整式的运算
- 格式:doc
- 大小:223.34 KB
- 文档页数:4
整式运算公式汇总整式是由常数、变量及其乘积所构成的代数表达式,常见的整式运算包括加法、减法、乘法和除法。
下面是整式运算的一些常用公式汇总。
1.加法和减法:-任意两个整式之和或之差仍然是整式。
2.乘法:-一个整数与一个整式相乘,所得结果仍然是整式。
-两个整式相乘时,可以利用分配律进行展开。
-两个含有相同的因子的整式相乘时,可以利用公因式提取法进行合并。
3.乘方:a^n表示a的n次方,在整式运算中,可以使用以下公式进行乘方运算:-a^m*a^n=a^(m+n)(底数相同的乘方,指数相加)-(a^m)^n=a^(m*n)(乘方的乘方,指数相乘)-a^0=1(任何数的0次方等于1)4.除法:整式的除法运算可以利用乘法的逆运算,即乘法逆元素,其中,除法过程可以通过因式分解、相除法或多项式长除法等方法进行。
5.因式分解:将一个整式分解为几个不可再分解的乘积形式的过程称为因式分解。
常见的因式分解公式包括:-公因式提取法:将一个整式中的公因子提取出来。
-二次差分公式:a^2-b^2=(a+b)(a-b)- 平方差公式:a^2 + b^2 = (a+b)^2 - 2ab- 三次方差公式:a^3 - b^3 = (a-b)(a^2 + ab + b^2)6.基本恒等式:- 乘法结合律:a(bc) = (ab)c- 乘法交换律:ab = ba-加法结合律:(a+b)+c=a+(b+c)-加法交换律:a+b=b+a- 加法与乘法的分配律:a(b+c) = ab+ac这些是整式运算的一些常见公式,它们在代数运算中起到重要的作用。
通过熟练掌握和运用这些公式,可以更好地理解和解决整式运算问题。
整式运算法则公式一、整式的加法和减法。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,3x^2y与-5x^2y是同类项,4和-7是同类项。
- 合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和指数不变。
即ax + bx=(a + b)x。
例如,3x^2y-5x^2y=(3 - 5)x^2y=-2x^2y。
2. 整式的加减。
- 运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如,a+(b - c)=a + b - c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如,a-(b -c)=a - b + c。
二、整式的乘法。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n=a^m + n(m,n 都是正整数)。
例如,2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
例如,(3^2)^3=3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^nb^n(n是正整数)。
例如,(2x)^3=2^3× x^3=8x^3。
4. 单项式与单项式相乘。
- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如,2x^2y·3xy^2=(2×3)(x^2· x)(y· y^2) = 6x^3y^3。
5. 单项式与多项式相乘。
- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb + mc。
整式的概念与运算整式是代数中的重要概念,广泛应用于数学和科学领域。
本文将介绍整式的概念和运算规则,并且通过实例进行详细说明,以便读者更好地理解整式的特点和运算方法。
一、整式的概念整式是由常数、变量及它们的乘积和积的和构成的代数式。
整式可以包含一个或多个变量,并且可以对变量进行加、减、乘、除等运算。
一般来说,整式是多项式的一种特殊形式。
1.1 单项式当整式中只包含一个变量的乘积时,称为单项式。
例如:2x,-3xy,4a^2b等都是单项式。
其中,x、y、a、b是变量,2、-3、4是系数。
1.2 多项式当整式中包含多个单项式时,称为多项式。
例如:3x^2 - 2xy + 5是一个多项式。
其中,3x^2、-2xy、5都是单项式。
二、整式的运算整式的运算包括加法、减法、乘法和除法。
下面将分别介绍各种运算规则,并通过实例进行说明。
2.1 加法和减法整式的加法和减法运算规则与数的加法和减法类似。
只需将同类项(具有相同的变量和相同的指数)的系数相加或相减即可。
例如:3x^2 + 2xy - 5 和 -2x^2 - 3xy + 4 是两个整式,它们可以进行相加运算:(3x^2 + 2xy - 5) + (-2x^2 - 3xy + 4) = (3x^2 - 2x^2) + (2xy - 3xy) + (-5+ 4) = x^2 - xy - 12.2 乘法整式的乘法运算规则是将每一项的系数相乘,并将变量和指数相乘。
例如:(2x + 3)(4x - 5)是一个整式乘法运算,可以按照分配律展开运算:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 152.3 除法整式的除法运算需要借助长除法的方法进行求解。
例如:将12x^2 + 8x + 4除以4x,可以进行如下的除法运算:3x + 1--------------4x | 12x^2 + 8x + 412x^2 + 4x----------4x + 44x + 1-------3所以,商为3x + 1,余数为3。
整式的运算法则整式是由数字及其系数和字母及其指数通过加减乘除等运算符号连接而成的代数式。
在代数运算中,整式的运算法则是非常重要的,它包括了加法、减法、乘法和除法四种基本运算法则。
本文将分别介绍这四种运算法则,并通过例题进行详细说明。
一、加法法则加法法则是指将同类项相加时,保持其字母部分不变,将其系数相加即可。
例如,对于整式3x^2+5x^2,将其同类项3x^2和5x^2的系数相加,得到8x^2。
二、减法法则减法法则与加法法则相似,也是将同类项相减时,保持其字母部分不变,将其系数相减即可。
例如,对于整式7x^3-4x^3,将其同类项7x^3和4x^3的系数相减,得到3x^3。
三、乘法法则乘法法则是指将整式相乘时,按照分配律和乘法交换律进行计算。
例如,对于整式2x(3x+4),首先将2x分别乘以3x和4,得到6x^2+8x。
四、除法法则除法法则是指将整式相除时,首先进行除数的分解,然后利用乘法的逆运算进行计算。
例如,对于整式6x^2÷2x,首先将6x^2分解为2x*3x,然后进行约分,得到3x。
以上就是整式的四种基本运算法则,下面通过例题进行详细说明。
例题1:计算整式的和已知整式3x^2+5x^2+2x-4x,求其和。
解:根据加法法则,将同类项相加,得到8x^2-2x。
例题2:计算整式的差已知整式7x^3-4x^3-2x^2+5x^2,求其差。
解:根据减法法则,将同类项相减,得到3x^3+3x^2。
例题3:计算整式的积已知整式2x(3x+4),求其积。
解:根据乘法法则,将2x分别乘以3x和4,得到6x^2+8x。
例题4:计算整式的商已知整式6x^2÷2x,求其商。
解:根据除法法则,首先将6x^2分解为2x*3x,然后进行约分,得到3x。
通过以上例题的计算,我们可以看到整式的运算法则是非常简单的,只需要按照规则进行操作即可得到结果。
在代数运算中,整式的运算法则是非常基础的,也是后续学习更复杂代数式和方程的基础。
整式的运算知识点整式是数学中的一个重要概念,是指由常数、变量及它们的乘积和幂次构成的代数式。
在代数运算中,我们常常需要对整式进行加减乘除的运算。
下面将分别介绍整式运算中的加法、减法、乘法和除法知识点。
一、加法运算在整式的加法运算中,我们对同类项进行合并。
所谓同类项,指的是具有相同的字母部分和相同的指数部分的项。
例如,对于整式3x² + 2xy + 5x² - 4xy,我们可以将其中的同类项合并,得到3x² + 2xy + 5x² - 4xy = 8x² - 2xy。
二、减法运算整式的减法运算与加法运算类似,仍然需要对同类项进行合并。
例如,对于整式3x² + 2xy - 5x² + 4xy,我们可以将其中的同类项合并,得到3x² + 2xy - 5x² + 4xy = -2x² + 6xy。
三、乘法运算整式的乘法运算是将一个整式与另一个整式相乘,需要运用分配律和同底数幂相乘的法则。
例如,对于整式(2x + 3)(4x - 5),我们可以使用分配律展开式子,得到8x² - 10x + 12x - 15 = 8x² + 2x - 15。
四、除法运算整式的除法运算需要使用长除法的方法进行。
例如,对于整式12x³ + 6x² - 4x + 8除以3x + 2,我们可以按照长除法的步骤进行计算:先将被除式按照指数从高到低的顺序排列:12x³ + 6x² - 4x + 8。
再将除式按照指数从高到低的顺序排列:3x。
将被除式的第一项与除式的第一项相除,得到4x²。
将4x²与除式相乘,得到12x³ + 8x²。
将被除式减去12x³ + 8x²,得到-2x² - 4x + 8。
重复以上步骤,直到被除式的所有项都被除尽或次数不够减为止。
整式的运算知识点在数学的学习中,整式的运算可是一个重要的板块。
让我们一起来深入了解一下整式运算的相关知识点吧。
首先,咱们得明白啥是整式。
整式简单来说,就是由数和字母的积组成的代数式,单独的一个数或者一个字母也叫整式。
比如 3x、5、a 等等。
整式的运算主要包括整式的加减、整式的乘法和整式的除法。
先说整式的加减。
整式的加减本质上就是合并同类项。
啥是同类项呢?就是所含字母相同,并且相同字母的指数也相同的项。
比如 3x 和5x 就是同类项,可以合并成 8x。
在进行整式加减的时候,要先找到同类项,然后把它们的系数相加,字母和字母的指数不变。
再来说说整式的乘法。
单项式乘以单项式,就把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
比如 2x×3y = 6xy。
单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。
例如,2x(3x + 5) = 6x²+ 10x 。
多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
比如说(x + 2)(x + 3) ,就等于 x²+ 3x + 2x + 6 ,也就是 x²+ 5x + 6 。
接下来是整式的除法。
单项式除以单项式,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如,10x²y ÷ 5xy = 2x 。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
整式的乘法中还有两个重要的公式,一个是平方差公式:(a + b)(a b) = a² b²;另一个是完全平方公式:(a ± b)²= a² ± 2ab + b²。
平方差公式的特点是两个二项式相乘,其中一项相同,另一项互为相反数,结果是相同项的平方减去相反项的平方。
整式的加减乘除详解整式是指由数字、字母和它们的乘积或常数项的和构成的代数式,它是我们学习代数的基础。
为了更好地理解整式的加减乘除运算,我们需要逐个进行详细的解释与说明。
一、整式的加法整式的加法是指将两个或多个整式相加的运算。
在进行整式的加法时,我们只需将系数相同或不同的同类项合并在一起即可。
举个例子,假设有两个整式:5x + 4y + 7 和 2x + 3y + 5我们可以将其中相同的同类项合并,得到的结果是:(5x + 2x) + (4y + 3y) + (7 + 5) = 7x + 7y + 12因此,两个整式的加法运算结果为7x + 7y + 12。
二、整式的减法整式的减法是指将一个整式减去另一个整式的运算。
在进行整式的减法时,我们可以先将被减数取相反数,然后再进行整式的加法运算。
以前面的例子为基础,如果我们要计算(5x + 4y + 7) - (2x + 3y + 5),可以将被减数中的每一项取相反数,再进行整式的加法运算,得到的结果是:(5x + 4y + 7) + (-2x - 3y - 5) = 3x + y + 2所以,两个整式的减法运算结果为3x + y + 2。
三、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。
在进行整式的乘法时,我们需要将每个整式中的项按照乘法运算的法则进行合并和计算。
例如,我们要计算(2x + 3)(4x + 5)的结果,可以按照分配律展开运算,得到:(2x × 4x) + (2x × 5) + (3 × 4x) + (3 × 5) = 8x^2 + 10x + 12x + 15 =8x^2 + 22x + 15因此,两个整式的乘法运算结果为8x^2 + 22x + 15。
四、整式的除法整式的除法是指将一个整式除以另一个整式的运算。
在进行整式的除法时,我们可以按照多项式长除法的原则进行计算。
举个例子,假设我们要计算(8x^2 + 22x + 15) ÷ (2x + 3)的结果。
整式的运算知识点总结整式是由字母、数字和运算符号组成的多项式,是代数学中常见的基本表达形式。
整式的运算是代数学中较为基础的内容之一,掌握整式的运算方法对于解决代数问题至关重要。
本文将对整式的运算知识点进行总结,包括整式的加减乘除以及相关的运算性质。
一、整式的加法和减法运算整式的加法和减法是最基础的运算,需要注意以下几点:1. 相同项的加减:对于相同的字母和指数的项,可以直接按照系数相加减的原则进行合并。
例如:3x^2 + 4x^2 = 7x^2;5y - 2y = 3y。
2. 不同项的加减:对于不同的项,无法进行合并。
可以将它们按照字母和指数的大小进行排列。
例如:2x^2 + 3x - 5x^2 - 2x = 2x^2 - 5x^2 + 3x - 2x = -3x^2 + x。
二、整式的乘法运算整式的乘法是将两个整式相乘得到一个新的整式,需要注意以下几点:1. 乘法的分配律:对于整式乘以一个数,可以将这个数分别乘以每一项,并将结果相加。
例如:3(2x^2 + 3x) = 6x^2 + 9x。
2. 乘法的合并同类项:乘法运算时,需要合并同类项,即将相同的字母和指数的项合并。
例如:(2x + 3)(4x - 2) = 8x^2 + 4x - 12x - 6 = 8x^2 - 8x - 6。
三、整式的除法运算整式的除法是将一个整式除以另一个整式得到商式和余式的运算,需要注意以下几点:1. 整式的除法并不总是能够完全除尽,有可能存在余数。
2. 设被除式为A(x),除式为B(x),商式为Q(x),余式为R(x),则A(x) = B(x)Q(x) + R(x)。
3. 除法的过程涉及到带余除法的计算步骤,可以利用这个过程来进行整数和多项式的除法。
四、整式的运算性质整式的运算有以下几个基本性质:1. 交换律:加法和乘法都满足交换律,即a + b = b + a,ab = ba。
2. 结合律:加法和乘法都满足结合律,即a + (b + c) = (a + b) + c,a(bc) = (ab)c。
整式的运算知识点整理整式是由常数、字母和乘方运算所组成的代数式。
对于整式的运算,我们需要掌握以下几个知识点:一、整式的加减运算:1.同类项的加减法:对于整式中的同类项,可以对它们的系数进行相加或相减,而字母部分保持不变。
例如,对于3x²+4x²-2x²,可以合并同类项得到5x²。
2.对于加减运算中的多项式,我们可以先按照同类项进行合并,然后再进行相加或相减。
例如,对于3x²+4x-2x²+5,可以合并同类项得到x²+4x+5二、整式的乘法运算:1.利用分配律进行乘积的展开:对于整式的乘法运算,我们可以利用分配律将其展开,然后再进行合并同类项的操作。
例如,对于(x+2)(x+3),可以先利用分配律展开得到x²+3x+2x+6,然后合并同类项得到x²+5x+62.乘方的运算:对于整式的乘法,其中可能会涉及到字母的乘方运算,如x²、y³等。
对于这些情况,我们需要掌握乘方运算的规则。
例如,(x+2)²可以展开为(x+2)(x+2),然后利用乘法运算的知识得到x²+4x+4三、整式的除法运算:1.对于整式的除法,我们需要用到长除法的方法。
首先需要确定被除式和除式的次数,然后根据次数进行长除法的运算。
例如,对于x³+2x²-3x+1÷x+1,我们可以进行长除法运算得到商式x²+x-4,余式为52.求商与余数的方法:对于整式的除法运算中,我们需要根据长除法的运算找到商式和余式。
商式可以通过比较被除式和除式的次数得到,而余式是指除法的结果中除不尽的部分。
对于上述例子,商式为x²+x-4,余式为5四、整式的因式分解:1.对于整式的因式分解,我们需要将整式表示为多个不可再分解的因式相乘的形式。
其中要用到的方法有公因式提取法、提公因式法、平方差公式等。
整式的运算知识点整式指的是由整数常数、变量以及它们的乘积和加减运算组成的式子。
在数学中,我们经常会进行整式的运算,包括合并同类项、展开和因式分解等操作。
下面将介绍整式运算的相关知识点。
一、合并同类项合并同类项是指将同一变量的幂相同的项相加或相减。
在合并同类项时,首先要确定变量的幂是否相同,然后将系数相加即可。
例如,对于表达式3x + 4x + 2x - 5x,我们可以合并同类项得到(3 + 4 + 2 - 5)x= 4x。
二、展开式展开式是指将括号内的整式按照乘法规则展开。
当括号里只有两项时,展开式可以直接应用“先乘后加”的规则。
例如,对于表达式2(x + 3),我们可以将2乘以x和3分别得到2x + 6。
当括号里有多项时,我们需要用“分配律”来展开。
例如,对于表达式3(x + 2y - z),我们需要将3分别乘以x、2y和-z,得到3x + 6y - 3z。
三、因式分解因式分解是将一个整式写成几个因式的乘积。
因式分解有很多不同的方法,以下介绍两种常用的方法:1. 公因式提取法:当一个整式的每一项都有一个公因式时,我们可以将这个公因式提取出来,并将剩下的部分进行合并。
例如,对于表达式6x + 9y,我们可以提取公因式3,得到3(2x + 3y)。
2. 分组分解法:当一个整式可以进行分组分解时,我们可以将其中的项按照一定的规则分组,并利用公因式提取法进行因式分解。
例如,对于表达式2xy + 4x + 3y + 6,我们可以将其分为(2xy + 4x) + (3y + 6),然后分别提取公因式2x和3,得到2x(y + 2) + 3(y + 2)。
以上就是整式的运算知识点的简要介绍。
通过合并同类项、展开式和因式分解等操作,我们可以简化整式、求解方程和化简复杂的数学问题。
熟练掌握这些知识点,并灵活运用于实际问题中,不仅有助于提高数学计算的准确性,也能够增强数学思维和解决问题的能力。
一、填空题(每空2分,共26分)
1.-3x 3y·2x 2y 2= 2.a m +1· =a 2m
3.(m -n)5·(n-m)4= 4.用科学记数法表示:-3070000=
5.写出下列用科学记数法表示的数的原数
4.017×104= , -3.76×103=
6.若a -b =8,ab =6,则a 2+b 2的值为
7.(2x -3y)(-3y -2x)= 8.(21x -31y)( )=91y 2-4
1x 2
9.已知x -y =3,xy =2,则(x +y)2=
10.已知(2x -3)(x +4)=2x 2+ax +b ,则a = ,b =
11.已知a 2n =3,则(2a 3 n ) 2-3(a 2)2 n =
二、选择题(每题2分,共16分)
1.下面的计算正确的是( )
A .a 2·a 4=a 8
B .(-2a 2)3=-6a 6
C .(a n +1)2=a 2n +1
D .a n ·a·a n -1=a 2n
2.如果(x -a)2=x 2+x +4
1,则a =( ) A .21 B .-21 C .41 D .-4
1 3.如果x 2+6xy +m 是一个完全平方式,则m =( )
A .9y 2
B .3y 2
C .y 2
D .6y 2
4.要使式子41x 2+9
1y 2成为一个完全平方式,则加上( ) A .31xy B .61xy C .±31xy D .±9
1xy 5.已知a 3x +1·a 2y -1=a 3,b 3x ·b =b 2y ,则x ,y 为( ) A .x =3,y =1 B .x =2,y =1 C .x =31,y =1 D .x =2
1,y =1 6.计算(-2)101+(-2)100( )
A .2100
B .-1
C .-2
D .-2100
7.已知多项式x 2+ax +b 与x 2-2x -3的乘积中不含x 3与x 2项,则a 、b 的值为
( )
A .a =2,b =7
B .a =-2,b =-3
C .a =3,b =7
D .a =3,b =4
8.当x =-3时多项式ax 5-bx 3+cx -8的值为8,则当x =3时,它的值为( )
A .8
B .-8
C .24
D .-24
三、计算下列各题(每题4分,共24分)
分解因式:1.a 2b +ab 2 2.a(x -y)-b(y -x)
计算:3.3(x 2)3-2(x 3)2 4.6xy(-21x +31y -12
5)
5.(-4ax)2(5a 2-3ax 2) 6.(x +3)(x -3)-(x +1)(x +5)
四、求值(每题5分,共20分)
1. 已知(x +y)2=16,(x -y)2=4,求xy 的值
2.化简,求值:2.8m 2-5m(-m +3n) +4m(-4m -2
5n),其中m =2,n =-1
3.(8x 2+4x +1)(-8x 2+4x -1),其中x =2
1
4.用两种不同方法计算:(2a -3b)2·(2a+3b)2
五(第1题6分,第2、3小题各4分,共14分)
1.两个两位数的十位数字相同,一个的个位数字是6,一个的个位数字是4,它们的平方差是220,求这两个两位数。
2.如图,小明家有一块a 米的长方形菜地,其中长b
为米的一块种白菜,余下的长c 为米的一块种萝卜,
试用不同的方法表示这块菜地的面积,从不同的表示
方法中,你得出了什么结论?
3.观察下列式子:⑴32-12=(3+1)(3-1)=8;⑵52-32=(5+3)(5-3)=16;⑶72-52=(7+5)(7-5)=24;⑷92-72=(9+7)(9-7)=32;
猜想:任意两个连续奇数的平方差一定是 ,并对一般情况给予证明。
参考答案
一、1.-6x 5y 3 2.a m -1 3.(m -n)9 4.-3.07×106 5.40170 -3760
6.76 7.9y 2-4x 2 8.(-12x -13
y) 9.17 10.5,-12 11.81
二、D 、B 、A 、C 、C 、D 、A 、D
三、1.解:原式=ab(a +b) 2.解:原式=a(x -y)+b(x -y)=(a +b)(x -y)
3.解:原式=3x 6-2x 6=x 6 4.解:原式=-3x 2y +2xy 2-52
xy 5.解:原式=16a 2x 2(5a 2-3ax 2)=80a 4x 2-48a 3x 4
6.解:原式=x 2-9-(x 2+5x +x +5)=-6x -14
四、1.解:∵(x +y)2=16,(x -y)2=4 ∴(x +y)2-(x -y)2=16-4=12,
(x 2+2xy +y 2)-(x 2-2xy +y 2)=12 x 2+2xy +y 2-x 2+2xy -y 2=12
4xy =12 xy =3
2.原式=8m 2+5m 2-15mn -16m 2-10mn =-3m 2-25mn
当m =2,n =-1时,原式=-3×4-25×2×(-1)=38
3.解:原式=[4x +(8x 2+1)][ 4x -(8x 2+1)] =(4x)2-(8x 2+1)2=16x 2-(64x 4+16x 2+1)
=16x 2-64x 4-16x 2-1)=-64x 4-1
当x =21时,原式=-64×(21)4-1=-64×16
1-1=-5 4.解法一:原式=[(2a -3b)(2a +3b)]2
=[4a 2-9b 2]2=16a 4-72a 2b 2+81b 4
解法二 :原式=(4a 2-12ab +9b 2)( 4a 2+12ab +9b 2)
=[(4a 2+9b 2)+12ab][(4a 2+9b 2)-12ab]
=(4a 2+9b 2)2-(12ab)2
=16a 4+72a 2b 2+81b 4-144a 2b 2
=16a 4-72a 2b 2+81b 4
五、1.解:设这两个两位数的十位数字是x ,则它们可分别表示为(10x +6)、(10x +4),
根据题意有方程(10x +6)2-(10x +4)2=220
解这个方程 (100x 2+120x +36)-(100x 2+80x +16)=220
100x 2+120x +36-100x 2-80x -16=220
40x =200 x =5
∴这两个两位数分别是56和54
2.方法1:ab +ac 方法2:a(b +c)
从不同的表示方法中,我们能验证单项式乘多项式的法则。
3.8的倍数,设n为自然数,则
(2n+1)2-(2n-1)2=(4n2+4n+1)-(4n2-4n+1)=4n2+4n+1-4n2+4n-1=8n。