(完整)人教版初中数学第十五章分式知识点(2),推荐文档
- 格式:pdf
- 大小:147.91 KB
- 文档页数:11
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数C 解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0D解析:D【分析】 若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x +>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 3.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 4.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x -=+ A 解析:A【分析】 设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】 设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A .【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键. 5.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解6.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( )A .1B .12C .0D .4D 解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d ++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.7.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .75D 解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.8.22()-n b a(n 为正整数)的值是( ) A .222+nn b aB .42n n b aC .212+-n n b aD .42-n n b aB 解析:B【分析】根据分式的乘方计算法则解答.【详解】 2422()-=nn n b b a a. 故选:B .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<< D 解析:D【分析】 根据负整数指数幂的运算法则可得110x x-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果.【详解】解:∵1x 0-<<,∴20x 1<<,0x 1=,11x0x-=<, ∴120x x x -<<.故选:D .【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解. 二、填空题11.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 13.211a a a-+=+_________.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解.【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++-故答案为:11a + 【点睛】 本题考查了分式加减运算的法则,熟记法则是解题的关键.14.223(3)a b -=______,22()a b ---=______.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】 本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.15.101()()2π-+-=______,011(3.14)2--++=______.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12=【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可.16.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a-=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可)②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.17.关于x 的方程53244x mx x x++=--无解,则m =________.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得,5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4, ∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.18.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____.【分析】先利用零次幂绝对值负整数次幂化简然后再计算即可【详解】解:故答案为:【点睛】本题主要考查了零次幂绝对值负整数次幂以及实数的运算灵活应用相关知识点成为解答本题的关键解析:1--【分析】先利用零次幂、绝对值、负整数次幂化简,然后再计算即可.【详解】解:201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-.故答案为:1-【点睛】本题主要考查了零次幂、绝对值、负整数次幂以及实数的运算,灵活应用相关知识点成为解答本题的关键.19.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-.本题考查分式的化简求值,属于基础题.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y为非负整数,∴y取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.22.某高速公路有300km的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.解析:(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能,理由【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x -=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =,经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.23.计算:(1)222221538x y y x ⎛⎫⋅ ⎪⎝⎭. (2)2222324424x x x x x x x ⎛⎫-+-÷ ⎪-+--⎝⎭. 解析:(1)256y ;(2)3x - 【分析】(1)先算乘方,再算乘法即可;(2)根据分式混合运算的法则进行计算即可.(1)原式224241598x y y x=⋅256y =; (2)()()()()22322222x x x x x x x ⎡⎤-+=-÷⎢⎥-+--⎢⎥⎣⎦ 31222x x x x ⎛⎫=-÷ ⎪---⎝⎭()3232x x x x -=⨯-=-- 【点睛】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.24.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 解析:(1)5x -;(2)19b ;(3)23x =【分析】 (1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2, 解得:23x =, 经检验23x =是分式方程的解. 【点睛】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.解析:这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 解析:21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------. 解析:(1)111n n -+;(2)20202021;(3)7x =. 【分析】 (1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+.(2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =, 经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.28.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭. 解析:(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷=115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+ =2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +-- =222xy x y +; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅ =67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。
八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。
第十五章分式方程知识点及考点一、知识点1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.二、考试方向(一)解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根. 例题:1、解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2,解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.2、方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-,解得1x =,检验:1x =时,20x -≠,所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.(二)分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解.(3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.例题:3、 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6 B .0 C .1 D .9【答案】D【解析】分式方程去分母得:ax -1-x =3,解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去),则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.4、若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠. (三)分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.例题:5、某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+ B .2010154x x -=+ C .201015x x += D .201015x x -= 【答案】A 【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+. 故选A . 6、元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400 解得 2.5x =元.故选B .。
第十五章 分式15.1 分式15.1.1 从分式到分式1、一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
2、与分式有关的条件(1)分式有意义:分母不为0(0B ≠)(2)分式无意义:分母为0(0B =)(3)分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )(4)分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ) (5)分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )(6)分式值为1:分子分母值相等(A=B )(7)分式值为-1:分子分母值互为相反数(A+B=0)例1.若24x -有意义,则x 的取值范围是( ) A .x >4 B .x≠4 C .x≥4 D .x <4【答案】B .【解析】试题解析:由题意得,x-4≠0,解得,x≠4,故选B .考点:分式有意义的条件.考点:分式的基本性质.例2.要使分式1(1)(2)x x x ++-有意义,则x 应满足 ( ) A .x≠-1 B .x≠2 C .x≠±1 D .x≠-1且x≠2【答案】D .【解析】试题分析:∵(x+1)(x ﹣2)≠0,∴x+1≠0且x ﹣2≠0,∴x≠﹣1且x≠2.故选D .考点:分式有意义的条件.例3.下列各式:,,,,中,是分式的共有( ) A .1个 B .2个 C .3个 D .4个【答案】C .【解析】试题分析:,,中分母中含有字母,因此是分式.故分式有3个.故选C . 考点:分式的定义.例4.当x= 时,分式0. 【答案】1【解析】 试题分析:由题意得:210x -=,且x+1≠0,解得:x=1,故答案为:1.考点:分式的值为零的条件.15.1.2 分式的基本性质1、分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
庖丁巧解牛知识·巧学一、分式方程的定义1.定义:一般地,分母上含有未知数的方程,叫分式方程.2.分式方程的特征:①含有分母;②分母中含未知数.其中②是分式方程与整式方程的根本区别.二、可化为一元一次方程的分式方程(方程中分式不超过两个)的解法1.解分式方程的基本思路:解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.2.解分式方程必须检验,检验的方法是:将整式方程的解代入最简公分母(或每个分母),如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解(有的书上称为原方程的增根).深化升华 为什么会出现增根呢?我们举例说明一下. 解方程:xx x -=--2121-2.① 方程两边都乘以x-2,得1-x=-1-2(x-2),②解这个方程,得x=2.我们把解题步骤简化为:①−−−−→−-2x 两边都乘以②→x=2,即①−−−−→−0两边都乘以②.这与等式的基本性质不相符.从另一个角度看,方程②中允许x=2,即x=2是方程②的解,但方程①中不允许x=2,在从方程①变形为方程②的过程中,x≠2这一限制条件被取消了,因此,出现了满足方程②但不满足方程①的解x=2.记忆要诀 解分式方程的步骤是:①分母能因式分解的首先要因式分解;②找出最简公分母;方程两边同时乘以最简公分母;③化成整式方程;解整式方程;④代入原方程各分母或最简公分母检验;如果整式方程的解使得原方程各分母或最简公分母不为零,则是原分式方程的根,否则就是增根.3.解含有字母已知数的分式方程以及公式变形是本节的难点和疑点.例如,解方程求x:1+-x n x m =0(m≠n). 题目中明确指出x 是未知数,那么m ,n 就是字母已知数.方程两边同乘x(x+1),得,m(x+1)-nx=0.化简,得(m-n)x=-m,∵m≠n,∴m-n≠0,解得x=nm m --. 深化升华 上面的讨论(∵m≠n,∴m-n≠0)是不可缺少的,因为根据等式的基本性质,两边同乘(或除以)一个不为0的整式,才是一个恒等变形.由于x+1=n m m --+1=nm n --,m,n 的取值范围不清楚,所以我们要分几种情况进行检验: ①当m=0或n=0时,x=0或x+1=0, x=nm m --不是原方程的解,原分式方程无解; ②当m≠0且n≠0时, x=nm m --是原方程的解. 联想发散 公式变形不仅在数学学习中,而且在其他学科中也经常遇到,如并联电路总电阻R 与支路电阻R 1、R 2满足关系式21111R R R +=,试用含有R 1、R 2的式子表示R. 解法1:∵21212112121R R R R R R R R R R R +=+=, ∴R=2121R R R R +. 解法2:把R 看成未知数,R 1,R 2看成字母已知数,两边同乘RR 1R 2,得R 1R 2=R 2R+R 1R.化简,得(R 1+R 2)R=R 1R 2,显然R 1+R 2≠0,∴R=2121R R R R +. 三、列分式方程解决实际问题列方程解应用题的一般步骤是:①设未知数,有直接设法和间接设法两种,大多数情况下采用直接设法.②列式,用代数式表示未知量和已知量.要弄清和差倍分的表示法,增长率的表示法,顺水速度、逆水速度的表示法等等.③列方程,从不同角度寻求等量关系是列方程的前提和关键,它直接影响到问题的解决.有的等量关系是几个量之间的关系,如路程=时间×速度,总价=单价×数量等;有的等量关系隐藏在已知条件中,需要我们认真分析,仔细挖掘.④解方程,检验解的合理性(包括检验是否是方程的解,是否符合题意),写出答案. 学法一得 总结列方程解应用题的基本步骤是:审、设、列、解、答.(1)审——仔细审题,找出等量关系.(2)设——合理设未知数.(3)列——根据等量关系列出方程(组).(4)解——解出方程(组).(5)答——写出答案.典题·热题知识点一 分式方程的解法及有关注意事项例11112132-=+--x x x . 思路分析:此题重点考查了分式方程的解法.解:方程两边同时乘以(x +1)(x-1),得3(x +1)-2(x-1)=1,整理并解得x=-4.检验:当x=-4时,(x +1)(x-1)=15≠0,∴x=-4是原方程的根.知识点二 公式变形的应用例2如果解分式方程2242---x x x x =-2出现增根,则增根为( ) A.0或2 B.0 C.2 D.1思路分析:分式方程出现增根的原因是去分母化为整式方程后产生的,因此只要解这个分式方程即可.解:方程两边同时乘以x(x-2),得4-x 2=-2x(x-2),整理并解得x=2,当x=2时,x(x-2)=0,∴x=2是原方程的增根.答案:C例3公式变形:在公式E=I (R+nr )中已知E ,I ,R ,r 且E≠IR,求n. 思路分析:题目中明确指出n 是未知数,那么E,I,R,r 就是字母已知数,按解分式方程的步骤求解即可.解:公式两边同时除以I ,得nr R I E +=. 两边同时乘以In 得:En=IRn+Ir.移项得:En-IRn=Ir.即:(E-IR)n=Ir.∵E≠IR,∴E-IR≠0.两边同时除以(E-IR )得:n=IRE Ir -. 误区警示 要注意条件E≠IR 的应用.知识点三 分式方程的应用例4某市从今年1月1日起调整居民用水价格,每立方米水费上涨31,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5 m 3,求该市今年居民用水的价格.思路分析:本题涉及三个量,即用水量、单价(每立方米水费)和总价(水费),它们之间的关系是:总价(水费)=用水量×单价(每立方米水费).认真审题,可以发现如下的等量关系: ……每立方米水费上涨31,即调价后单价=调价前单价×(1+31);① 今年7月份的用水量=去年12月份的用水量+5;②去年12月份的水费是15元,即,去年12月份的用水量×调价前单价=15;③今年7月份的水费是30元,即,今年7月份的用水量×调价后单价=30;④设调价前单价为x 元/m 3,由①得,调价后单价(即今年居民用水的价格)为(1+31)x. 由③得,去年12月份的用水量为x15, 由④得,今年7月份的用水量为x )311(30+. 代入②,得x x 15)311(30=++5. 解:设该市去年居民用水的价格为x 元/m 3,则今年的水价为(1+31)x 元/m 3,根据题意,得,x x 15)311(30=++5,解得x=23. 经检验,x=23是所列方程的根.(1+31)x=(1+31)×23=2. 即该市今年居民用水的价格为2元/m 3.巧解提示 本题也可以设出去年的用水量,从价格上列出方程.哪一种方法简便,不妨试一试.例5为了方便广大游客到昆明参加、游览“世博会”,铁道部临时增开了一列南宁—昆明的直达快车,已知南宁—昆明两地相距828 km ,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2 h ,比普通快车早4 h 到达昆明,求两车的平均速度.思路分析:由题意可知,直达快车的平均速度=普通快车平均速度的1.5倍;①直达快车走完全程所用的时间=普通快车走完全程所用的时间-6小时;②可设普通快车的平均速度为x km/h ,则直达快车的平均速度为1.5x km/h ,直达快车走完全程所用的时间=x 5.1828小时,普通快车走完全程所用的时间=x 828小时,由②得x 828-6=x 5.1828. 解:设普通快车的平均速度为x km/h ,则直达快车的平均速度为1.5x km/h ,依题意,得 x 828-6=x5.1828,解得:x=46. 经检验,x=46是方程的根,且符合题意.∴x=46,1.5x=69.答:直达快车和普通快车的平均速度分别为69 km/h ,46 km/h.巧解提示 本题也可以设直达快车走完全程所用的时间,从时间上列出方程.哪一种方法简便,不妨试一试.例6编一道可化为一元一次方程的分式方程的应用题,并解答,编题要求:①要联系实际生活,其解符合实际;②根据题意列出的分式方程中含两项分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程;③题目完整,题意清楚.思路分析:此题重点考查大家的发散思维能力,在解答此题的过程中一定要符合题目给出的条件.这也体现了新课标要求的“数学来源于实践,又作用于实践”.解:所编应用题为:甲、乙两人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用的时间与乙做6个所用的时间相等,求甲、乙每小时各做多少个?解:设甲每小时做x 个,那么乙每小时做(x-2)个,根据题意,有2610-=x x , ∴x=5,x-2=5-2=3.答:甲每小时做5个,乙每小时做3个.巧解提示 此题答案不唯一,可从路程时间速度问题、劳力分配问题、浓度问题以及社会实际问题入手,但编写题目一定要符合条件.问题·探究思维发散探究问题 1 解分式方程,要先把分式方程化为整式方程,前面我们研究了最简公分母是两个多项式乘积的方程的解法,那么我们能否利用前面的方法解方程呢?(1)21611171-+-=-+-x x x x . (2)你发现方程的解有什么规律? (3)利用你发现的规律,猜想方程d x c x b x a x +++=+++1111(a,b,c,d 表示不同的数,且a+b=c+d )的解是什么?并加以验证.探究过程:用常规的方法去分母,计算量很大.如果我们能看到四个分母中的x-7与x-6差1,x-2与x-1也相差1;且把71-x 与61-x 相减,把21-x 与11-x 相减时,通分之后分子也都是1,这样变成整式,会非常简单.具体的计算过程如下:(1)把方程移项,得71-x -61-x =21-x -11-x , 两边分别通分,得)1)(2(1)6)(7(1--=--x x x x , ∴(x-7)(x-6)=(x-2)(x-1),∴x 2-13x+42=x 2-3x+2,化简,得:10x=40,即x=4.(2)观察结果我们会发现,(-7)+(-1)=(-6)+(-2), 且2)1()7(-+--=4. (3)猜想:所求方程的解是x=22d c b a +-=+-, 检验:左边=b b a a b a ++-+++-2121 =ba b a a b b a ---=-+-2222=0;右边=d c d c c d d c d d c c d c ---=-+-=++-+++-22222121 ∴x=2b a +-是方程的解. 探究结论:(1)可以用前面的方法解方程,但计算量很大.这道题有更简单的解法.(2)方程的解与各分式的分母中的常数项有关.(3)猜想:所求方程的解是x=22d c b a +-=+-,经验证,确实如此. 交流讨论探究问题2 解分式方程:14122-=-x x . 探究过程:小聪:这道题不难!去分母,转化为整式方程2(x+1)=4,解得x=1,大功告成了! 小明:你还没检验呢!小聪:一定要检验吗?小明:是啊!你把x=1代入原方程,分母x-1=0,分式无意义!所以x=1是增根,应该舍去. 小聪:为什么叫增根呢?它是根吗?小明:增根也是根,譬如x=1就是方程2(x+1)=4的根,但它不是原分式方程的根,好像是分式方程身上长出的一个毒瘤,多余的,必须割去,所以称它为增根.小聪:我明白了!看来解分式方程时,检验是必不可少的啦!探究结论:方程两边都乘以最简公分母(x-1)(x+1)得:2(x+1)=4.解得x=1.检验:当x=1时,代入最简公分母,得(x-1)(x+1)=0,∴x=1是原方程的增根.。
八年级数学第十五章--分式知识梳理知识点一、分式1、一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子 叫做分式。
分式 中,A 叫做分子,B 叫做分母。
2、分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式 才有意义。
3、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
即: 其中A,B,C 是整式。
4、根据分式的基本性质,把一个分式的分子与分母的公因式约分,叫做分式的约分。
经过约分后的分式,分子与分母没有公因式的分式,叫做最简分式。
5、根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
6、通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母知识点二、分式的运算7、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母即 8、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即 9、分式乘方要把分子、分母分别乘方。
即 10、同分母分式相加减,分母不变,把分子相加减。
即 cb ac b c a ±=± 11、异分母分式相加减,先通分,变为同分母的分式,再加减。
即 12、一般地,当n 是正整数时,B A B A B A CB C A B A ⋅⋅=)0(≠÷÷=C C B C A B A db c a d c b a ⋅⋅=⋅cb d acd b a d c b a ⋅⋅=⨯=÷n n n b a b a =⎪⎭⎫ ⎝⎛bdbc ad bd bc bd ad d c b a +=±=±)0(1≠=-a a a n n nn b a a b )(=-)(知识点三、分式方程13、分母中含有未知数的方程叫做分式方程14、解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母。
第十五章 分式15.1 分式15.1.1 从分式到分式1、一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子叫做分式,A 为分子,B 为分母。
B A 2、与分式有关的条件(1)分式有意义:分母不为0()0B ≠(2)分式无意义:分母为0()0B =(3)分式值为0:分子为0且分母不为0() ⎩⎨⎧≠=00B A (4)分式值为正或大于0:分子分母同号(或)⎩⎨⎧>>00B A ⎩⎨⎧<<00B A (5)分式值为负或小于0:分子分母异号(或)⎩⎨⎧<>00B A ⎩⎨⎧><00B A (6)分式值为1:分子分母值相等(A=B )(7)分式值为-1:分子分母值互为相反数(A+B=0)例1.若有意义,则x 的取值范围是( )24x -A .x >4B .x≠4C .x≥4D .x <4【答案】B .【解析】试题解析:由题意得,x-4≠0,解得,x≠4,故选B .考点:分式有意义的条件.考点:分式的基本性质.例2.要使分式有意义,则x 应满足 ( )1(1)(2)x x x ++-A .x≠-1 B .x≠2C .x≠±1D .x≠-1且x≠2【答案】D .【解析】试题分析:∵(x+1)(x ﹣2)≠0,∴x+1≠0且x ﹣2≠0,∴x≠﹣1且x≠2.故选D .考点:分式有意义的条件.例3.下列各式:2b a -,x x 3+,πy +5,b a b a -+,)(1y x m -中,是分式的共有( )A .1个 B .2个C .3个D .4个【答案】C .【解析】试题分析:x x 3+,b a b a -+,)(1y x m-中分母中含有字母,因此是分式.故分式有3个.故选C .考点:分式的定义.例4.当x= 时,分式的值为0.211x x -+【答案】1【解析】试题分析:由题意得:,且x+1≠0,解得:x=1,故答案为:1.210x -=考点:分式的值为零的条件.15.1.2 分式的基本性质1、分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:,,其中A 、B 、C 是整式,C 0。
A A B C B C ⋅=⋅CB C ÷÷=A B A ≠拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C 0这个限制条件和隐含条件B 0。
≠≠例1.如果把分式中的x 、y 都扩大到原来的10倍,则分式的值( )y x x +10A .扩大100倍B .扩大10倍C .不变D .缩小到原来的101【答案】C .【解析】试题分析:把分式中的x 、y 都扩大到原来的10倍,可得=,y x x +10y x x 10101010+⨯yx x +10故选C .考点:分式的基本性质.例2.把分式中的a 、b 都扩大6倍,则分式的值( )2ab a b+A.扩大12倍B.不变C.扩大6倍D.缩小6倍【答案】C .【解析】试题分析:分别用6a 和6b 去代换原分式中的a 和b ,原式=,26612266a b ab ab a b a b a b⨯⨯==+++可见新分式的值是原分式的6倍.故选C .考点:分式的基本性质.例3.写出等式中括号内未知的式子:,括号内应填 .717)(2+=+c c c 【答案】c【解析】先把的分母提取公因式c ,得到,然后根据约分的定义求出括号内应填的数为c .cc 7)(2+71)7()(+=+c c c 解:,71)7()(7)(2+=+=+c c c c c ∴,71)7()(+=+c c c ∴括号内应填c ,故答案为c .2、分式的约分(1)定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
(2)步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
(3)注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
(4)最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
约分时。
分子分母公因式的确定方法:①系数取分子、分母系数的最大公约数作为公因式的系数.②取各个公因式的最低次幂作为公因式的因式.③如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式例1.下列各式计算正确的是( )A.; B.222a ab b a b b a-+=--2232()x xy y x y x y ++=++C.; D.23546x x y y ⎛⎫= ⎪⎝⎭11x y x y-=-+-【答案】D 【解析】本题考查的是分式的约分根据分式的基本性质对各选项分析即可。
A 、,故本选项错误;b a b a b a b a a b b ab a +-=--=---=-+-)()()(2222B 、,故本选项错误;yx y x y x y x y xy x +=++=+++1)()()(232322C 、,故本选项错误;86243(yx y x =D 、,正确,11x y x y-=-+-故选D 。
例2.把一个分式的分子与分母的约去,叫做分式的约分;在分式中,分子与分母的公因式是 222x y xy xy+【答案】公因式;xy 【解析】本题考查的是分式的约分根据分式的约分的定义即可得到结果。
把一个分式的分子与分母的公因式约去,叫做分式的约分;在分式中,分子与分母的公因式是222x y xy xy +.xy 例3.将下列分式约分:(1)= ; (2)= ;(3)= .258xx 22357mn n m -22)()(a b b a --【答案】(1) (2)- (3)183x nm 5【解析】本题考查的是分式的约分根据分式的基本性质即可得到结果。
(12); (3)=22357mn n m -=n m 5-22)()(a b b a --.1例4.约分:= .3263n m mn -【答案】221mn -【解析】首先确定分子与分母的公因式,系数是分子与分母的系数的最大公约数,相同的字母,取最小的次数作为公因式的字母的次数,确定公因式以后,把公因式约去即可.解:原式==.2233mn mn mn ⋅-221mn -故答案是:.221mn -例5.约分:.22112m m m -+-【答案】解:原式===.)1)(1()1(2m m m +--)1)(1()1(2m m m +--mm +-11【解析】首先把分子分母分解因式,再约去公因式即可.3、分式的通分(1)定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)(2)最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
通分时,最简公分母的确定方法:①系数取各个分母系数的最小公倍数作为最简公分母的系数.②取各个公因式的最高次幂作为最简公分母的因式.③如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.例1.下列各式计算正确的是( )A. B. C. D.ba b a +=+111ab m b m a m 2=+a a b a b 11=+-011=-+-a b b a 【答案】D【解析】本题考查的是分式的通分根据分式的性质对各学项分析即可。
,故本选项错误; ab b a b a +=+11故本选项错误;ab am bm b m a m +=+,故本选项错误;a a b b a b a b 111-=--=+-,正确,01111=--=-+-b a a b b a 故选D 。
例2.分式,,的最简公分母是( )23a a 6528ba A .48a 3b 2B .24a 3b 2C .48a 2b 2D .24a 2b 2【答案】D【解析】求最简公分母就是求所有分式分母的最小公因数.解:三个分式分母的系数项的公因数为a 2b 2,常数项的最小公因数为24,所以三分式的最小公分母是24a 2b 2.故选D 例3.分式,,的最简公分母是( )x y 223y x xy 41A .6xy 2B .24xy 2C .12xy 2D .12xy 【答案】C 【解析】先求出2,3,4的最小公倍数为12,按照相同字母取最高次幂,所有不同字母都写在积里,于是得到分式,x y 2,的最简公分母为12xy 2.23y x xy41解:2,3,4的最小公倍数为12,∴分式,,的最简公分母为12xy 2.x y 223y x xy 41故选C .15.2 分式的运算15.2.1 分式的乘除1、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:a c a c b d b d⋅⋅=⋅2、分式的乘除法法则:分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为:a c a d a d b d b b c c⋅÷=⋅=⋅3、分式的乘方:把分子、分母分别乘方。
式子表示为:n n n b a b a =⎪⎭⎫ ⎝⎛例1.等于( )111a b c d b c d ÷⨯÷⨯÷⨯A.aB.222a b c d C . D .a d222ab c d 【答案】B.【解析】试题分析:原式=.222111111a a b b c c d d b c d ⨯⨯⨯⨯⨯⨯=故选B.考点:分式的乘除法.例2.化简的结果是( )211m m m m --÷A .m B . C .m -1 D .1m 11m -【答案】A .【解析】试题分析:原式利用除法法则变形,约分即可得到结果.试题解析:原式=211m m m m m -⨯=-故选A .考点:分式的乘除法.例3.化简的结果为 .【答案】2x 【解析】试题分析:首先将分式的各分子和分母进行因式分解,然后将除法改成乘法进行约分化简.原式(x -1)+x=.2x 考点:分式的化简15.2.2 分式的加减1、分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为:c b a c b ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为:bdbc ad d c ±=±b a整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
2、分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。