人教版八年级数学上册14.2.2:完全平方公式
- 格式:pptx
- 大小:656.52 KB
- 文档页数:25
人教版八年级数学上册第十四章14.2.2完全平方公式(第1课时)教学目标:1、完全平方公式的推导及其应用;2、完全平方公式的几何背景;3、体会公式中字母的广泛含义,它可以是数,也可以是整式.教学重点:(1)完全平方公式的推导过程、结构特点、语言表述、几何解释;(2)完全平方公式的应用.教学难点:完全平方公式的推导、其几何解释、公式结构特点及其应用.教学过程:一、回顾旧知1、多项式乘多项式法则:2、(x+p)(x+q)=3、平方差公式:(a+b)(a-b)=二、课前小测1、速度大比拼•(x-2)(x+2)-(x+1)(x-3)•(a-b) (a-b)-(a+b) (a+b)•(-3x+4y) (-3x+4y)2、智力大比拼一个正方形的边长为acm,若边长增加 2cm,则新正方形的面积增加了多少?三、激发学生兴趣,例题引出本节内容例题:(x+3)² - x²除了平方差公式计算,你还有别的方法吗?活动1 探究,计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2=(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.活动2 在上述活动中我们发现(a+b)2=;(a-b)2=a2-2ab+b2,是否对任意的a、b,上述式子都成立呢?学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b 2(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2.二.问题引申,总结归纳完全平方公式两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即(a+ b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.记忆口诀:首平方,尾平方,积的2倍放中央.在交流中让学生归纳完全平方公式的特征:(1)左边为两个数的和或差的平方。