案填空)①AM+CN >MN ;②(AM+CN )=MN ;③MN=AM+CN .(2)若∠MBN=∠ABC ,在(1)中线段MN 、AM 、CN 之间的数量关系是否仍然成立?若成立给予证明,若不成立探究出它们之间关系.【拓展】如图2,在四边形ABCD 中,AB=BC ,∠ABC 与∠ADC互补.点M 、N 分别在DA 、CD 的延长线上,若∠MBN=∠ABC ,试探究线段MN 、AM 、CN 又有怎样的数量关系?请写出猜想并证明.参考答案一、选择题(本大题共10小题,每小题4分,满分40分) 1.D . 2. C .3.D .4.B .5.B .6. B .7.D .8.C . 9.B .10.C . 二、填空题(本大题共4小题,每小题5分,满分20分. 11.的平方根是 ± .12.因式分解:a 2b+2ab+b= b (a+1)2.13.如图,在直角三角形ABC 中,∠ACB=90°,AC=1,BC=2,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 .线内不得答题14.如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是①②④.三、(本大题共2小题,每小题8分,满分16分)15.请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣2a+1,然后请你自选一个合理的数代入求值.解: ==,当a=2时,原式==3.或=,当a=2时,原式==.16.如图,在平面直角坐标系中,△ABC上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2出点A2的坐标.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).密线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、(本大题共2小题,每小题8分,满分16分)17. 解:设该飞机在失去联系后能航行x 千米, 1:30﹣0:00=1.5(小时), 由题意得:1.5×400×5+5x ≤15000 解得:x ≤2400.答:该飞机在失去联系后最多能航行2400千米.18.解:(1)∵AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…,∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1﹣A 1A 2=6﹣5=1, ∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+1=11, ∴AB 2的长为:5+5+6=16;(2)∵AB 1=2×5+1=11,AB 2=3×5+1=16, ∴AB n =(n+1)×5+1=56, 解得:n=10.五、(本大题共2小题,每小题10分,满分20分)19.(1)解:(1)CQ ∥BE ,BQ==3dm ;故答案为:平行,3;(2)V 液=×3×4×4=24(dm 3); (3)过点B 作BF ⊥CQ ,垂足为F , ∵×3×4=×5×BF , ∴BF=,∴液面到桌面的高度; ∵在Rt △BCQ 中,tan ∠BCQ=, ∴α=∠BCQ=37°.内不得题20.解:(1)用A、B、C、D分别表示岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区,画树状图为:共有12种等可能的结果数;(2)滨湖湿地公园被选中的结果数为6,所以滨湖湿地公园被选中的概率==.六、(本题满分12分)21.解(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cosC=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴⊙O 的半径为.七、(本题满分12分)22.解:(1)y=400x+1800×10%x+2400×10%(100﹣2x )=100x+24000商场所获利润:W=400x+300x+400(100﹣2x ) =﹣100x+40000. (2)根据题意得,解得30≤x ≤35,因为x 为整数,所以x=30,31,32,33,34,35,因此共有6种进货方案.对于W=﹣100x+40000, ∵k=﹣100<0,30≤x ≤35, ∴当x=30时,W 有最大值,所以当购进30台电视,30台洗衣机,40台电冰箱时商场将获得最大的利润.因此政府的补贴为y=100×30+24000=27000元. 八、(本题满分14分)23.解:(1)解:设BD 于MN 交于点H ,如图1(1), ∵BD 为正方形ABCD 的正方形, ∴∠ABH=∠CBH=45°,BA=BC , ∵∠MBN=45°,∠ABM=∠CBN , ∴∠ABM=∠HBM=∠HBN=∠CBN ,在△ABM 和△CBN 中,∴△ABM ≌△CBN , ∴BM=BN ,AM=CN , 而∠HBM=∠HBN , ∴BH ⊥MN , ∴MA=MH ,NH=NC , ∴AM=MH=HN=NC , ∴MN=AM+CN ; 故答案为③;封线 内题(2)解:在(1)中线段MN 、AM 、CN 之间的数量关系仍然成立.理由如下:把△BAM 绕点B 顺时针旋转90°得到△BCP ,如图1(2), ∴BM=BP ,AM=CP ,∠MBP=90°,∠BCP=∠A=90°, ∵∠BCP+∠BCN=180°, ∴点P 在DC 的延长线上, ∴NC+CP=NP ,∵∠MBN=∠ABC=45°, ∴∠NBP=45°, 在△BNM 和△BNP 中,∴△BNM ≌△BNP , ∴MN=NP ,∴MN=CP+CN=AM+CN ;【拓展】解:如图2,∵∠ABC+∠ADC=180°, ∴∠BAD+∠BCD=180°, 而∠BAD+∠BAM=180°, ∴∠BAM=∠BCD , ∵AB=BC ,∴把△BAM 绕点B 顺时针旋转90°得到△BCQ ,∴∠BAM=∠BCQ ,BM=BQ ,∠MBQ=∠ABC , ∴∠BCQ=∠BCD , ∴点Q 在CN 上, ∴CN=CQ+MQ=AM+NQ , ∵∠MBN=∠ABC , ∴∠MBN=MBQ ,∴∠MBN=∠QBN , 在△BMN 和△BQN 中,∴△BMN ≌△BQN , ∴MN=QN , ∴CN=AM+MN , 即MN=CN ﹣AM .密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( ) A.523a a a =⋅ B.abb a 532=+ C.326a a a =÷ D.523a a a =+5. 下列各图中,是中心对称图形的是( )6. 方程042=-x的根是( )A. 2,221-==x xB. 4=xC. 2=xD.2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( )题号 一 二 三 总分 得分ABC DA .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (aA BC图3E DA B CO E1D图1A密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题图1020.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?21.(8分) 某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题: (1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆ 的顶点坐标分别为()5,2-A 、()1,4-B 和()3,1-C (1)作出ABC ∆关于x 轴对称的111C B A ∆,并写出点A 、B 、C 的对称点1A 、1B 、1C 的坐标;(2)作出ABC ∆关于原点O 对称的222C B A ∆,并写出点A 、B 、C 的对称点2A 、2B 、2C 的坐标;(3)试判断:111C B A ∆与222C B A ∆是否关于y 轴对称 (只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD 是正方形,G 是yAOxBC共计145元 共计280元第21题图BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 最大值及此时的xABCDEFG密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 ° 三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分)解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号1 2 3 4 5 6 7 选择项 D D C A B A D 题号 8 9 10 11 12 13 14 选择项ACDAACAB 2yCAB C 1B 1A 1C 2A 2Ox第21题答案图23. (满分11分) (1) ΔAED ≌ΔDFC.∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º.又∵ AE ⊥DG ,CF ∥AE , ∴ ∠AED=∠DFC=90º,… ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC.∴ ΔAED ≌ΔDFC (AAS ). (2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. … ∵ DF=DE+EF , ∴ AE=FC+EF. )24. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2. ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1.(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E=(x+1)-(x 2-2x+1) =-x 2+3x.… 即h=-x 2+3x (0<x <3). (3)略ABCDE F图6G图7密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线; (2)若OB=5,OP=,求AC 的长.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.密21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax2+bx(a≠0)经过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以O、D、E为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(之间的函数关系式;在图(2)指出金额在什么范围内,该种水果.(3)经调查,某经销商销售该种水果的日最高销量y(kg零售价x所示,该经销商拟每日售出不低于64kg得日获得的利润z(元)最大.第5页,共82页 第6页,共82页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .第23页,共82页 第24页,共82页得 答 题10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x 轴,与抛物线交于点D .若点A 的坐标为(﹣1,0),则线段OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±,即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度.第5页,共82页 第6页,共82页密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:设每年市政府投资的增长率为x ,根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去).答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC . ∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径, ∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5, ∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,第23页,共82页 第24页,共82页不 得 答∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50), ∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1, 则C 的坐标是(﹣1,﹣1); (3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方.OA=2,第5页,共82页 第6页,共82页密学校 班级 姓名 学号密 封 线 内 不 得 答 题则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3);当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23.解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg …(2)当20≤m ≤60时,w=5m 当m >60时,w=4m ……当240<w ≤300时,同样的资金可以批发到更多的水果.…(3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形,∴∠ACB=60°, ∵△EFG 是等边三角形,∴∠GFE=60°,GE=EF=BF •sin60°=t ,密封线内不得答∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF==t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)分三种情况:①当0<t≤时,S=0;②当<t≤2时,如图2所示,S=S△EFG﹣S△MEN=×(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;③当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,∴3÷2=,∴3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即:点P在△EFG内部时t的取值范围为:<t<.第23页,共82页第24页,共82页第5页,共82页 第6页,共82页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x 的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验题号 一 二 三 总分 得分ABCD第23页,共82页 第24页,共82页田进行试验,得到两个品种每公顷产量的两组数据,其方 差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物A BC图3E DA B CO E1D图1A。
2020--2021学年度第一学期期末教学质量检测九年级数学试卷(考试时间:90分钟满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=B.y=C.y=D.y=3.已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.B.C.D.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.18%B.20%C.36%D.40%5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.97.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()A.B.C.D.8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.若二次函数的与的部分对应值如下表:x-2-10123y1472-1-2-1则当x=5时,y的值为()A.-1B.2C.7D.1410.已知,则函数和的图象大致是()A.B.C.D.二.填空题(本大题共7个小题,每小题4分,共28分)11.方程x2=3x根为.12.关于x的一元二次方程(x+3)2=m有实数根,则m的值可以为(写出一个即可).13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是m.14.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点A′落在直线BC上,连接AB′,若∠ACB=45°,AC=3,BC=2,则AB′的长为.15.一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;上述结论中正确的是.(填上所有正确结论的序号)第14题第16题第17题三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解方程:19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.⑴画出△OAB绕原点O顺时针旋转90°后得到的OA1B1,并写出点A1的坐标;⑵在⑴的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).19.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.如图,反比例函数和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.⑴求一次函数的表达式;⑵求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.⑴用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;⑵你认为这个游戏对双方公平吗?请说明理由.23.新冠疫情期间,某网店以100元/件的价格购进一批消毒用紫外线灯,该网店店主结合店铺数据发现,日销量(件)是售价(元/件)的一次函数,其售价和日销售量的四组对应值如表:售价(元/件)150160170180日销售量(件)200180160140另外,该网店每日的固定成本折算下来为2000元.注:日销售纯利润=日销售量×(售价-进价)-每日固定成本.(1)求关于的函数解析式(不要求写出自变量的取值范围);(2)日销售纯利润为(元),求出与的函数表达式;(3)当售价定为多少元时,日销售纯利润最大,最大纯利润是多少.三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是上的一点.⑴求证:BC是⊙O的切线;⑵已知∠BAO=25°,求∠AQB的度数;⑶在⑵的条件下,若OA=18,求的长.25.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB 上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.⑴求抛物线解析式;⑵当点P运动到什么位置时,DP的长最大?⑶是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.惠城区2020--2021学年度第一学期期末教学质量检测九年级数学试卷答案一.选择题(本大题共10个小题,每小题3分,共30分)1.D2.B3.D4.B5.C6.A7.B8.C9.C10.A二.填空题(本大题共7个小题,每小题4分,共28分)11.0,312.略(m即可)13.1014.15.6π16.417.②③④三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解:19.解:⑴如图所示,点A1的坐标是(1,﹣4);……2分⑵∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:.……6分20.解:∵半径OC⊥弦AB于点D,∴=,……2分∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,……4分∵AB=2,∴DB=OD=1,∴OB=……6分三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.解:⑴∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).……2分又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.……4分⑵由解得或,∴B(﹣,﹣3)……6分∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.……8分22.解:树状图如图所示,……3分⑴共有16种等可能的结果数;……5分⑵x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴P(甲胜)=,P(乙胜)=,∴P(甲胜)=P(乙胜),∴这个游戏对双方公平.……8分23.解:(1)(3分)设一次函数的表达式为y=kx+b,将点(150,250),(160,180)代入上式得解得故y关于x的函数解析式为y=-2x+500.(2)(2分)由题意得:=y(x-100)-2000=(-2x+500)(x-100)-2000=-2x2+700x-52000(3)(3分),∵-2<0,∴有最大值,∴当175(元/件)时,的最大值为9250(元).三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.⑴证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;……4分⑵解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°……7分⑶解:由⑵得,∠AQB=65°,∴∠AOB=130°,∴的长=的长==.……10分25.解:⑴∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3……2分⑵过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=∵∴当时,DP的长最大此时,点P运动到坐标为(﹣,).……6分⑶存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴E、P关于对称轴对称∴﹣(﹣1)=(﹣1)﹣t∴=﹣2﹣t∴PE=|﹣|=|﹣2﹣2t|……8分∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t,如图(1)∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t,如图(2)∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时,使△PDE为等腰直角三角形.……10分图(1)图(2)备用图。
2020-2021年九年级上册期末数学试题(含答案)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .3 D .10103.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y <<C .213y y <<D .213y y <<4.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 6.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=07.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <19.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .410.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+311.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7512.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .13.一组数据0、-1、3、2、1的极差是( ) A .4 B .3 C .2 D .1 14.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10015.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,45) C .(203,45) D .(163,43) 二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .17.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.18.数据2,3,5,5,4的众数是____.19.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.22.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .24.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.28.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.29.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒32.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.33.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y =x 2﹣5x +6的图象上的概率.四、压轴题36.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan2CDE∠=,记AD x=,ABC∆面积和DBC∆面积的差为y,直接写出y关于x的函数关系式.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.A解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, CD=2,AD=22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.4.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.5.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.B解析:B 【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴22,34∵CD=DB,∴AD=DC=DB=5,2∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.12.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.13.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.14.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=3O'F 2⋅=,∴.在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.∴O′的坐标为(20,33). 故选C .【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题16.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 17.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.()【解析】设它的宽为xcm .由题意得 .∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10510)【解析】设它的宽为x cm .由题意得51:20x -=. ∴10510x = .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.23.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.24.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长. 【详解】 过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则. 【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 25.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 27.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙; 故答案为:乙. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.30.7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】 解:∵, ∴, ∴, ∴, ∴;故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】解:∵2430x x +-=, ∴243x x +=, ∴2447x x ++=, ∴2(2)7x +=, ∴7n =; 故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.三、解答题31.(1)x 1=-1,x 2=4;(2)原式=12【解析】 【分析】(1)按十字相乘的一般步骤,求方程的解即可; (2)把函数值直接代入,求出结果 【详解】解:(1)234x x -= (x+1)(x-4)=0 ∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值. 32.(1)14;(2)14. 【解析】 【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解. 【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.33.(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b【解析】【分析】(1)方法一:当y=0时,(x-m)(x-m-4)=0,解得x1=m,x2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论. 34.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵x 高=()110+6+7+8+9=85⨯(℃),x 低 =()11+01+0+3=0.65⨯-(℃),2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2)∴2S 高>2S 低∴这5天的日最高气温波动大. 【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.35.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答. 【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y =x 2﹣5x +6的图象上, 所以P (这些点落在二次函数y =x 2﹣5x +6的图象上)=218=19. 【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.四、压轴题36.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD≌△BCF,得到∠CAD=∠CBF即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,。
2020-2021学年辽宁省锦州市九年级第一学期期末数学试卷一.选择题(共8小题).1.如图所示物体的俯视图是()A.B.C.D.2.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球()A.16个B.14个C.20个D.30个3.已知△ABC∽△DEF,AB=3,DE=5,则△ABC与△DEF的面积之比为()A.B.C.D.4.关于x的一元二次方程x2+2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1B.k<1C.k≥1D.k>15.下列说法正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直且相等D.平行四边形的对角线相等6.如图,小明(用CD表示)站在旗杆(用AB表示)的前方8m处,某一时刻小明在地面上的影子比EC恰好与旗杆在地面上的影子EA重合.若CD=1.6m,CE=2m,则旗杆AB的高度为()A.6.4m B.8m C.9.6m D.10m7.如图,在▱ABCD中,AD=6,∠ADB=30°.按以下步骤作图:①以点C为圆心,以CD长为半径作弧,交BD于点F;②分别以点D,F为圆心,以CD长为半径作弧,两弧相交于点G.作射线CG交BD于点E.则BE的长为()A.3B.C.4D.38.如图,正方形ABCD的对角线AC,BD交于点O,E是BD上的一点,连接EC,过点B 作BG⊥CE于点G,交AC于点H,EF⊥EC交AB于点F.若正方形ABCD的边长为4,下列结论:①OE=OH;②EF=EC;③当G为CE中点时,BF=4﹣4;④BG•BH =BE•BO,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共8小题).9.已知关于x的一元二次方程x2﹣mx=0的一个根为1,则m=.10.某批篮球的质量检验结果如下:抽取的篮球数n10020040060080010001200优等品的频数m931923805617529411128优等品的频率0.9300.9600.9500.9350.9400.9410.940从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是.(精确到0.01)11.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为m.12.若点A(﹣2,y1)和点B(﹣1,y2)在反比例函数y=﹣上的图象上,则y1与y2的大小关系为.13.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡1190张,设全班有x名同学,则可列方程为.14.如图,在△ABC中,AB=AC,∠BAC=40°,以AB为边作正方形ABDE,连接CE,则∠AEC=.15.如图,在矩形ABCD中,对角线AC,BD交于点O,过点C作CE⊥CA,交BD的延长线于点E,若AB=2,BC=4,则DE的长为.16.如图,在菱形ABCD中,∠B=45°,BC=2,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH,则GH的最小值为.三、解答题(本大题共3小题,17题8分,18,19题各6分,共20分)17.用适当的方法解下列一元二次方程:(1)3x(2x﹣1)=2(2x﹣1);(2)2x2+1=4x.18.如图,在平面直角坐标系中,△ABC的顶点A的坐标为(﹣3,﹣1),顶点B,C都在小正方形的格点上.(1)点B的坐标为,点C的坐标为.(2)以原点O为位似中心,在所给的网格中画出一个△A1B1C1,使得△A1B1C1与△ABC 位似,且相似比为2:1.19.小明和小刚打算寒假去北京游玩,他们准备从锦州南站乘坐动车去北京,锦州南站每天开四个检票口,其中有三个电子检票口,分别记为A,B,C,一个人工检票口记为D(如图).(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为;(2)若小明和小刚分别随机选择其中一个检票口进入候车大厅,请用树状图或列表法求他们选择不同电子检票口的概率.四、解答题(本大题共2小题,每题7分,共14分)20.如图,在矩形ABCD中,AB=10cm,AD=6cm.动点E从点A出发以1cm/s的速度沿AD向点D运动,动点F从点D出发以2cm/s的速度沿DC向点C运动,设运动时间为ts.(1)当△ABE∽△CBF时,求t的值;(2)当S△DEF=S△ABE时,求t的值.21.某小家电经销商销售一种成本为每个50元的台灯,当每个台灯的售价定为80元时,每周可卖出600个,为了尽可能让利于顾客,经销商决定降价销售.经市场调查发现,这种台灯每周的销量每增加100个,该台灯的售价相应降低2元.如果该经销商每周要获得利润22000元,那么这种台灯的售价应为多少元?五、解答题(本大题共3小题,22,23题各8分,24题10分,共26分)22.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.23.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.24.如图1,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,过点C作射线CM 交AB于点P(点P不与点D重合),过点B作BE⊥CM于点E,连接DE,过点D作DF⊥DE交CM于点F.(1)求证:DE=DF;(2)如图2,若AE=AC,连接AF并延长到点G,使FG=AF,连接CG,EG,求证:四边形ACGE为菱形;(3)在(2)的条件下,求的值.参考答案一.选择题(共8小题).1.如图所示物体的俯视图是()A.B.C.D.解:从上面看,是一行3个全等的矩形,故选:C.2.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球()A.16个B.14个C.20个D.30个解:由题意可得:=0.3,解得:x=14,经检验:x=14是分式方程的解.故选:B.3.已知△ABC∽△DEF,AB=3,DE=5,则△ABC与△DEF的面积之比为()A.B.C.D.解:∵△ABC∽△DEF,AB=3,DE=5,∴相似比为AB:DE=3:5,∴其面积之比为9:25.故选:A.4.关于x的一元二次方程x2+2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1B.k<1C.k≥1D.k>1解:根据题意得△=22﹣4k≥0,解得k≤1.故选:A.5.下列说法正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直且相等D.平行四边形的对角线相等解:A.因为矩形的对角线相等,所以A选项错误,不符合题意;B.因为菱形的对角线互相垂直,所以B选项错误,不符合题意;C.因为正方形的对角线互相垂直且相等,所以C选项正确,符合题意;D.因为平行四边形的对角线互相平分,所以D选项错误,不符合题意.故选:C.6.如图,小明(用CD表示)站在旗杆(用AB表示)的前方8m处,某一时刻小明在地面上的影子比EC恰好与旗杆在地面上的影子EA重合.若CD=1.6m,CE=2m,则旗杆AB的高度为()A.6.4m B.8m C.9.6m D.10m解:∵CD⊥AE,AB⊥AE,∴DC∥AB,∵AC=8m,EC=2m,∴AE=AC+EC=2+8=10(m),∴△DCE∽△BAE,∴,即,解得:AB=8,故选:B.7.如图,在▱ABCD中,AD=6,∠ADB=30°.按以下步骤作图:①以点C为圆心,以CD长为半径作弧,交BD于点F;②分别以点D,F为圆心,以CD长为半径作弧,两弧相交于点G.作射线CG交BD于点E.则BE的长为()A.3B.C.4D.3解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∴∠ADB=∠DBC=30°,由题意可得CG⊥BD,∴CE=BC=3,BE=EC=3,故选:D.8.如图,正方形ABCD的对角线AC,BD交于点O,E是BD上的一点,连接EC,过点B 作BG⊥CE于点G,交AC于点H,EF⊥EC交AB于点F.若正方形ABCD的边长为4,下列结论:①OE=OH;②EF=EC;③当G为CE中点时,BF=4﹣4;④BG•BH =BE•BO,其中正确的是()A.①②③B.①②④C.①③④D.①②③④解:∵BG⊥CE,EF⊥EC,∴∠FEC=∠BGC=90°,∵四边形ABCD是正方形,∴AO=OC=OB=OD,AC⊥BD,∵∠ECO+∠GHC=90°=∠OBH+∠BHO,∠BHO=∠CHG,∴∠OBH=∠ECO,又∵BO=CO,∠BOH=∠COE=90°,∴△BOH≌△COE(ASA),∴OE=OH,故①正确;如图,过点E作EP⊥BC于P,EQ⊥AB于Q,∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,又∵EP⊥BC,EQ⊥AB,∴EQ=EP,又∵EP⊥BC,EQ⊥AB,∠ABC=90°,∴四边形BPEQ是正方形,∴BQ=BP=EP=QE,∠QEP=90°=∠FEC,∴∠QEF=∠PEC,又∵∠EQF=∠EPC=90°,∴△QEF≌△PEC(ASA),∴QF=PC,EF=EC,故②正确;∵EG=GC,BG⊥EC,∴BE=BC=4,∴BP=EP=2,∴PC=4﹣2=QF,∴BF=BQ﹣QF=2﹣(4﹣2)=4﹣4,故③正确;∵∠BOH=∠BGE=90°,∠OBH=∠GBE,∴△BOH∽△BGE,∴,∴BH•BG=BE•BO,故④正确,故选:D.二、填空题(本题共8小题,每小题3分,共24分)9.已知关于x的一元二次方程x2﹣mx=0的一个根为1,则m=1.解:把x=1代入方程x2﹣mx=0得1﹣m=0,解得m=1.故答案为1.10.某批篮球的质量检验结果如下:抽取的篮球数n10020040060080010001200优等品的频数m931923805617529411128优等品的频率0.9300.9600.9500.9350.9400.9410.940从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是0.94.(精确到0.01)解:从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是0.94.故答案为0.94.11.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为3m.解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴=,=,即=,=,解得:AB=3.故答案是:3.12.若点A(﹣2,y1)和点B(﹣1,y2)在反比例函数y=﹣上的图象上,则y1与y2的大小关系为y1<y2.解:∵k=﹣4<0,∴反比例函数y=﹣上的图象在二、四象限,且在每一象限内y随x的增大而增大,∵点A(﹣2,y1)和点B(﹣1,y2)都在第二象限,且﹣2<﹣1,∴y1<y2.故答案为y1<y2.13.2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡1190张,设全班有x名同学,则可列方程为x(x﹣1)=1190.解:由题意可得,x(x﹣1)=1190,故答案为:x(x﹣1)=1190.14.如图,在△ABC中,AB=AC,∠BAC=40°,以AB为边作正方形ABDE,连接CE,则∠AEC=25°或65°.解:如图1,当正方形ABDE在AB的右侧时,∵AB=AC,∠BAC=40°,∴AC=AE,∠CAE=50°,∴∠AEC=65°;如图2,当正方形ABDE在AB的左侧时,∵AB=AC,∠BAC=40°,∴AC=AE,∠CAE=130°,∴∠AEC=25°,综上所述:∠AEC=25°或65°,故答案为:25°或65°.15.如图,在矩形ABCD中,对角线AC,BD交于点O,过点C作CE⊥CA,交BD的延长线于点E,若AB=2,BC=4,则DE的长为.解:如图,过点D作DH⊥AC于H,∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∵AB=2,BC=4,∴AC===2,∴OD=OC=,∵S△ADC=×AD×DC=×AC×DH,∴2×4=2×DH,∴DH=,∴OH===,∴HC=﹣=,∵CE⊥CA,DH⊥CA,∴CE∥DH,∴,∴,∴DE=.16.如图,在菱形ABCD中,∠B=45°,BC=2,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH,则GH的最小值为.解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=2,∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF=AB=×2=,∴GH=,即GH的最小值为,故答案为:.三、解答题(本大题共3小题,17题8分,18,19题各6分,共20分)17.用适当的方法解下列一元二次方程:(1)3x(2x﹣1)=2(2x﹣1);(2)2x2+1=4x.解:(1)3x(2x﹣1)=2(2x﹣1),(3x﹣2)(2x﹣1)=0,3x﹣2=0或2x﹣1=0,∴x1=,x2=;(2)原方程化为一般形式为,2x2﹣4x+1=0,∵a=2,b=﹣4,c=1,∴b2﹣4ac=16﹣4×2×1=8>0,∴x==,∴x1=,x2=.18.如图,在平面直角坐标系中,△ABC的顶点A的坐标为(﹣3,﹣1),顶点B,C都在小正方形的格点上.(1)点B的坐标为(1,2),点C的坐标为(﹣2,3).(2)以原点O为位似中心,在所给的网格中画出一个△A1B1C1,使得△A1B1C1与△ABC 位似,且相似比为2:1.解:(1)由题意B(1,2),C(﹣2,3),故答案为:(1,2),(﹣2,3).(2)如图,△A1B1C1即为所求作.19.小明和小刚打算寒假去北京游玩,他们准备从锦州南站乘坐动车去北京,锦州南站每天开四个检票口,其中有三个电子检票口,分别记为A,B,C,一个人工检票口记为D(如图).(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为;(2)若小明和小刚分别随机选择其中一个检票口进入候车大厅,请用树状图或列表法求他们选择不同电子检票口的概率.解:(1)小明随机选择一个检票口进入候车大厅,那么他从电子检票口A进入的概率为,故答案为:;(2)画树状图如图:共有16个等可能的结果,小明和小刚选择不同电子检票口的结果有6个,∴小明和小刚选择不同电子检票口的概率为=.四、解答题(本大题共2小题,每题7分,共14分)20.如图,在矩形ABCD中,AB=10cm,AD=6cm.动点E从点A出发以1cm/s的速度沿AD向点D运动,动点F从点D出发以2cm/s的速度沿DC向点C运动,设运动时间为ts.(1)当△ABE∽△CBF时,求t的值;(2)当S△DEF=S△ABE时,求t的值.解:(1)由题意得,AE=tcm,DF=2tcm,则CF=(10﹣2t)cm,∵△ABE∽△CBF,∴=,即=,解得,t=,∴当△ABE∽△CBF时,t=;(2)∵AE=tcm,∴DE=(6﹣t)cm,∴S△DEF=×DE×DF=×(6﹣t)×2t=﹣t2+6t,S△ABE=×AE×AB=×t×10=5t,由题意得,﹣t2+6t=5t,解得,t1=0(舍去),t2=1,∴当S△DEF=S△ABE时,t=1.21.某小家电经销商销售一种成本为每个50元的台灯,当每个台灯的售价定为80元时,每周可卖出600个,为了尽可能让利于顾客,经销商决定降价销售.经市场调查发现,这种台灯每周的销量每增加100个,该台灯的售价相应降低2元.如果该经销商每周要获得利润22000元,那么这种台灯的售价应为多少元?解:设每个台灯降x元,根据题意得,=22000,整理这个方程得,x2﹣18x+80=0,解得x=10,x=8,∵尽可能让利于顾客,∴x=8舍去,∴定价为70元.答:这种台灯的售价应为70元.五、解答题(本大题共3小题,22,23题各8分,24题10分,共26分)22.如图,点A,B在x轴上,以AB为边的正方形ABCD在x轴上方,点C的坐标为(1,4),反比例函数y=(k≠0)的图象经过CD的中点E,F是AD上的一个动点,将△DEF沿EF所在直线折叠得到△GEF.(1)求反比例函数y=(k≠0)的表达式;(2)若点G落在y轴上,求线段OG的长及点F的坐标.解:(1)设DC与y轴的交于点M,∵C(1,4),∴BC=4,MC=1,∵四边形ABCD正方形,∴CD=BC=4,∵点E是CD的中点,∴CE=CD=2,∴EM=EC﹣MC=1,∴E(﹣1,4),∴k=xy=﹣1×4=﹣4,∴反比例函数为y=﹣;(2)如图,过点F作FN⊥y轴于点N,由折叠可知,DE=EG=2,∠FGE=∠D=90°,在Rt△GME中,∠GME=90°,∴MG===.∴OG=OM﹣MG=4﹣,∵∠FNG=∠FGE=∠GME=90°,∴∠FGN+∠EGM=90°,∠FGN+∠GFN=90°,∴∠EGM=∠GFN,∴△EGM∽△GFN,∴,∴,∴GN=,∴ON=OM﹣MG﹣GN=4﹣﹣=4﹣2,∴F(﹣3,4﹣2).23.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.【解答】(1)证明:①∵CE平分∠ACB,∴∠OCE=∠BCE,∵BO⊥CE,∴∠CFO=∠CFB=90°,在△OCF与△BCF中,,∴△OCF≌△BCF(ASA),∴OC=BC;②∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,,∴△OCE≌△BCE(SAS),∴∠EBC=∠EOC=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∠DAB=90°,AC=BD,∴OB=OC,∵OC=BC,∴OC=OB=BC,∴△OBC是等边三角形,∴∠OCB=60°,∴∠ECB=OCB=30°,∵∠EBC=90°,∴EB=EC,∵BE2+BC2=EC2,BC=3,∴EB=,EC=2,∵OE⊥AC,OA=OC,∴EC=EA=2,在Rt△ADE中,∠DAB=90°,∴DE===.24.如图1,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,过点C作射线CM 交AB于点P(点P不与点D重合),过点B作BE⊥CM于点E,连接DE,过点D作DF⊥DE交CM于点F.(1)求证:DE=DF;(2)如图2,若AE=AC,连接AF并延长到点G,使FG=AF,连接CG,EG,求证:四边形ACGE为菱形;(3)在(2)的条件下,求的值.【解答】(1)证明:连接CD,如图1所示:∵∠ACB=90°,AC=BC,D是AB的中点,∴CD⊥AB,CD=AB=BD,∴∠CDB=90°,∵BE⊥CE,DF⊥DE,∴∠CEB=∠FDE=90°=∠CDB,∴∠CDF=∠BDE,∵∠COD=∠BOE,∠COD+∠OCD=90°,∠BOE+∠EBO=90°,∴∠EBO=∠OCD,即∠EBD=∠FCD,∴△BDE≌△CDF(ASA),∴DE=DF;(2)证明:由(1)得:△BDE≌△CDF,∴BE=CF,∵∠ACB=90°,∴∠ACF+∠BCE=∠CBE+∠BCE=90°,∴∠ACF=∠CBE,又∵AC=BC,∴△ACF≌△CBE(SAS),∴∠AFC=∠CEB=90°,∴AF⊥CE,∵AE=AC,EF=CF,∵FG=AF,∴四边形ACGE是平行四边形,∵AF⊥CE,∴四边形ACGE为菱形;(3)解:由(2)得:△ACF≌△CBE,CE=2EF=2CF,∴AF=CE,由(1)得:BE=CF,∴AF=2BE,∵∠AFE=∠CEB=90°,∠APF=∠BPE,∴△AFP∽△BEP,∴===2.。
2020-2021学年四川省内江市九年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分。
以下每小题都给出了A、B、C、D四个选项,其中只有一个是符合题目要求的。
)1.下列计算正确的是()A.=﹣2B.C.D.2.下列各组二次根式,属于同类二次根式的是()A.与B.与C.与D.与3.用配方法解方程x2+6x+4=0时,原方程变形为()A.(x+3)2=9B.(x+3)2=13C.(x+3)2=5D.(x+3)2=4 4.如图,某小区计划在一个长80米,宽36米的长方形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度.设道路宽度为x米,则根据题意可列方程为()A.(80﹣2x)(36﹣x)=260×6B.36×80﹣2×36x﹣80x=260x6C.(36﹣2x)(80一x)=260D.(80﹣2x)(36﹣x)=2605.下列事件中是不可能事件的是()A.抛掷一枚硬币50次,出现正面的次数为40次B.从一个装有30只黑球的不透明袋子中摸出一个球为黑球C.抛掷两枚质地均匀的普通正方体骰子,出现点数之和等于13D.从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K6.在△ABC中,∠C=90°,AB=10,tan A=,则BC的长为()A.2B.6C.8D.107.如图,商用手扶梯AB的坡比为1:,已知扶梯的长AB为12米,则小明乘坐扶梯从B处到A处上升的高度AC为()A.6米B.6米C.12米D.12米8.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.9.当b﹣c=3时,关于x的一元二次方程2x2﹣bx+c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°11.已知﹣1<a<0,化简的结果为()A.2a B.﹣2a C.﹣D.12.如图,正方形ABCD中,E为BC中点,连接AE,DF⊥AE于点F,连接CF,FG⊥CF 交AD于点G,下列结论:①CF=CD;②G为AD中点;③△DCF∽△AGF;④=,其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共4个小题,每小题4分,共16分。
九年级(上)期末数学试卷一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.109.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm211.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.14.如图所示,写出一个能判定△ABC∽△DAC的条件.15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为.x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 718.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.参考答案与试题解析一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】根据点与圆的位置关系进行判断.【解答】解:∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π【分析】根据弧长公式l=,计算即可.【解答】解:弧长==,故选:D.4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.【分析】利用列表法展示所以36种等可能的结果数,找出向上一面的两个骰子的点数相同的占6种,然后根据概率公式进行计算.【解答】解:列表如下:共有6×6=36种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种,所以向上一面的两个骰子的点数相同的概率==.故选:D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【解答】解:∵△ABC与△DEF是位似图形,相似比为2:3,∴△ABC∽△DEF,∴=,即=,解得,DE=,故选:B.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°【分析】根据垂径定理的推论,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度数,又由OC=OA,即可求得∠ACO的度数【解答】解:∵AB为⊙O的直径,C为的中点,∴OC⊥AD,∵∠BAD=20°,∴∠AOC=90°﹣∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO===55°,故选:C.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.10【分析】直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则把y=﹣4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【解答】解:根据题意得:x2+2x+k=﹣4x+1,即x2+6x+(k﹣1)=0,则△=36﹣4(k﹣1)=0,解得:k=10.故选:D.9.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【解答】解:由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;故选:A.10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm2【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH =9cm,由等边三角形的面积公式即可得出答案.【解答】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB∥GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠PAG=90°﹣60°=30°,∴PG=AG=cm,同理:QH=cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=GH2=cm2;故选:A.11.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转,旋转角为α,∴AB=AD,∠BAD=α,∴∠B==90°﹣,故选:C.12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【解答】解:∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是,故答案为.14.如图所示,写出一个能判定△ABC∽△DAC的条件AC2=DC•BC(答案不唯一).【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【解答】解:已知△ABC和△DCA中,∠ACD=∠BAC;如果△ABC∽△DAC,需满足的条件有:①∠DAC=∠B或∠ADC=∠BAC;②AC2=DC•BC;故答案为:AC2=DC•BC(答案不唯一).15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为4.【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴=,∵AD=4,∴AB=4.∴DB=AB﹣AD=4﹣4.故答案为:4﹣4.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为20cm.【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC 的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【解答】解:∵PA、PB分别切⊙O于A、B,∴PB=PA=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=PA+PB=20cm,故答案为20cm.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为﹣1 .x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 7【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.18.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为﹣1 .【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣7x﹣30=0,(x﹣10)(x+3)=0,x﹣10=0,x+3=0,x1=10,x2=﹣3.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得OD∥AC,即可求得∠CAD=∠BAD,继而求得答案;(2)首先连接OE,OD,由(1)得:OD∥AC,由点F为的中点,易得△AOF是等边三角形,继而求得答案.【解答】解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.【分析】(Ⅰ)由DE∥BC,可得,由此即可解决问题;(Ⅱ)由PB∥DC,可得,可得PA的长.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴,又∵BF=15,∴,∴;(Ⅱ)解:能.∵四边形ABCD是平行四边形,∴PB∥DC,AB=DC=8,∴,∴,∴PA=.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.【分析】(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;(2)将△ACE绕点A顺时针旋转90°至△ABH位置,证明△EAD≌△HAD转化DE、EC,使所求线段集中在Rt△BHD中利用勾股定理解决.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,,∴△EAD≌△HAD(SAS).∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,即BD2+CE2=DE2.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x 轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.。
密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3密学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感 根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线;(2)若OB=5,OP=,求AC 的长.题20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC ﹣CD ﹣DE ,如图所示,从甲队开始工作时计时. (1)分别求线段BC 、DE 所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax 2+bx (a ≠0)经过A (﹣2,0(﹣3,3),顶点为C .(1)求抛物线的解析式; (2)求点C 的坐标;(3)若点D 在抛物线上,点E 在抛物线的对称轴上,且以O 、D 、E 为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.密学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在图(2)中的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量y (kg )与零售价x (元)之间的函数关系为反比例函数关系,如图(3)所示,该经销商拟每日售出不低于64kg 该种水果,且当日零售价不变,请你帮助该经销商设计每日进货和销售的方案,使得日获得的利润z (元)最大.24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.封 线 内 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x轴,与抛物线交于点D .若点A 的坐标为(﹣1,0)OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±, 即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度. 18.解:设每年市政府投资的增长率为x , 根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去). 答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径, ∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC .∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径,∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形,密 封 线 内∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50),∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5. (2)由题意,得甲队每小时清理路面的长为 100÷5=20, 甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1,密学校 班级 姓名 学号密 封 线 内 不 得 答 题则C 的坐标是(﹣1,﹣1);(3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方. OA=2,则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3); 当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23.解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg … (2)当20≤m ≤60时,w=5m 当m >60时,w=4m …当240<w ≤300时,同样的资金可以批发到更多的水果.… (3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠ACB=60°,∵△EFG 是等边三角形,∴∠GFE=60°,GE=EF=BF •sin60°=t ,密封线内不得答∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF==t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)分三种情况:①当0<t≤时,S=0;②当<t≤2时,如图2所示,S=S△EFG﹣S△MEN=×(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;③当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,∴3÷2=,∴3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即:点P在△EFG内部时t的取值范围为:<t<.密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分)1.已知四条线段满足,将它改写成为比例式,下面正确的是( ) A .B .C .D .2.二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是( ) A .(1,3) B .(﹣1,3) C .(1,﹣3) D .(﹣1,﹣3) 3.下列事件中,必然事件是( ) A .抛出一枚硬币,落地后正面向上 B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )A .∠ACDB .∠ADBC .∠AED D .∠ACB5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为( )A .1:2B .2:1C .1:4D .4:17.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是( )A .﹣4B .0C .2D .38.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( )A .12πcm 2B .15πcm 2C .20πcm 2D .30πcm 2二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .密封线内不得答题10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果; (2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB 于D .(1)求证:△ACB ∽△ADE ; (2)求AD 的长度.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD . (1)①填空:∠ACB= ,理由是 ; ②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.密封线内不得答题五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.25.如图(1),将线段AB绕点A逆时针旋转2α(090°)至AC,P是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC它们的数量关系.26.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB翻折,得到△PBC′.(1)该抛物线的解析式为(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).密线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1.C 2.A .3.D .4.A .5.D .6.C .7.B .8.B . 二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m . 11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 . 14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 3 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 ∠C=∠BAD (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).密 线 内 得 答三、解答题(本大题共有4小题,共39分) 17.解方程:解:(1)方程变形得:x 2﹣4x=﹣1, 配方得:x 2﹣4x+4=3,即(x ﹣2)2=3, 开方得:x ﹣2=±, 则x 1=2+,x 2=2﹣; (2)(x+1)(x ﹣2)=0, (x+1)(x ﹣2)=0, 解得x 1=﹣1,x 2=2. 18.解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).19. 解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°.20.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为. 四、解答题(本大题共有4小题,共39分) 21. (1)证明:∵DE ⊥AB ,∠C=90°, ∴∠EDA=∠C=90°, ∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE , ∴=,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴=, ∴AD=4.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.解:(1)由图可得,扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=600x 2m 2+50xm 2+m 2,即扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=600x 2m 2+50xm 2+m 2;(2)∵扩充后的绿地面积y 是原矩形面积的2倍, ∴600x 2m 2+50xm 2+m 2=2×30xm ×20xm , 解得(舍去),即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是.23.解:(1)①∵AB 为⊙O 的直径, ∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角; ②连接OC ,则∠CAO=∠ACO , ∵AC 平分∠BAB , ∴∠BAC=∠CAD , ∵∠ECB=∠CAD . ∴∠BAC=∠ECB . ∴∠ECB=∠ACO ,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE ⊥OC .∴CE 与⊙O 相切; (2)∵CE 与⊙O 相切, ∴CE 2=BE •AE , ∵AB=6,CE=4, ∴42=BE (BE+6), ∴BE=2, ∴AE=6+2=8, ∵△ACE ∽△CBE , ∴=,即=,∴AC=4, ∴AC=CE=4, ∴∠CAB=∠E ,密 封 线 内 不 得 答 题∴∠ECB=∠E ,∴∠ABC=2∠ECB=2∠BAC ,BC=BE=2, ∴∠DAB=∠ABC , ∴AD=BC=2.五、解答题(本大题共有3小题,共35分)24.解:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N . 由题意AB=AC=8,∠A=120°, ∴∠BAM=∠CAM=60°,∠B=∠C=30°, ∴AM=AB=4,BM=CM=4, ∴BC=8, ∴m=BC=8, 故答案为8.(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x , ∴PN=x . s=•BQ •PN=•x ••x=x 2.②当8<x ≤16,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°, ∴PN=PC=8﹣x ,∴s=•BQ •PN=•x •(8﹣x )=﹣x 2+4x .③当8<x ≤16时,s=•8•(8﹣•x )=﹣2x+32.(3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC , ∵PC=QC ,∴16﹣x=(8﹣x ), ∴x=4+4.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ , 即16﹣x=x ﹣8, ∴x=8+4.∴△PCQ 为等腰三角形时x 的值为4+4或8+4.25.证明:(1)如图(1),在PA 上截取PD=PA , ∵AB=AC ,∠CAB=60°, ∴△ABC 为等边三角形, ∴∠APC=∠CPB=60°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴△APD 为等边三角形,∴AP=AD=PD ,∴∠ADC=∠APB=120°, 在△ACD 和△ABP 中,,∴△ACD ≌△ABP (AAS ),∴CD=PB , ∵PC=PD+DC , ∴PC=PA+PB ; (2)PC=PA+PB ,如图(2),作AD ⊥AP 与PC 交于一点D , ∵∠BAC=90°, ∴∠CAD=∠BAP , 在△ACD 和△ABP 中,,∴△ACD ≌△ABP , ∴CD=PB ,AD=AP , 根据勾股定理PD=PA , ∴PC=PD+CD=PA+PB .26.解:(1)把点A (0,m )代入y=,得:2am 2﹣m=m , am ﹣1=0, ∵am >1, ∴a=, ∴y=,故答案为:y=;(2)DE=BC .理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ), ∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上,得:,解得:,∴直线BP 的解析式为:y=x ﹣3m , 令y=0, x ﹣3m=0,解得:x=,∴点D (,0);密 封 线 内 不 得 答 题设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上, 得:,解得:, ∴直线CP 的解析式为:y=x ﹣2m ;抛物线与直线CP 相交于点E ,可得:,解得:,(舍去), ∴点E (,﹣);∵x D =x E , ∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE , 即DE=BC ; (3)C ′(,).连接CC ′,交直线BP 于点F , ∵BC ′=BC ,∠C ′BF=∠CBF , ∴CC ′⊥BP ,CF=C ′F ,设直线BP 的解析式为y=kx+b ,点B (2m ,m ),P (m ,﹣m )在直线上,∴,解得:,∴直线BP 的解析式为:y=x ﹣3m , ∵CC ′⊥BP ,∴设直线CC ′的解析式为:y=x+b 1,∴,解得:b 1=2m ,联立①②,得:,解得:,∴点F (,),∴CF==, 设点C ′的坐标为(a ,), ∴C ′F==,解得:a=,∴, ∴C ′(,).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题:每小题3分,共36分. 1.方程x 2=4x 的解是( )A .x=4B .x=2C .x=4或x=0D .x=0 2.在下列事件中,是必然事件的是( ) A .购买一张彩票中奖一百万元B .抛掷两枚硬币,两枚硬币全部正面朝上C .在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121 D .100(1﹣x )2=1214.关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .05.对于抛物线y=﹣(x ﹣5)2+3,下列说法正确的是( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(﹣5,3)D .开口向上,顶点坐标(﹣5,3)6.二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠0 7.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式中错误的是( )A .a <0B .c >0C .b 2﹣4ac >0 D .a+b+c >0 8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )封线内不A. B. C. D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65πC.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分. 19.解方程:(1)3x 2﹣2x=4x 2﹣3x ﹣6 (2)3x 2﹣6x ﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.密封线内22.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.(1)请写出两个不同的正确结论;(2)若CB=8,ED=2,求⊙O的半径.23.在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC.(1)如图1,以点B为旋转中心,将△EBC得到△E′BA(点C与点A重合,点E到点E′处),连接DE证:DE′=DE;(2)如图2,若∠ABC=90°,AD=4,EC=2,求DE的长.24.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积密学校 班级 姓名 学号密 封 线 内 不 得 答 题25.如图,对称轴为直线x=2的抛物线经过点A (﹣1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a+1,0),点P 是第一象限内的抛物线上的动点. (1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.参考答案一、选择题:每小题3分,共36分.1.C .2.C . 3.C .4.B .5.A .6.D .7.D .8.D .9.B . 10.B .11.B .12.A .二、填空题:每小题3分,共18分.13.已知关于x 的方程x 2﹣3x+k=0有一个根为1,则它的另一个根为 2 .14.抛物线y=3x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是 y=3(x ﹣1)2﹣2 .15.如图,⊙O 的直径AB=12,弦CD ⊥AB 于M ,且M 是半径OB 的中点,则CD 的长是 6 (结果保留根号).密封线内不得答题16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1•x2= 2 .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是14 .18.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于4﹣4 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分.19.解方程:(1)3x2﹣2x=4x2﹣3x﹣6(2)3x2﹣6x﹣2=0.解:(1)x2﹣x﹣6=0,(x﹣3)(x+2)=0,x﹣3=0或x+2=0,所以x1=3,x2=﹣2;(2)△=(﹣6)2﹣4×3×(﹣2)=60,x==,所以x1=,x2=.20.解:(1)设每件衬衫应降价x元,由题意得:(50﹣x)(40+2x)=2400,解得:x1=10,x2=20,因为尽量减少库存,x1=10舍去.答:每件衬衫应降价20元.(2)设每天盈利为W元,则W=(50﹣x)(40+2x)=﹣2(x﹣15)2+2450,当x=15时,W最大为2450.答:每件衬衫降价15元时,商场服装部每天盈利最多.21.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)树状图得: ∴一共有6种等可能的情况点(x ,y )落在坐标轴上的有4种, ∴P (点(x ,y )在坐标轴上)=;(2)∵点(x ,y )落在以坐标原点为圆心,2为半径的圆内的有(0,0),((0,﹣1), ∴P (点(x ,y )在圆内)=.22.解:(1)∵AB 是⊙O 的直径,∴∠C=90°,∵OD ⊥CB , ∴CE=BE , =,则三个不同类型的正确结论:∠C=90°;CE=BE ; =; (2)∵OD ⊥CB ,∴CE=BE=BC=4,又DE=2, ∴OE 2=OB 2﹣BE 2,设⊙O 的半径为R ,则OE=R ﹣2, ∴R 2=(R ﹣2)2+42, 解得R=5.答:⊙O 的半径为5.23.(1)证明:∵以点B 为旋转中心,将△EBC 按顺时针方向旋转,得到△E ′BA (点C 与点A 重合,点E 到点E ′处), ∴BE ′=BE ,∠E ′BA=∠EBC , ∴∠E ′BE=∠ABC ,∵∠DBE=∠ABC ,∴∠DBE=∠E ′BE ,即∠DBE ′=∠DBE , 在△BDE ′和△BDE 中,,∴△BDE ′≌△BDE (SAS ),封线内不得答题∴DE′=DE;(2)解:以点B为旋转中心,将△EBC按顺时针方向旋转90°得到△E′BA(点C与点A重合,点E到点E′处),如图2,∵∠ABC=90°,BA=BC,∴∠BCE=∠BAD=45°,∵△EBC按顺时针方向旋转90°得到△E′BA,∴∠BAE′=∠BCE=45°,AE′=CE=2,∴∠DAE′=∠BAD+∠BAE′=90°,在Rt△DAE′中,∵DE′2=AD2+AE′2=42+22=20,∴DE′=2,由(1)的结论得DE=DE′=2.23.解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O的半径为1,AB是⊙O的直径,∴AB=2,∵BC∥AD,CD∥AB∴四边形ABCD是平行四边形∴CD=AB=2∴S梯形OBCD===;∴图中阴影部分的面积等于S梯形OBCD﹣S扇形OBD=﹣×π×12=﹣.25.解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)当a=1时,E (1,0),F (2,0),OE=1,OF=2.设P (x ,﹣x 2+4x+5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN=x ,ON=﹣x 2+4x+5, ∴MN=ON ﹣OM=﹣x 2+4x+4.S 四边形MEFP =S 梯形OFPN ﹣S △PMN ﹣S △OME =(PN+OF )•ON ﹣PN •MN ﹣OM •OE=(x+2)(﹣x 2+4x+5)﹣x •(﹣x 2+4x+4)﹣×1×1 =﹣x 2+x+ =﹣(x ﹣)2+,∴当x=时,四边形MEFP 的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P 坐标为(,).。
2020—2021学年第一学期九年级期末学业水平质量检测数学试卷一、选择题(本题共8个小题,每小题2分,共16分.每小题只有一个正确选项)1.如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②AE DEAB BC=;③AD AEAC AB=. 使△ADE与△ACB一定相似的是A.①②B.②③C.①③D.①②③2. 如图,A、B、C是半径为4的⊙O上的三点. 如果∠ACB=45°,那么AB的长为A.πB.2πC.3πD.4π3. 小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地. 如果他再抛第5次,那么硬币正面朝上的概率为A.1 B.12C.14D.154.如图,数轴上有A、B、C三点,点A、C关于点B对称,以原点O为圆心作圆,如果点A、B、C分别在⊙O外、⊙O内、⊙O上,那么原点O的位置应该在A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点5. 如图,P A和PB是⊙O的切线,点A和点B为切点,AC是⊙O的直径. 已知∠P=50°,那么∠ACB的大小是A.65°B.60°C.55°D.50°6. 如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为80米.如果设河的宽度为x米,那么下列关系式中正确的是A.1802xx=+B.180xx=+C.802xx=+D.803xx=+cCBA7. 体育节中,某学校组织九年级学生举行定点投篮比赛, 要求每班选派10名队员参加.下面是一班和二班 参赛队员定点投篮比赛成绩的折线统计图(每人投 篮10次,每投中1次记1分),请根据图中信息判断:①二班学生比一班学生的成绩稳定;②两班学生成绩的中位数相同;③两班学生成绩的众数相同. 上述说法中,正确的序号是 A .①② B .①③C .②③D .①②③8. 运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线可以看作是一条抛物线,不考虑空气阻力,足球距离地面的高度y (单位:m )与足球被踢出后经过的时间x (单位:s )近似满足函数关系()20y ax bx c a =++≠.如图记录了3个时刻的数据,根据函数模型和所给数据,可推断出足球飞行到最高点时,最接近的时刻x 是 A .4 B .4.5C .5D .6二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,线段BD 、CE 相交于点A ,DE ∥BC .如果AB =4,AD =2,DE =1.5, 那么BC 的长为_________.10.在平面直角坐标系xOy 中,二次函数()214y x =--+的图象如图,将二次函数()214y x =--+的图象平移,使二次函数()214y x =--+的图象的最高点与坐标原点重合,请写出一种平移方法:__________________________________________.11.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,则直尺的宽度为____cm.12. “阅读让自己内心强大,勇敢面对抉择与挑战.”某校倡导学生读书,下面的表格是该校九年级学生本学期内阅读课外书籍情况统计表. 请你根据统计表中提供的信息,求出表中a 、b 的值:a = ,b = .13.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y 美元. 设2017年到2019年该地区居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是________________________. 图书种类 频数 频率 科普常识 210 b 名人传记 204 0.34 中外名著 a 0.25 其他360.06x s ()y m ()182014O yx4O 1EDBCA二班一班成绩/分109876109876543201514. 如图,直角三角形纸片ABC ,90ACB ∠=︒,AC 边长为10 cm. 现从下往上依次裁剪宽为4 cm 的矩形纸条, 如果剪得第二张矩形纸条恰好是正方形,那么BC 的长 度是____cm .15. 已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出一组满足条件的a ,b 的值:a =______,b =________.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线a 和直线外一点P . 求作:直线a 的垂线,使它经过P . 作法:如图2.(1)在直线a 上取一点A ,连接P A ; (2)分别以点A 和点P 为圆心,大于12AP 的长为半径 作弧,两弧相交于B ,C 两点,连接BC 交P A 于点D ; (3)以点D 为圆心,DP 为半径作圆,交直线a 于点E (异于点A ),作直线PE .所以直线PE 就是所求作的垂线.请回答:该尺规作图的依据是_____________________________________________. 三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17.计算:(4cos30π1︒+--.18. 已知:如图,AB 为⊙O 的直径,OD ∥AC . 求证:点D 平分BC .19.如图,在□ABCD 中,连接DB ,F 是边BC 上一点,连接DF 并延长,交AB=∠A . (1)求证:△BDF ∽△BCD ;(2)如果BD =9BC =,求ABBE的值. 图1aaP20. 如图,菱形ABCD 的对角线交于点O ,点E 是菱形外一点,DE ∥AC ,CE ∥BD . (1)求证:四边形DECO 是矩形;(2)连接AE 交BD 于点F ,当∠ADB =30°,DE=2时,求AF 的长度.21.如图,直线2y x =+与反比例函数()00ky k x x=>>,的图象交于点A (2,m ),与y 轴交于点B .(1)求m 、k 的值;(2)连接OA ,将△AOB 沿射线BA 方向平移,平移后A 、O 、B 的对应点分别为A'、O'、B',当点O'恰好落在反比例函数()0ky k x=>的图象上时,求点O' 的坐标; (3)设点P 的坐标为(0,n )且04n <<,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky k x=>的图象分别交于点C ,D ,当C 、D 间距离小于或等于4时,直接写出n 的取值范围.22.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,连接CD ,过点C 作CE ⊥DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点. (1)求证:CF 是⊙O 的切线; (2)当185BD=,3sin 5F=时,求OF 的长.23. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每名被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有_______人,扇形统计图中α的度数是_______; (2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或画树状图法求出选中书法与乐器组合在一起的概率.24.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,30CAB ∠=︒,D 是直径AB 上一动点,连接CD 并过点D 作CD 的垂线,与⊙O 的其中一个交点记为点E (点E 位于直线CD 上方或左侧),连接EC .已知AB =6 cm ,设A 、D 两点间的距离为x cm ,C 、D 两点间的距离为1y cm ,E 、C 两点间的距离为2y cm . 小雪根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小雪的探究过程:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请将表格补充完整; x /cm 0 1 2 3 4 5 61y /cm5.20 4.36 3.60 2.65 2.65 2y /cm5.204.564.224.244.775.606.00 (2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y ),(x ,y ),并画出函数y 的图象;y 2cm6543学生选修课程条形统计图学生选修课程扇形统计图25. 在平面直角坐标系xOy 中,抛物线()240y ax ax m a =-+≠与x 轴的交点为A 、B ,(点A 在点B 的左侧),且AB =2. (1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);(2)若抛物线()240y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a 的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接 写出a 的取值范围.26. 如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系是___________________;(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形; ②求证:DF =.图2图127. 在平面直角坐标系xOy中,⊙C的半径为r,点P与圆心C不重合,给出如下定义:若在⊙C上存在一点M,使30MPC∠=︒,则称点P为⊙C的特征点.(1)当⊙O的半径为1时,如图1.①在点P1(-1,0),P2(1,P3(3,0)中,⊙O的特征点是______________.②点P在直线y b=+上,若点P为⊙O的特征点,求b的取值范围.(2)如图2,⊙C的圆心在x轴上,半径为2,点A(-2,0),B(0,.若线段AB上的所有点都是⊙C的特征点,直接写出圆心C的横坐标m的取值范围.2020—202021学年第一学期九年级期末学业水平质量检测数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 3 10. 向左平移1个单位,再向下平移4个单位(答案不唯一) 11. 312. 150,0.3513. ()23001y x =+ 14. 20 15. 1,2(答案不唯一) 16. 到线段两个端点距离相等的点在这条线段的垂直平分线上,直径所对的圆周角是直角,两点确定一条直线三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17. 解:原式=411+-, ………………… 4分 =11+-,=0. ………………… 6分18. 证明:连接CB . ………………… 1分∵AB 为⊙O 的直径,∴90ACB ∠=︒. ………………… 3分 ∵OD ∥AC ,∴OD ⊥CB ,. …………………5分 ∴点D 平分BC . ………………… 6分 另证:可以连接OC 或AD .19. (1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AE ,A C ∠=∠,AB =DC . ………………… 1分 ∵EDB A ∠=∠,∴EDB C ∠=∠. ………………… 2分 ∵DBF CBD ∠=∠,∴△BDF ∽△BCD . ………………… 3分(2)解:∵△BDF ∽△BCD ,∴BF BDBD BC =. ………………… 4分9=.∴5BF=. …………………5分∵DC∥AE,∴△DFC∽△EFB.∴CF DCBF BE=.∴45ABBE=. …………………6分20. (1)证明:∵四边形ABCD是菱形,∴AC⊥BD. ………………1分∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形.∴四边形DECO是矩形. ………………2分(2)解:∵四边形ABCD是菱形,∴AO OC=.∵四边形DECO是矩形,∴DE OC=.∴2DE AO==. ………………3分∵DE∥AC,∴OAF DEF∠=∠.∵AFO EFD∠=∠,∴△AFO≌△EFD.∴OF DF=. ………………4分在Rt△ADO中,tanOAADBDO∠=.∴2DO=.∴DO=………………5分∴FO=∴AF===. ………………6分方法二:∴△AFO≌△EFD.在Rt △ACE 中,AC =4,CE =OD=∴AE=∴AF =12AE. 21. 解:(1)∵直线2y x =+过点A (2,m ),∴224m =+=. ……………… 1分 ∴点A (2,4). 把A (2,4)代入函数ky x=中, ∴42k =. ∴8k =. ……………… 2分 (2)∵△AOB 沿射线BA 方向平移,∴直线OO' 的表达式为y x =. ……………… 3分∴,8y x y x =⎧⎪⎨=⎪⎩.解得x =. ……………… 4分 ∴点O'的坐标为(. ……………… 5分(3)24n <≤. ……………… 6分22. (1)证明:连接OC .∵CB CB =,∴2BOC BAC ∠=∠. ……………… 1分 ∵∠ABD =2∠BAC , ∴BOC ABD ∠=∠.∴BD ∥OC . ……………… 2分 ∵CE ⊥DB ,∴CE ⊥OC . ……………… 3分 ∴CF 是⊙O 的切线.(2)解:连接AD .∵AB 为⊙O 的直径,∴BD ⊥AD . ∵CE ⊥DB , ∴AD ∥CF .在Rt △ABD 中, ∴3sin sin 5BD F=BAD AB ∠==. ∴18355AB =. ∴6AB =. ……………… 5分 ∴3OC =. 在Rt △COF 中, ∴3sin 5OC F OF ==. ∴335OF =. ∴5OF =. ……………… 6分 另解:过点O 作OG ⊥DB 于点G .23. 解:(1)40,108︒; ……………… 2分 (2)条形统计图补充正确; ……………… 4分 (3)列表法或画树状图正确: ……………… 5分∴P (AC )=126=. ……………… 6分 24. 解:(1)3,3 ……………… 2分(2) ……………… 4分 (3)4.5 或6 ……………… 6分25.解:(1)对称轴为直线422ax a-=-=. ……………… 1分 ∵AB =2,点A 在点B 的左侧,∴A ()10,,B ()30, 把A (1,0)代入()240y ax ax m a =-+≠中,y 2cm 65432∴3m a =. ……………… 2分(2)∵抛物线()2430y ax ax a a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,∴0a <. ……………… 3分当抛物线()2430y ax ax a a =-+≠经过点(0,-1)时,可得13a =-. ∴a 的取值范围是103a -<<. ……………… 4分 (3)32a -<-≤或2<3a ≤. ……………… 6分26. (1)BF =. ……………… 1分(2)①依据题意补全图形; ……………… 3分②证明:如图,连接BF 、GB .∵四边形ABCD 是正方形,∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠. ∴45BAC DAC ∠=∠=︒. 在△ADF 和△ABF 中,AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△ABF . ……………… 4分∴DF BF =.∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点,∴AG EG BG FG ===. ……………… 5分 ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上. ∵BF BF =,45BAC ∠=︒,∴290BGF BAC ∠=∠=︒. ……………… 6分 ∴△BGF 是等腰直角三角形.∴BF =.∴DF =. ……………… 7分27. 解:(1) P 1,P 2.……………… 2分②当0b >时,设直线y b =+与以2为半径的⊙O 相切于点C ,与y 轴交于点E ,与x 轴交于点F . ∴E (0,b ),F,0),OC ⊥EF .∴3tan OF FEO OE b ∠===. ∴30FEO ∠=︒. (3)∵1sin 2OC FEO OE ∠==,∴212b =. ∴4b =. ……………… 4分 当0b <时,由对称性可知:4b =-. ……………… 5分 ∴b 的取值范围是44b -≤≤. ……………… 6分 (2)∴m 的取值范围为22m -<≤. ……………… 7分。
2020-2021学年天津市南开区九年级上学期数学期末试卷及答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查轴对称图形与中心对称图形的识别,理解基本定义是解题关键.2. 下列事件中,是随机事件的是()A. 画一个三角形,其内角和是180°B. 投掷一枚正六面体骰子,朝上一面的点数为5C. 在只装了红色卡片的袋子里,摸出一张白色卡片D. 明天太阳从东方升起【答案】B【解析】【分析】在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.【详解】解:、画一个三角形,其内角和是,是必然事件;A180、投掷一枚正六面体骰子,朝上一面的点数为5,属于随机事件;B、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件;C 、明天太阳从东方升起,是必然事件;D 故选:B .【点睛】本题主要考查随机事件的概念:随机事件是可能发生,也可能不发生的事件.3. 对于反比例函数y=,下列判断正确的是( ) 3xA. 图象经过点(-1,3)B. 图象在第二、四象限C. 不论x 为何值,y>0D. 图象所在的第一象限内,y 随x 的增大而减小【答案】D【解析】【分析】根据反比例函数的性质:当k >0,双曲线的两支分别位于第一、第三象限,k y x=在每一象限内y 随x 的增大而减小,以及凡是反比例函数经过的点横纵坐标之积进行分k =析即可.【详解】A 、,该选项错误;133k -⨯=-≠B 、∵,∴图象在第一、三象限,该选项错误;30k =>C 、∵,∴当时,,该选项错误;30k =>0x >0y >D 、∵,∴图象所在的第一象限内,y 随x 的增大而减小,该选项正确; 30k =>故选:D .【点睛】本题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)k y x=反比例函数的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.4. 如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE=25°,若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( )A. 25°B. 40°C. 90°D. 50° 【答案】B【解析】【分析】证明Rt△ABE≌Rt△ADF(HL ),可得∠BAE=∠DAF=25°,求出∠EAF 即可解决问题.【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=∠B=∠D=90°由旋转不变性可知:AE =AF ,在Rt△ABE 和Rt△ADF 中,, AB AD AE AF =⎧⎨=⎩∴Rt△ABE≌Rt△ADF(HL ),∴∠BAE=∠DAF=25°,∴∠EAF=90°﹣25°﹣25°=40°,∴旋转角为40°,故选:B .【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE 和Rt△ADF 全等是解题的关键,也是本题的难点.5. 如图,在△ABC 中,DE∥BC,AD =6,DB =3,AE =4,则AC 的长为( )A. 2B. 4C. 6D. 8【答案】C【解析】 【分析】根据平行线分线段成比例定理,可得,解比例方程可求出EC ,最后即AD AE DB EC=可求出AC . 【详解】∵DE∥BC, ∴,即, AD AE DB EC =643EC=解得:EC =2,∴AC=AE+EC =4+2=6;故选C .【点睛】此题考查的是平行线分线段成比例定理,掌握平行线分线段成比例定理及推论和比例的基本性质是解决此题的关键.6. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD【答案】D【解析】 【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D .【点睛】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.7. 已知是反比例函数上的三点,若,()()()112233,,,,,A x y B x y C x y 2y x=123x x x <<,则下列关系式不正确的是 ( )213y y y <<A. B. C. D. 120x x <130x x <230x x <120x x +<【答案】A【解析】【分析】根据反比例函数和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 2y x=在第一象限,得出x 1<x 2<0<x 3,再选择即可.【详解】解:∵反比例函数中,2>0, 2y x=∴在每一象限内,y 随x 的增大而减小,∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限,∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.8. 已知k 1<0<k 2,则函数y=k 1x 和的图像大致是( ) 2k y x =A. B. C. D.【答案】D【解析】【详解】∵k 1<0<k 2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D .9. 如图,切于点切于点交于点,下列结论中不一定成PA O ,A PB O B PO ,O C 立的是( )A. B. 平分PA PB =PO APB ∠C.D.AB OP ⊥2PAB APO ∠=∠【答案】D【解析】 【分析】利用切线长定理证明△PAG≌△PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:∠APO=∠BPO,PA =PB ,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.10. 已知二次函数y =x 2﹣(m﹣2)x +4图象的顶点在坐标轴上,则m 的值一定不是( )A. 2B. 6C. ﹣2D. 0【答案】D【解析】【分析】先把二次函数的解析式化为顶点式,再利用该函数图象的顶点在坐标轴上,可以得到关于 的方程,解方程从而可得答案. m 【详解】解:∵二次函数 ()()22222244,24m m y x m x x --⎛⎫=--+=--+ ⎪⎝⎭∴该函数的顶点坐标为 ()222,4,22m m ⎡⎤---+⎢⎥⎢⎥⎣⎦∵二次函数图象的顶点在坐标轴上, ()224y x m x =--+∴或, 202-=m ()22404m --+=当时, 202-=m 2,m =当时, ()22404m --+=()2216,m -=或24m ∴-=24,m -=-或6m ∴=2,m =-综上:或或2m =6m = 2.m =-故选:D .【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标在坐标轴上的坐标特点是解题的关键.11. 如图,⊙O 的半径为1,点 O 到直线 的距离为2,点 P 是直线上的一个动点,PA 切⊙O a a 于点 A ,则 PA 的最小值是( )A. 1 C. 2【答案】B【解析】 【分析】因为PA 为切线,所以△OPA 是直角三角形.又OA 为半径为定值,所以当OP 最小时,PA 最小.根据垂线段最短,知OP=2时PA 最小.运用勾股定理求解.【详解】解:作OP⊥a 于P 点,则OP=2.根据题意,在Rt△OPA 中,故选:B .【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA 最小时点P 的位置是解题的关键,难度中等偏上.12. 如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0).其中正确的是( )A. ①②③B. ②④C. ①③④D. ①③⑤【答案】C【解析】 【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断.【详解】∵抛物线的顶点坐标A (1,3),∴抛物线的对称轴为直线x ==1, 2b a∴2a+b =0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A (1,3),∴x=1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确.∵抛物线与x 轴的一个交点为(4,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误;故选:C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.二、填空题(本大题共6小题,每小题3分,共18分13. 已知,则________. 45a b =a b=【答案】 54【解析】【分析】由分式的基本性质进行化简,即可得到答案. 【详解】解:由,得. 45a b =54a b =故答案为:. 54【点睛】本题考查了分式的性质,解题的关键是掌握分式的性质进行解题.14. 现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是__________.【答案】.12【解析】【分析】找出所有的可能情况组合以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;能组成三角形的结果有2个(2、6、7,4、6、7,), ∴能构成三角形的概率为 2142=故答案为.12【点睛】本题考查了树状图法以及三角形的三边关系;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. m n 15. 下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y=﹣2x+1,②y ,③y=(x+2)2+1(x >0),④y=﹣2(x﹣3)2﹣1(x <0) 1x =【答案】③④【解析】【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y 随x 的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.16. 如图,菱形的顶点C 的坐标为,顶点A 在x 轴的正半轴上.反比例函数OABC (3,4)的图象经过顶点B ,则k 的值为__. (0)k y x x=>【答案】32【解析】【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值.【详解】∵C(3,4),,∴CB=OC=5,则点B 的横坐标为3+5=8,故B 的坐标为:(8,4),将点B 的坐标代入y=得, k x 4=, k 8解得:k=32.故答案为32.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B 的坐标.17. 如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为_____(结果保留根号和π).【答案】π 43【解析】 【分析】设正六边形的中心为点O ,连接OD 、OE ,作OH⊥DE 于H ,根据正多边形的中心角公式求出∠DOE,求出OH 和正六边形ABCDEF 的面积,再求出∠A,利用扇形面积公式求出扇形ABF 的面积,即可得出结果.【详解】解:设正六边形的中心为点O ,连接OD 、OE ,作OH⊥DE 于H ,如图所示:∠DOE==60°, 3606∴OD=OE =DE =2,∴正六边形ABCDEF 的面积==, 12∠A=, ()621801206-⨯︒=︒∴扇形ABF 的面积, 2120243603ππ⨯==∴图中阴影部分的面积, 43π=-故答案为:. 43π【点睛】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.18. 如图,在由小正方形组成的网格中,△ABC 的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC 的高AH ,并简要说明作图方法(不要求证明):_____.【答案】取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.【解析】【分析】取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,根据三角形的三条高线交于一点可得AH 即为所求.【详解】如图,取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.∵BM⊥AC,CN⊥AB,∴AH⊥BC.故答案为:取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.【点睛】本题考查了作图—基本作图,解题关键是掌握三角形的三条高线交于一点.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19. 有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种.(2)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率.【答案】(1)树状图见解析,两次摸球出现的所有可能结果共有16种;(2);(3) 14316【解析】【分析】(1)画出树状图,然后统计一下所有情况即可;(2)根据树状图,统计出两次摸出的球的标号相同种数,利用概率公式列式计算即可得解;(3)根据树状图两次摸出的球的标号的和等于4有3次,根据概率公式列式进行计算即可得解.【详解】解:(1)画树状图如下:两次摸球出现的所有可能结果共有16种;(2)两次摸出的球的标号相同有4种, 所以,(两次摸出的球的标号相同); P 41164==(3)两次摸出的球的标号的和等于4有3次, 所以,(两次摸出的球的标号的和等于4). P 316=【点睛】本题考查画树状图,求概率问题,掌握树状图的画法,审清抽出后是否放回,会用树状图统计总体情况,与需要的具体情况,会用概率公式求出现的机会.20. 如图,A 、B 是双曲线上的点,点A 的坐标是(1,4),B 是线段AC 的中点. k y x=(1)求k 的值;(2)求△OAC 的面积.【答案】(1)4;(2)6.【解析】【分析】(1)将点A 的坐标代入求出k 的值;(2)根据中点得出点B 的纵坐标为2,然后求出横坐标,得出点B 和点C 的坐标求出三角形的面积.【详解】解:(1)将A (1,4)代入 得 k=4; k y x=(2)作AD⊥x 轴于点D ,BE⊥x 轴于点E ,∴AD//BE,∵A(1,4),∴AD=4,OD=1.又∵B 为AC 的中点,∴E 为DC 的中点,∴,CE=DE 122BE AD ==∴B 点的纵坐标为2,则有B 点坐标为(2,2).∴DE=CE=2-1=1,即OC=3,∴C(3,0)∴△OAC 的面积是 =6. 1342⨯⨯【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,难度适中.准确作出辅助线是解题的关键.21. 如图,在等边三角形ABC 中,点E 为CB 边上一点(与点C 不重合),点F 是AC 边上一点,若AB =5,BE =2,∠AEF=60°,求AF 的长度.【答案】 195【解析】【分析】先利用等边三角形的性质得∠B=∠C=60°,AC =BC =AB =5,再利用三角形外角性质得∠BAE=∠CEF,则可判断△ABE∽△ECF,于是可利用相似比计算出CF 的长,然后计算AC﹣CF 即可.【详解】∵△ABC 为等边三角形,∴∠B=∠C=60°,AC =BC =AB =5,∵BE=2,∴CE=3,∵∠AEC=∠BAE+∠B,即∠AEF+∠CEF=∠BAE+∠B,而∠AEF=60°,∠B=60°,∴∠BAE=∠CEF,∵∠B=∠C,∴△ABE∽△ECF, ∴=,即=, BE CF AB EC 2CF 53∴CF=, 65∴AF=AC﹣CF=5﹣=. 65195【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、相似比、线段的和差等知识,解答本题的关键是通过已知条件找到△ABE∽△ECF.22. 在△ABC 中,,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,90︒∠=C 分别交AB ,AC 于点E ,F(I )如图①,连接AD ,若,求∠B 的大小;25CAD ︒∠=(Ⅱ)如图②,若点F 为的中点,的半径为2,求AB 的长. AD O【答案】(1)∠B=40°;(2)AB= 6.【解析】【分析】(1)连接OD ,由在△ABC 中, ∠C=90°,BC 是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD 得∠OFA=∠FOD ,由点F 为弧AD 的中点,易得△AOF 是等边三角形,继而求得答案.【详解】解:(1)如解图①,连接OD,∵BC 切⊙O 于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.23. 如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.【答案】(1)S =﹣x 2+x (17≤x≤27);(2)最大值是m 2,最小值是238m 2 1245220258【解析】 【分析】(1)由于平行于墙的边为xm ,则垂直于墙的一面长为(45﹣x)m ,由面积公式12写出S 与x 的函数关系式,进而求出x 的取值范围;(2)根据二次函数的性质,即可求得当x 取何值时,这个花园的面积有最大值,最大值是多少,根据|27﹣|<|17﹣|,得到x =17时,S 最小,把x =17代入解析式求出最小452452值.【详解】解:(1)平行于墙的边为xm ,矩形菜园的面积为ym 2.则垂直于墙的一面长为(45﹣x)m ,12根据题意得:S =x (45﹣x)=﹣x 2+x (17≤x≤27); 1212452(2)∵S=﹣x 2+x =﹣(x 2﹣45)=﹣(x﹣)2+(17≤x≤27), 12452121245220258∵17≤x≤27,a =﹣<0,12∴当x =m 时,S 取得最大值,此时S =m 2, 45220258∵|27﹣|<|17﹣|, 452452∴x=17m 时,S 取得最小值,此时S =238m 2, 答:S 的最大值是m 2,最小值是238m 2. 20258【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的二次函数解析式,利用二次函数的性质和数形结合的思想解答.24. 平面直角坐标系中,四边形OABC 是正方形,点A ,C 在坐标轴上,点B (,),P 是66射线OB 上一点,将绕点A 顺时针旋转90°,得,Q 是点P 旋转后的对应点.AOP ABQ(1)如图(1)当OP = 时,求点Q 的坐标;(2)如图(2),设点P (,)(),的面积为S. 求S 与的函数关系x y 06x <<APQ △x 式,并写出当S 取最小值时,点P 的坐标;(3)当BP+BQ = 时,求点Q 的坐标(直接写出结果即可)【答案】(1);(2),;(3).(8,4)Q 2618S x x =-+(3,3)P (13,1)Q -【解析】【分析】(1)先根据正方形的性质、解直角三角形可得,,再根据2OG PG ==4AG =三角形全等的判定定理与性质可得,从而可得,由此2,4AH PG QH AG ====8OH =即可得出答案;(2)先根据正方形的性质得出,,再根据旋转的性质、勾股定理可得OG PG x ==x y =,,然后根据直角三角形的面积公式可得S 与2221236AP x x =-+,90AP AQ PAQ =∠=︒x 的函数关系式,最后利用二次函数的解析式即可得点P 的坐标;(3)先根据旋转的性质、正方形的性质得出,,从而得出点P BP OP +=OB =在OB 的延长线上,再根据线段的和差可得,然后同(1)的方法可得OP BP ==,,最后根据三角形全等的性质、线段的和差可得7OG PG ===APG QAH ≅ ,由此即可得出答案.1,13QH OH ==【详解】(1)如图1,过P 点作轴于点G ,过Q 点作轴于点HPG x ⊥QHx ⊥∵四边形OABC 是正方形∴45AOB ∠=︒∵(6,6)B ∴6OA =在中,, Rt OPG sin 452PG OP =⋅︒==2OG PG ==∴4AG OA OG =-=∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴, ,AQ AP BQ OP ==PAG BAQ ∠=∠90APG PAG QAH BAQ ∠+∠=∠+∠=︒APG QAH ∴∠=∠在和中,APG QAH 90AGP QHA APG QAH AP QA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()APG QAH AAS ≅ ∴2,4AH PG QH AG ====∴628OH OA AH =+=+=则点Q 的坐标为;(8,4)Q (2)如图2,过P 点作轴于点GPG x ⊥∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴,90AP AQ PAQ =∠=︒∵(,),45P x y POG ∠=︒∴,OG PG x ==x y =∴6AG OA OG x =-=-在中,由勾股定理得:Rt APG △22222(6)AP AG PG x x =+=-+整理得:2221236AP x x =-+∴ 226181122AP AQ A x P S x =⋅==-+整理得:2(3)9S x =-+06x << 由二次函数的性质可知,当时,S 随x 的增大而减小;当时,S 随x 的∴03x <≤36x <<增大而增大则当时,S 取得最小值,最小值为93x =此时3==y x 故点P 的坐标为;(3,3)P (3)∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴OP BQ =∵BP BQ +=∴BP OP +=∵四边形OABC 是正方形,且边长6OA AB ==对角线∴OB ==<∴点P 在OB 的延长线上∴2BP OP OP OB OP OP +=-+=-=解得OP =BP OP OB ∴=-=如图3,过P 点作轴于点G ,过Q 点作轴于点H PG x ⊥QHx ⊥同(1)可得:, 7OG PG ===APG QAH ≅ ,761QH AG OG OA ∴==-=-=7AH PG ==6713OH OA AH ∴=+=+=则点Q 的坐标为.(13,1)Q -【点睛】 本题考查了正方形的性质、旋转的性质、解直角三角形、三角形全等的判定定理与性质、二次函数的性质等知识点,较难的是题(3),正确得出点P 的位置是解题关键.25. 在平面直角坐标系中,设二次函数,其中;22y x x a a =---0a >(1)若函数y 的图象经过点(1,﹣2),求函数y 的解析式;(2)若抛物线与x 轴的两交点坐标为A ,B (A 点在B 点的左侧),与y 轴的交点为C ,满足OC =2OB 时,求的值.a (3)已知点和在函数y 的图象上,若m <n ,求的取值范围.0(,)P x m (1,)Q n 0x 【答案】(1);(2);(3);2y x x 2=--2a =001x <<【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)由二次函数图象上点的坐标特征,得点A 、B 、C 的坐标,根据OC =2OB ,求的值;a (3)根据二次函数的性质,可得答案.【详解】(1)函数 的图象经过点(1,﹣2),得 22y x x a a =---22a a --=-整理得:,∴ 得:或;(2)(1)0a a +-=2a =-1a =又由题知,,∴ ;0a >1a =∴ 函数y 的解析式:;2y x x 2=--(2)当时,整理得:;0y =220x x a a ---=()(1)0x a x a +--=解得:或;1x a =-21x a =+图象与x 轴的交点是A ,B ,(,0)a -(1,0)a +当时,,即C ;0x =2y a a =--2(0,)a a --∵OC=2OB , ∴;221a a a --=+∵,0a >∴,22(1)a a a +=+整理得:,∴ ,220a a --=(2)(1)0a a -+=解得:或(舍去);2a =1a =-∴;2a =(3)当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n )与(0,n )关于对称轴对称,由m <n ,得: 0<≤;0x 12当时P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得<<1,120x 综上所述:当m <n 时,的取值范围:0<<1;0x 0x ∴ 的取值范围:0<<1.0x 0x 【点睛】本题主要考查二次函数的解析式及基本性质,重点理解对称轴的应用及对应一元二次方程的求解.。
2020-2021学年泰安市泰山区九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A. 1.5mB. 1.6mC. 1.86mD. 2.16m2.下列反比例函数是()A. B. C. D.3.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A. y=(x+3)2−1B. y=(x−3)2−2C. y=(x−3)2+2D. y=(x−3)2−14.一个盒子中装有标号为1,2,3,4的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和不小于5的概率为()A. 23B. 13C. 58D. 385.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…−2013…y…6−4−6−4…下列各选项中,正确的是()A. 这个函数的图象开口向下B. 这个函数的图象与x轴无交点C. 这个函数的最小值小于−6D. 当x>1时,y的值随x值的增大而增大6. 在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A. 54B. 45C. 34D. 437. 如图,点A、B、C、D在⊙O上,OB//CD.若∠A=28°,则∠BOD的大小为()A. 152°B. 134°C. 124°D. 114°8. 已知点P(−3,2),点Q(2.m)都在反比例函数y=kx(k≠0)的图象上,则m的值为()A. 2B. 3C. −2D. −39. 如图.在平面直角坐标系中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上。
连接OA,OB,若0A⊥OB,,则k的值为().A. B. C. −3 D. −210. 如图1,已知直角梯形ABCD,∠B=Rt∠.AD=CD=4cm,BC=6cm,如图在这块铁皮上剪下一个扇形和一个半径为1cm的圆形铁片,使之恰好围成一个图2所示的一个圆锥,则圆锥的高为()A. √17cmB. 2√2cmC. √3cmD. √15cm11. 如图,在面积为12的▱ABCD中,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交AB、CD于点E、F,若AE=2EB,则图中阴影部分的面积等于()A. 2B. 3C. 43D. 2312. 已知函数f(x)=x2−2ax+5,当x≤2时,函数值随x增大而减小,且对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1−y2|≤4,则实数a的取值范围是()A. −1≤a≤3B. −1≤a≤2C. 2≤a≤3D. 2≤a≤4二、填空题(本大题共6小题,共24.0分)13. 已知双曲线y=1−mx,当x>0时,y随x的增大而减小,则m的取值范围为______ .14. 若cos2α+sin242o=1,则锐角α=_________。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将所选选项把答题卡相应信息点涂黑.
1、一元二次方程022=--mx x 的一个根为2,则m 的值是( )
A 、1
B 、2
C 、3
D 、4
2、下列一元二次方程中,没有实数根的方程是( )
A 、0122=+-x x
B 、022=-+x x
C 、022=++x x
D 、0122=--x x
3、下列图形中,既是轴对称图形,又是中心对称图形的是( )
4、抛物线3)2(2+-=x y 的顶点坐标是( )
A 、(2,3)
B 、(2,-3)
C 、(-2,3)
D 、(-2,-3)
5、如图,四边形ABCD 内接于圆,则图中与ABD ∠相等的角是( )
A 、CAD ∠
B 、ACD ∠
C 、CB
D ∠ D 、ACB ∠
C D
B A
6、如图,AB 是⊙O 的弦,OC 是半径,AB OC ⊥,8= AB ,3=OD ,则⊙O 的半径为( )
A 、4
B 、5
C 、6
D 、8
7、下列事件是必然事件的是( )
A 、抛掷一枚硬币,正面朝上
B 、打开电视正在播放足球比赛
C 、射击运动员射击一次命中十环
D 、方程022=-x x 必有实数根
8、在如图的地板行走,随意停下来时,站在黑色地板上的概率是( )
A 、31
B 、21
C 、43
D 、4
1 9、在直角坐标系中,反比例函数x
y 2=的图象的两个分支分别在( )
A 、第一、二象限
B 、第二、四象限
C 、第一、三象限
D 、第三、四象限
10、二次函数c bx ax y ++=2(0≠a )的大致图象如图所示,关于该二次函数,下列说法不正确
的是( )
A 、该函数有最小值
B 、y 随x 的
增大而减少
C 、对称轴是直线2
1=x D 、当21<<-x 时,0< y 二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卡相应的位置上.
11、方程022=+x x 的根是 .
12、抛物线1)3(2+-=x y 的对称轴是 .
13、点M (-3,2)关于原点对称的点的坐标是 .
14、点(1,4)在反比例函数x
k y =(0≠k )的图象上,则=k .
15、如图,在ABC Rt ∆中,︒=∠90ABC ︒=∠30A ,10=AC ,把ABC Rt ∆绕点B 顺时针旋转到//BC A ∆的位置,点/C 在AC 上,//C A 与AB 相交于点D ,则D C /的长为 .
16、如图,OAB ∆中,4==OB OA ,︒=∠30A ,AB 与⊙O 相切于点C ,则图中阴影部分的面积是 三、解答题(一)(本大题共3小题,每小题6分,共
18分)
17、解方程:0142=++x x .
18、把二次函数322--=x x y 化成k h x a y +-=2)(的形式,写出该函数图象的对称轴和顶点坐标.
19、如图,ABC ∆是等边三角形. (1)作ABC ∆的外接⊙O (用尺规作图,保留作图痕迹,
/C C A B /A D C
A
不写作法);
(2)若6=AB cm ,求⊙O 的半径.
四、解答题(二)(本大题共3小题,每小题7分,共21分)
20、随着人们节能意识的增加,节能产品的销量逐年增加,某商场在2013年销售高效节能灯5万只,在刚过去的2015年达到7.2万只,求该商场2013年到2015年高效节能灯销量的平均增长率.
21、如图,在OAB Rt ∆中,︒=∠90OAB ,6==AB OA ,把O AB ∆绕点O 沿逆时针方向旋转︒90,得到OCD ∆,连结AC .
(1)求证:四边形OACD 是平行四边形;
(2)求四边形OACD 的面积.
22、将一枚骰子抛掷两次,第一次出现的点数记为m ,第二次出现的点数记为n ,设点P (m ,n )是反比例函数图象上的点.
(1)用列表或树状图的方法列举所有P (m ,n )的情况;
(2)分别求出点在反比例函数x y 12=和反比例函数x
y 6
=的图象上的点的概率.
O B
A C D
五、解答题(三)(本大题共3小题,每小题9分,共27分)
23、如图,抛物线m x y +-=21)2(与x 轴交于点A 和B ,与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,若点A 的坐标为(1,0),直线b kx y +=2经过点A ,D .
(1)求抛物线的函数解析式; (2)求点D 的坐标和直线AD
(3)根据图象指出,当x 取何值时,2y
24、如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与⊙O 交于点C ,点D 是AP 的中点,连结CD .
(1)证明:CD 是⊙O 的切线;
(2)若2= AB ,︒=∠30P ,求CD 的长;
25、如图,抛物线tx x y +-=2(1>t )与x 轴的一个交点为P (t ,0),点A ,B 的坐标分别为A (1,0),B (4,0),分别过点A ,B 作y 轴的平行线,交抛物线于点M ,N ,连结MN ,C B P
D A O
PM 和PN ,设MNP ∆的面积为S .
(1)证明:对于任何t (1>t ),都有
∠(2)当4>t 时,求S 与t 的函数关系式;(3)当4>t 且821=S 时,求t 的值.
期末学业水平调研测试
九年级数学答案及评分标准
一、选择题:A C C A B B D A C B
二、填空题:
11、01=x ,22-=x 12、3=x 13、(3,-2) 14
、4 15、25
16、3434π
-.
三、解答题:
17、0142=++x x ,41442+-=++x x , 1分
3)2(2=+x ,
2分 32±=+x , 4分
321+-=x ,322--=x .
6分 18、4)1(3222--=--=x x x y , 3分
对称轴是1=x ,顶点坐标(1,-4). 6分
19、(1)作图略.作图正确给3分,若没有写出“⊙O 就是所求作的”扣1分;
(2)连结OA ,作AB OD ⊥于点D , 则321==AB AD ,︒=∠30OAD ,OD OA 2
1=, 5分 在OAD Rt ∆中,设x OA =, 则22
232+⎪⎭⎫ ⎝⎛=x x ,解得32=x , ∴
⊙O 的半径为32. 6分
20、设年销售量的平均增长率为x ,依题意得:
2.7)1(52=+x
……4分
解这个方程,得%202.01==x ,2.22-=x (不合题意舍
去). ………6分
答:该商场2008年到2010年高效节能灯年销售量的平均增长率为20%. ………7分
21、(1)证明:由旋转的性质得
CD AB = ,︒=∠90AOC ,︒=∠=∠90OAB OCD , 3分
∴OCD AOC ∠=∠,∴OA ∥CD ,
4分
又∵AB OA =,∴CD OA =, 5分
∴
四边形OACD 是平行四边形;
6分 (2)四边形OACD 的面积等于36=⋅OC OA . 7分
22、(1)列表如下:(或画树状图)如下:
O B A
C D
…………3分
(2) 由表格可知,点m P (,)n 共有36种可能的结果,且每种结果出现的可能性相同,
∵点(3,4),(4,3),(2,6),(6,2)在反比例函数x
y 12
=的图象上, …………4分
∴点P (m ,n )在反比例函数
x y 12=的概率为9
1364=, …………5分 ∵点 (2,3),(3,2),(1,6),(6,1)在反比例函数x
y 6
=的图象上, …………6分
∴点P (m ,n )在反比例函数
x y 12=的概率为9
1364=. …………7分 23、(1)∵点A (1,0)在抛物线上,
∴0)21(2=+- m ,1-=m , 1分 ∴1)2(21--=x y ; 2分 (2)抛物线1)2(21--=x y 的对称轴为2=x
与y 的交点C 的坐标为(0,3), 4分 ∵点D 是点C 关于对称轴2=x 的对称点,∴点D 的坐标为(4,3), 5分
直线AD 经过点点A ,D ,∴⎩⎨⎧=+=+340b k b k ,解得1=k ,1-=b , 6
分
∴1-=x y ; 7分
(3)当41<<x 时,12y y >. 9分
24、(1)证明:连结OC ,AC , 1分 ∵AB 是⊙O 的直径,AP 是切线,
∴︒=∠90ABP ,︒=∠90ACP , 2分 ∵点D 是AP 的中点,
∴DA DC = ,∴DCA DAC ∠=∠, 3分 又∵OC OA =,∴OCA OAC ∠=∠, 4分 ∴︒=∠+∠=∠+∠=∠90DAC OAC DCA OCA OCD , 5分 即CD OC ⊥,∴CD 是⊙O 的切线; 6分
(2)∵在ABP Rt ∆中,︒=∠30P ,∴42==AB BP , 7分 3222=-=AB BP AP , 8分 在ACP Rt ∆中,∵点D 是AP 的中点, ∴321==AP CD , 9分
25、(1)证明:∵点M 在抛物线上, ∴点M 的横坐标为1,纵坐标为1-t (1>t ), 1分。