【数学】2018年辽宁省盘锦市中考真题(解析版)
- 格式:doc
- 大小:296.14 KB
- 文档页数:19
2018年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)下列实数为无理数的是()A.﹣5 B.C.0 D.π2.(2分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.3.(2分)一元二次方程2x2﹣x+1=0根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断4.(2分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差5.(2分)如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102° D.108°6.(2分)下列运算正确的是()A.7a﹣a=6 B.a2•a3=a5 C.(a3)3=a6D.(ab)4=ab47.(2分)如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8 B.12 C.16 D.208.(2分)如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:x3﹣4x=.10.(3分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.11.(3分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.12.(3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为.13.(3分)如图,直线y1=﹣x+a与y2=bx﹣4相交于点P,已知点P的坐标为(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是.14.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S=24,则OH的长为.菱形ABCD15.(3分)如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段OA饶点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数y=(k≠0)的图象经过P,B两点,则k的值为.16.(3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为.三、综合题17.(7分)先化简,再求值:(2﹣)÷,其中x=3.18.(7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x/元人数(频数)频率0≤x<3060.1530≤x<60120.3060≤x<90160.4090≤x<120b0.10120≤x<1502a(1)这次被调查的人数共有人,a=.(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8,共16分)19.(8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.20.(8分)为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?#LZ五、解答题(本大题共2小题,每小题8分,共16分)21.(8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.5米,点B距地面10.5米,为教出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)22.(8分)如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线.(2)若sin∠EFA=,AF=5,求线段AC的长.六、解答题(本大题共1小题,共10分)23.(10分)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:每个商品的售价x(元)…304050…每天的销售量y(个)1008060…(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?七、解答题(本大题共2小题,共24分)24.(12分)如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)25.(12分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.2018年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)下列实数为无理数的是()A.﹣5 B.C.0 D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.(2分)一元二次方程2x2﹣x+1=0根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:△=(﹣1)2﹣4×2×1=﹣7<0,所以方程无实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(2分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(2分)如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102° D.108°【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.6.(2分)下列运算正确的是()A.7a﹣a=6 B.a2•a3=a5 C.(a3)3=a6D.(ab)4=ab4【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方逐一计算可得.【解答】解:A、7a﹣a=6a,此选项错误;B、a2•a3=a5,此选项正确;C、(a3)3=a9,此选项错误;D、(ab)4=a4b4,此选项错误;故选:B.【点评】本题主要考查幂的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方.7.(2分)如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8 B.12 C.16 D.20【分析】由四边形BCDE内接于⊙O知∠EFC=∠ABC=45°,据此得AC=BC,由EF是⊙O的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF是⊙O的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BFC得AE=BF,根据Rt△ECF是等腰直角三角形知EF2=16,继而可得答案.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.【点评】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.8.(2分)如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.【分析】作QD⊥AB,分点Q在AC、CB上运动这两种情况,由直角三角形的性质表示出QD的长,利用三角形面积公式得出函数解析式即可判断.【解答】解:(1)过点Q作QD⊥AB于点D,①如图1,当点Q在AC上运动时,即0≤x≤3,由题意知AQ=x、AP=x,∵∠A=45°,∴QD=AQ=x,则y=•x•x=x2;②如图2,当点Q在CB上运动时,即3<x≤6,此时点P与点B重合,由题意知BQ=6﹣x、AP=AB=3,∵∠B=45°,∴QD=BQ=(6﹣x),则y=×3×(6﹣x)=﹣x+9;故选:D.【点评】本题主要考查动点问题的函数图象,解题的关键是根据题意弄清两点的运动路线,据此分类讨论并得出函数解析式.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:x3﹣4x=x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.10.(3分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为3×1010元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.11.(3分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 2.4m2.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×2=6(m2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近,∴世界杯图案占长方形世界杯宣传画的40%,∴世界杯图案的面积约为:6×40%=2.4m2,故答案为:2.4.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.12.(3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为(2,﹣).【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.【解答】解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(3分)如图,直线y1=﹣x+a与y2=bx﹣4相交于点P,已知点P的坐标为(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是x<1.【分析】观察函数图象得到当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;【解答】解:当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;故答案为x>1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,=24,则OH的长为3.连接OH,若OB=4,S菱形ABCD【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形==24∴BO=DO=4,AO=CO,S菱形ABCD∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.15.(3分)如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段OA饶点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数y=(k≠0)的图象经过P,B两点,则k的值为.【分析】作PQ⊥OA,由AB=1知OA=k,由旋转性质知OP=OA=k、∠POQ=60°,据此求得OQ=OPcos60°=k,PQ=OPsin60°=k,即P(k,k),代入解析式解之可得.【解答】解:过点P作PQ⊥OA于点Q,∵AB=1,∴OA=k,由旋转性质知OP=OA=k、∠POQ=60°,则OQ=OPcos60°=k,PQ=OPsin60°=k,即P(k,k),代入解析式,得:k2=k,解得:k=0(舍)或k=,故答案为:.【点评】本题主要考查反比例函数图象上的点,解题的关键是表示出点P的坐标.16.(3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为4•()2016•(1+)2017.【分析】从特殊到一般探究规律后即可解决问题;【解答】解:由题意:正方形ABCA1的边长为,正方形A1B1C1A2的边长为+1,正方形A2B2C2A3…的边长为(+1)(1+),正方形A3B3C3A4的边长为(+1)(1+)2,由此规律可知:正方形A2017B2017C2017A2018的边长为(+1)(1+)2016.∴正方形A2017B2017C2017A2018的周长为4•(+1)(1+)2016=4•()2016•(1+)2017.故答案为4•()2016•(1+)2017.【点评】本题考查规律型问题、解直角三角形、点的坐标等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、综合题17.(7分)先化简,再求值:(2﹣)÷,其中x=3.【分析】先根据分式的混合运算顺序和法则化简原式,再将x的值代入求解可得.【解答】解:(2﹣)÷=[﹣]×=×=﹣,当x=3时,原式=﹣=﹣.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.18.(7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x/元人数(频数)频率0≤x<3060.1530≤x<60120.3060≤x<90160.4090≤x<120b0.10120≤x<1502a(1)这次被调查的人数共有40人,a=0.05.(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.【分析】(1)根据0≤x<30组频数及其所占百分比可得总人数,120≤x<150组人数除以总人数可得a的值.(2)根据以上所求结果即可补全直方图;(3)利用总人数1500乘以对应的比例即可求解.【解答】解:(1)这次被调查的人数共有6÷0.15=40,则a=2÷40=0.05;故答案为:40;0.05;(2)补全频数直方图如下:(3)估计每月零花钱的数额x<90范围的人数为.【点评】此题主要考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.四、解答题(本大题共2小题,每小题8,共16分)19.(8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.【分析】(1)直接利用求概率公式计算即可;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)∵姐姐从4张卡片中随机抽取一张卡片,∴恰好抽到A佩奇的概率=,故答案为:;(2)画树状图为:共有12种等可能的结果数,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果数为2,所以姐姐抽到A佩奇,弟弟抽到B乔治的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?#LZ【分析】(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的座位数是x个,每辆大客车的座位数是y个,根据题意可得:,解得:.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则25a+40(10﹣a)≥310+40,解得:a≤3,符合条件的a最大整数为3.答:最多租用小客车3辆.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.五、解答题(本大题共2小题,每小题8分,共16分)21.(8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.5米,点B距地面10.5米,为教出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)【分析】如图作AH⊥CN于H.承办方求出BH、CH即可解决问题;【解答】解:如图作AH⊥CN于H.在Rt△ABH中,∵∠BAH=45°,BH=10.5﹣2.5=8(m),∴AH=BH=8(m),在Rt△AHC中,tan65°=,∴CH=8×2.1≈17(m),∴BC=CH﹣BH=17﹣8=9(m),【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(8分)如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线.(2)若sin∠EFA=,AF=5,求线段AC的长.【分析】(1)连接OE,根据同圆的半径相等和角平分线可得:OE∥AC,则∠BEO=∠C=90°,解决问题;(2)过A作AH⊥EF于H,根据三角函数先计算AH=4,证明△AEH是等腰直角三角形,则AE=AH=8,证明△AED∽△ACE,可解决问题.【解答】证明:(1)连接OE,∵OE=OA,∴∠OEA=∠OAE,∵AE平分∠BAC,∴∠OAE=∠CAE,∴∠CAE=∠OEA,∴OE∥AC,∴∠BEO=∠C=90°,∴BC是⊙O的切线;(2)过A作AH⊥EF于H,Rt△AHF中,sin∠EFA=,∵AF=5,∴AH=4,∵AD是⊙O的直径,∴∠AED=90°,∵EF平分∠AED,∴∠AEF=45°,∴△AEH是等腰直角三角形,∴AE=AH=8,∵sin∠EFA=sin∠ADE==,∴AD=10,∵∠DAE=∠EAC,∠DEA=∠ECA=90°,∴△AED∽△ACE,∴,∴,∴AC=6.4.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.六、解答题(本大题共1小题,共10分)23.(10分)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:每个商品的售价x(元)…304050…每天的销售量y(个)1008060…(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式;(3)将所得函数解析式配方成顶点式即可得最值情况.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,则,解得,即y与x之间的函数表达式是y=﹣2x+160;(2)由题意可得,w=(x﹣20)(﹣2x+160)=﹣2x2+200x﹣3200,即w与x之间的函数表达式是w=﹣2x2+200x﹣3200;(3)∵w=﹣2x2+200x﹣3200=﹣2(x﹣50)2+1800,20≤x≤60,∴当20≤x≤50时,w随x的增大而增大;当50≤x≤60时,w随x的增大而减小;当x=50时,w取得最大值,此时w=1800.即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.七、解答题(本大题共2小题,共24分)24.(12分)如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)【分析】(1)证明△BAG≌△EFG可得结论;(2)①如图2,设AG=a,CD=b,则DF=AB=b,分别表示BH和DG的长,代入计算即可;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=AD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.【点评】本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.25.(12分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.【分析】(1)根据题意得到B、C两点的坐标,设抛物线的解析式为y=(x﹣4)(x﹣m),将点C的坐标代入求得m的值即可;(2)过点D作DF⊥x轴,交BC与点F,设D(x,x2﹣x﹣2),则DF=﹣x2+2x,然后列出S与x的关系式,最后利用配方法求得其最大值即可;(3)根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点E,EA=EC=EB=,过D作Y轴的垂线,垂足为R,交AC的延线于G,设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x,最后,分为∠DCM=2∠BAC和∠MDC=2∠BAC两种情况列方程求解即可.【解答】解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),.设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1),即y=x2﹣x﹣2.(2)如图所示:过点D作DF⊥x轴,交BC与点F.。
2018年辽宁书锦市中考数学真题及答案一・诜修独(下列蹒的徜诜答案中,只有正确的,话栉F确答案的庠片涂在答新卡匕分,共30分)1.〈3.8分)〈2018•盘锦)-3侬对值是< >2・(3・8分)(2018,盘钠:下列题般中是中心对赤囹形的是《3.<3.8分)(238•盘锦)下列运茸王瑞的罡< >A. 3x,Hy=7xyB. < - a),a a-a bC. O Ix'y* !>. 二J?4.〈3・8丹〉〈2018・田福)M漕生物的直径为0.005 005。
兜n,用冯学记数:去表示改数为《)A. 6.035X JQ-eB. 59. 35X1Q 5C. 6.035X10«D. 5.035X10 5b.《3・8分》《2。
18啕锦)要从甲、N、丙三名学生中选出一名字生您加韵学竟客.为这三名学生迸行了【0次洌学测试,笠过轮提分祈,3人的平均成绩BJ为92分,甲的方差为0.。
24、乙的方差为0・08、丙的方差为0.015,划这10;欠测试点缭比畿稳定的是()A.甲D.乙 C.丙D.无法障定6.(3.8分)<2018•田锦)在一次中学生田径运却会上,多加烹亍吼高的北名运动员希成果如下表所示,4 1.70, 1.75 D. L. 70, 1.70 C. 1.65, 1.75 D. 1.65, 1. 2T.(3・8分)(2。
18,盘福)?口困,。
0中,OAltC, ZACC=50* ,则/ADE的度射为<DA. 16’B. 25°C. 30"D. 50*8.〈3・8分)(2018•盘锦)如图,一级公路冷专弯处是一段圆很(AB),则备层点长度为()A. 3TT D. 6兀C. 9JI D. 12TT9.〈3.8分)(2018・盘信)钳困,已吟"ABB中,E为Q的中点❷CE的延长续文BA的延长续于点F.则下干B先J页中的结论清谋语C )m: S^nFL: 4C. BE: CF=1: 2 D・ S610.(3.00 7?) <2018-g^>加国.在平面吉角坐标系中,正方形。
辽宁省锦州市2018年中考数学试卷一、选择题(本大题共8个小题,每小题2分,共16分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数为无理数的是 ( )A. -5B. 27 C. 0 D. π 2. 如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )3. 一元二次方程2x 2-x+1=0的根的情况是 ( )A. 两个不相等的实数根B. 两个相等的实数根B. 没有实数根 D. 无法判断4. 为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两 人成绩稳定程度的是 ( )A. 平均数B. 中位数C. 众数D. 方差5. 如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放. 若∠1=52°,则∠2的度数为( )A. 92°B. 98°C. 102°D. 108°6. 下列计算正确的是 ( )A. 7a-a=6B. a 2·a 3=a 5C. (a 3)3=a 6D. (ab)4=ab 47. 如图,在△ABC 中,∠ACB=90°,过B,C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE 2+BE 2的值为 ( ) A. 8 B. 12 C.16 D.208.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()二、填空题(本大题共8分,每小题3分,共24分)9.因式分解:x3-4x= .10.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款.将300亿元用科学记数法表示为元. 11.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积为 m2.12. 如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形.已知△AOB与△A1OB1位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为 .13.如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是 .14. 如图,菱形ABCD 的对角线AC,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH.若OB=4,S 菱形ABCD =24,则OH 的长为 .15. 如图,矩形OABC 的顶点A,C 分别在x 轴,y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转60°得到线段OP,连接AP,反比例函数x k y =(k ≠0)的图象经过P,B 两点,则k 的值 为 .16. 如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60°,过点D (6,0)作DA ⊥OM 于点A ,作线段OD 的垂直平分线BE 交x 轴于点E,交AD 于点B,作射线OB.以AB 为边在△AOB 的外侧作正方形ABCA 1,延长A 1C 交射线OB 于点B 1,以A 1B 1为边在△A 1OB 1的外侧作正方形A 1B 1C 1A 2,延长A 2C 1交射线OB 于点B 2,以A 2B 2为边在△A 2OB 2的外侧作正方形A 2B 2C 2A 3……按此规律进行下去,则正方形A 2017B 2017C 2017A 2018的周长为 .三、解答题(本大题共2小题,第17小题6分,第18小题8分,共14分)17. 先化简,再求值: 3x ,2x 1x 22x )2x 3x 3-2=++-÷++其中(18. 为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表.学生每月零花钱数额统计表 学生每月零花钱数额频数分布直方图(1)这次被调查的人数共有 人,a= ;(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8分,共16分)19.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B 乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2) 若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.19.为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和小客车的座位数;(2)经学校统计,实际参加活动人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2小题,每小题8分,共16分)21. 如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A 距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)22. 如图,在△ABC 中,∠C=90°,AE 平分∠BAC 交BC 于点E,O 是AB 上一点,经过A,E 两点的⊙O 交AB于点D ,连接DE ,作∠DEA 的平分线EF 交⊙O 于点F ,连接AF.(1)求证:BC 是⊙O 的切线;(2)若sin ∠EFA=54,AF=25,求线段AC 的长.六、解答题(本大题共1小题,共10分)23. 某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:(1)求y 与x 之间的函数关系式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?七、解答题(本大题共2小题,每小题12分,共24分)24. 如图1,以□ABCD 的较短边CD 为一边作菱形CDEF,使点F 落在边AD 上,连接BE ,交AF 于点G.(1)猜想BG 与EG 的数量关系.并说明理由;(2)延长DE,BA 交于点H ,其他条件不变,①如图2,若∠ADC=60°,求BH DG的值;②如图3,若∠ADC=α(0°<α<90°),直接写出BH DG的值.(用含α的三角函数表示)25.在平面直角坐标系中,直线2x 21y -=与x 轴交于点B ,与y 轴交于点C ,二次函数c bx x 21y 2++= 的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.参考答案1-8.DACDB BCD9. x(x+2)(x-2)10. 3×101011.2.412.13.x<114.315.16.17.18.解:(1)这次被调查的人数共有6÷0.15=40,则a=2÷40=0.05;故答案为:40;0.05;(2)补全频数直方图如下:19.解:(1)∵姐姐从4张卡片中随机抽取一张卡片,20.解:(1)设每辆小客车的座位数是x个,每辆大客车的座位数是y个,根据题意可得:答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则25a+40(10-a)≥310+40,符合条件的a最大整数为3.答:最多租用小客车3辆.21.解:如图作AH⊥CN于H.在Rt△ABH中,∵∠BAH=45°,BH=10.5-2.5=8(m),... ∴AH=BH=8(m),∴CH=8×2.1≈17(m),∴BC=CH-BH=17-8=9(m),22, 证明:(1)连接OE,∵OE=OA,∴∠OEA=∠OAE,∵AE平分∠BAC,∴∠OAE=∠CAE,∴∠CAE=∠OEA,∴OE∥AC,∴∠BEO=∠C=90°,∴BC是⊙O的切线;(2)过A作AH⊥EF于H,∵AD是⊙O的直径,∴∠AED=90°,∵EF平分∠AED,∴∠AEF=45°,...∴△AEH是等腰直角三角形,∴AC=6.4.23.解:(1)设y与x之间的函数解析式为y=kx+b,即y与x之间的函数表达式是y=-2x+160;(2)由题意可得,w=(x-20)(-2x+160)=-2x2+200x-3200,即w与x之间的函数表达式是w=-2x2+200x-3200;(3)∵w=-2x2+200x-3200=-2(x-50)2+1800,20≤x≤60,∴当20≤x≤50时,w随x的增大而增大;当50≤x≤60时,w随x的增大而减小;当x=50时,w取得最大值,此时w=1800.即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.24.解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=AD,25.(3)如图所示:过点D作DR⊥y垂足为R,DR交BC与点G.∵A(-1,0),B(4,0),C(0,-2),.。
2018年辽宁省锦州市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.下列实数为无理数的是()A.﹣5 B.C.0 D.π2.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.3.一元二次方程2x2﹣x+1=0根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断4.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差5.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°6.下列运算正确的是()A.7a﹣a=6 B.a2•a3=a5C.(a3)3=a6D.(ab)4=ab47.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8 B.12 C.16 D.208.如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(共8小题)9.因式分解:x3﹣4x=2)(x﹣2).10.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.11.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.12.如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为﹣﹣.13.如图,直线y1=﹣x+a与y2=bx﹣4相交于点P,已知点P的坐标为(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S=24,则OH的长为.菱形ABCD15.如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数y=(k≠0)的图象经过P,B两点,则k的值为.16.如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为.三、解答题(共9小题)17.先化简,再求值:(2﹣)÷,其中x=3.18.为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:(1)这次被调查的人数共有人,a=.(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.19.动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.20.为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?21.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.5米,点B距地面10.5米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)22.如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线.(2)若sin∠EF A =,AF=5,求线段AC的长.23.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?24.如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)25.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.2018年辽宁省锦州市中考数学真题(解析版)参考答案一、单选题(共8小题)1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确;故选:D.【知识点】无理数2.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:A.【知识点】简单组合体的三视图3.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:△=(﹣1)2﹣4×2×1=﹣7<0,所以方程无实数根.故选:C.【知识点】根的判别式4.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.【知识点】算术平均数、众数、方差、中位数5.【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.【知识点】平行线的性质6.【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方逐一计算可得.【解答】解:A、7a﹣a=6a,此选项错误;B、a2•a3=a5,此选项正确;C、(a3)3=a9,此选项错误;D、(ab)4=a4b4,此选项错误;故选:B.【知识点】合并同类项、幂的乘方与积的乘方、同底数幂的乘法7.【分析】由四边形BCDE内接于⊙O知∠EFC=∠ABC=45°,据此得AC=BC,由EF是⊙O的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF是⊙O的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BFC得AE=BF,根据Rt△ECF是等腰直角三角形知EF2=16,继而可得答案.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.【知识点】圆周角定理8.【分析】作QD⊥AB,分点Q在AC、CB上运动这两种情况,由直角三角形的性质表示出QD的长,利用三角形面积公式得出函数解析式即可判断.【解答】解:(1)过点Q作QD⊥AB于点D,①如图1,当点Q在AC上运动时,即0≤x≤3,由题意知AQ=x、AP=x,∵∠A=45°,∴QD=AQ=x,则y=•x•x=x2;②如图2,当点Q在CB上运动时,即3<x≤6,此时点P与点B重合,由题意知BQ=6﹣x、AP=AB=3,∵∠B=45°,∴QD=BQ=(6﹣x),则y=×3×(6﹣x)=﹣x+9;故选:D.【知识点】动点问题的函数图象二、填空题(共8小题)9.【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【知识点】提公因式法与公式法的综合运用10.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【知识点】科学记数法—表示较大的数11.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×2=6(m2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近,∴世界杯图案占长方形世界杯宣传画的40%,∴世界杯图案的面积约为:6×40%=2.4m2,故答案为:2.4.【知识点】利用频率估计概率12.【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.【解答】解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【知识点】坐标与图形性质、位似变换13.【分析】观察函数图象得到当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;【解答】解:当x>1时,函数y=﹣x+a的图象都在y=bx﹣4的图象下方,所以不等式﹣x+a<bx﹣4的解集为x>1;故答案为x>1.【知识点】一次函数与一元一次不等式、两条直线相交或平行问题14.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S菱形ABCD==24,∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=AC=3.【知识点】菱形的性质15.【分析】作PQ⊥OA,由AB=1知OA=k,由旋转性质知OP=OA=k、∠POQ=60°,据此求得OQ=OP cos60°=k,PQ=OP sin60°=k,即P(k,k),代入解析式解之可得.【解答】解:过点P作PQ⊥OA于点Q,∵AB=1,∴OA=k,由旋转性质知OP=OA=k、∠POQ=60°,则OQ=OP cos60°=k,PQ=OP sin60°=k,即P(k,k),代入解析式,得:k2=k,解得:k=0(舍)或k=,故答案为:.【知识点】矩形的性质、坐标与图形变化-旋转、反比例函数图象上点的坐标特征16.【分析】从特殊到一般探究规律后即可解决问题;【解答】解:由题意:正方形ABCA1的边长为,正方形A1B1C1A2的边长为+1,正方形A2B2C2A3…的边长为(+1)(1+),正方形A3B3C3A4的边长为(+1)(1+)2,由此规律可知:正方形A2017B2017C2017A2018的边长为(+1)(1+)2016.∴正方形A2017B2017C2017A2018的周长为4•(+1)(1+)2016=4•()2016•(1+)2017.故答案为4•()2016•(1+)2017.【知识点】线段垂直平分线的性质、规律型:图形的变化类、规律型:点的坐标三、解答题(共9小题)17.【分析】先根据分式的混合运算顺序和法则化简原式,再将x的值代入求解可得.【解答】解:(2﹣)÷=[﹣]×=×=﹣,当x=3时,原式=﹣=﹣.【知识点】分式的化简求值18.【分析】(1)根据0≤x<30组频数及其所占百分比可得总人数,120≤x<150组人数除以总人数可得a的值.(2)根据以上所求结果即可补全直方图;(3)利用总人数1500乘以对应的比例即可求解.【解答】解:(1)这次被调查的人数共有6÷0.15=40,则a=2÷40=0.05;故答案为:40;0.05;(2)补全频数直方图如下:(3)估计每月零花钱的数额x<90范围的人数为.【知识点】用样本估计总体、频数(率)分布表、频数(率)分布直方图19.【分析】(1)直接利用求概率公式计算即可;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)∵姐姐从4张卡片中随机抽取一张卡片,∴恰好抽到A佩奇的概率=,故答案为:;(2)画树状图为:共有12种等可能的结果数,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果数为1,所以姐姐抽到A佩奇,弟弟抽到B乔治的概率=.【知识点】列表法与树状图法、概率公式20.【分析】(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的座位数是x个,每辆大客车的座位数是y个,根据题意可得:,解得:.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则25a+40(10﹣a)≥310+40,解得:a≤3,符合条件的a最大整数为3.答:最多租用小客车3辆.【知识点】一元一次不等式的应用21.【分析】如图作AH⊥CN于H.想办法求出BH、CH即可解决问题;【解答】解:如图作AH⊥CN于H.在Rt△ABH中,∵∠BAH=45°,BH=10.5﹣2.5=8(m),∴AH=BH=8(m),在Rt△AHC中,tan65°=,∴CH=8×2.1≈17(m),∴BC=CH﹣BH=17﹣8=9(m),【知识点】解直角三角形的应用-仰角俯角问题22.【分析】(1)连接OE,根据同圆的半径相等和角平分线可得:OE∥AC,则∠BEO=∠C=90°,解决问题;(2)过A作AH⊥EF于H,根据三角函数先计算AH=4,证明△AEH是等腰直角三角形,则AE=AH=8,证明△AED∽△ACE,可解决问题.【解答】证明:(1)连接OE,∵OE=OA,∴∠OEA=∠OAE,∵AE平分∠BAC,∴∠OAE=∠CAE,∴∠CAE=∠OEA,∴OE∥AC,∴∠BEO=∠C=90°,∴BC是⊙O的切线;(2)过A作AH⊥EF于H,Rt△AHF中,sin∠EF A=,∵AF=5,∴AH=4,∵AD是⊙O的直径,∴∠AED=90°,∵EF平分∠AED,∴∠AEF=45°,∴△AEH是等腰直角三角形,∴AE=AH=8,∵sin∠EF A=sin∠ADE==,∴AD=10,∵∠DAE=∠EAC,∠DEA=∠ECA=90°,∴△AED∽△ACE,∴,∴,∴AC=6.4.【知识点】相似三角形的判定与性质、圆周角定理、解直角三角形、切线的判定与性质23.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式;(3)将所得函数解析式配方成顶点式即可得最值情况.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,则,解得,即y与x之间的函数表达式是y=﹣2x+160;(2)由题意可得,w=(x﹣20)(﹣2x+160)=﹣2x2+200x﹣3200,即w与x之间的函数表达式是w=﹣2x2+200x﹣3200;(3)∵w=﹣2x2+200x﹣3200=﹣2(x﹣50)2+1800,20≤x≤60,∴当20≤x≤50时,w随x的增大而增大;当50≤x≤60时,w随x的增大而减小;当x=50时,w取得最大值,此时w=1800元即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.【知识点】二次函数的应用24.【分析】(1)证明△BAG≌△EFG可得结论;(2)①如图2,设AG=a,CD=b,则DF=AB=b,分别表示BH和DG的长,代入计算即可;②解法一:设HA=HG=a,如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=b cosα,计算AG和DG的长,代入计算即可.解法二:如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=b cosα,DG=a+2b cosα,同理表示AH的长,代入计算即可.【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②解法一:如图3,连接EC交DF于O,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设HA=HD=a,AB=b,Rt△EFO中,cosα=,∴OF=b cosα,DF=2OF=2b cosα,Rt△AHM中,cosα=,AM=a cosα,AD=2AM=2a cosαAG=(AD﹣DF)=AM﹣OF=a cosα﹣b cosα∴==cosα.解法二:如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设AG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=b cosα,∴DG=a+2b cosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2b cosα)=a+b cosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.【知识点】四边形综合题25.【分析】(1)根据题意得到B、C两点的坐标,设抛物线的解析式为y=(x﹣4)(x﹣m),将点C的坐标代入求得m的值即可;(2)过点D作DF⊥x轴,交BC与点F,设D(x,x2﹣x﹣2),则DF=﹣x2+2x,然后列出S与x的关系式,最后利用配方法求得其最大值即可;(3)根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点E,EA=EC=EB=,过D作Y轴的垂线,垂足为R,交AC的延线于G,设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x,最后,分为∠DCM=2∠BAC和∠MDC=2∠BAC两种情况列方程求解即可.【解答】解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),.设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1),即y=x2﹣x﹣2.(2)如图所示:过点D作DF⊥x轴,交BC与点F.设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.∴S△BCD=OB•DF=×4×(﹣x2+2x)=﹣x2+4x=﹣(x2﹣4x+4﹣4)=﹣(x﹣2)2+4.∴当x=2时,S有最大值,最大值为4.(3)如图所示:过点D作DR⊥y垂足为R,DR交BC与点G.∵A(﹣1,0),B(4,0),C(0,﹣2),∴AC=,BC=2,AB=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.取AB的中点E,连接CE,则CE=BE,∴∠OEC=2∠ABC.∴tan∠OEC==.当∠MCD=2∠ABC时,则tan∠CDR=tan∠ABC=.设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x.∴=,解得:x=0(舍去)或x=2.∴点D的横坐标为2.当∠CDM=2∠ABC时,设MD=3k,CM=4k,CD=5k.∵tan∠MGD=,∴GM=6k,GD=3k,∴GC=MG﹣CM=2k,∴GR=k,CR=k.∴RD=3k﹣k=k.∴==,整理得:﹣x2+x=0,解得:x=0(舍去)或x=.∴点D的横坐标为.综上所述,当点D的横坐标为2或.【知识点】二次函数综合题。
2018年辽宁省盘锦市中考数学真题一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣的绝对值是()A.2B.C.﹣D.﹣22.下列图形中是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3 4.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5 5.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.70 7.如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°8.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π9.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.F A:FB=1:2B.AE:BC=1:2C.BE:CF=1:2D.S△ABE:S△FBC=1:410.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC的两边AB、BC 分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A.△ONC≌△OAMB.四边形DAMN与△OMN面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0,+1)二、填空题(每小题3分,共24分)11.因式分解:x3﹣x=.12.计算:﹣=__________.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.14.若式子有意义,则x的取值范围是.15.不等式组的解集是.16.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△P AB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为.17.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是.(结果保留π)18.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.三、解答题(19小题8分,20小题14分,共22分)19.先化简,再求值:(1﹣)÷,其中a=2+.20.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?四、解答题(21小题8分,22小题10分,共18分)21.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.22.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?五、解答题(本题14分)23.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.六、解答题(本题14分)24.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?七、解答题(本题14分)25.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.八、解答题(本题14分)26.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【参考答案】一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.B【解析】||=.故选B.2.C【解析】A.不是中心对称图形,是轴对称图形,故本选项错误;B.不是中心对称图形,是轴对称图形,故本选项错误;C.是中心对称图形,还是轴对称图形,故本选项正确;D.不是中心对称图形,是轴对称图形,故本选项错误.故选C.3.D【解析】A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.4.A【解析】0.000 005 035m,用科学记数法表示该数为5.035×10﹣6.故选A.5.C【解析】因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,所以这10次测试成绩比较稳定的是丙.故选C.6.A【解析】共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.7.B【解析】如图连接OB,∵OA⊥BC,∠AOC=50°,∴∠AOB=∠AOC=50°,则∠ADB=∠AOB=25°.故选B.8.B【解析】的展直长度为:=6π(m).故选B.9.C【解析】∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴△DEC∽△AEF,∴= =.∵E为AD的中点,∴CD=AF,FE=EC,∴F A:FB=1:2,A说法正确,不符合题意;∵FE=EC,F A=AB,∴AE:BC=1:2,B说法正确,不符合题意;∵∠FBC不一定是直角,∴BE:CF不一定等于1:2,C说法错误,符合题意;∵AE∥BC,AE=BC,∴S△ABE:S△FBC=1:4,D说法正确,不符合题意;故选C.10.C【解析】∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,∴A正确;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,∴B正确;∵△OCN≌△OAM,∴ON=OM.∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,∴C错误;作NE⊥OM于E点,如图所示:∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x.在Rt△NEM中,MN=2.∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2.∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣.在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),∴D正确.故选C.二、填空题(每小题3分,共24分)11.x(x+1)(x﹣1)【解析】原式=x(x2﹣1)=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).12.【解析】原式=3﹣2=.故答案为:.13.【解析】如图所示:连接OA.∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC ∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.14.1≤x≤2【解析】根据二次根式的意义,得,∴1≤x≤2.故答案为:1≤x≤2.15.0<x≤8【解析】∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.16.24【解析】从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.故答案为:24.17.65π【解析】由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π.故答案为:65π.18.或【解析】分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得:∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=.∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得:∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN= AN,BN=BD\1AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得:∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=.故答案为:或.三、解答题(19小题8分,20小题14分,共22分)19.解:原式=(﹣)=•=,当a=2+时,原式==+1.20.解:(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×=72°;(3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人),补全条形统计图为:(4)2000×=640,估计该校2000名学生中最喜爱小品的人数为640人;故答案为:50;72;640;(5)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,所以抽取的2名学生恰好来自同一个班级的概率==.四、解答题(21小题8分,22小题10分,共18分)21.解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.22.解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.五、解答题(本题14分)23.(1)证明:如图1,连接OE,∴OA=OE,∴∠BAE=∠OEA.∵∠BAE=30°,∴∠OEA=30°,∴∠AOE=∠BAE+∠OEA=60°.在△BOE中,∠B=30°,∴∠OEB=180°﹣∠B﹣∠BOE=90°,∴OE⊥BC.∵点E在⊙O上,∴BC是⊙O的切线;(2)解:如图2\1∠B=∠BAE=30°,∴∠AEC=∠B+∠BAE=60°.在Rt△ACE中,AC=3,sin∠AEC=,∴AE===2,连接DE\1AD是⊙O的直径,∴∠AED=90°.在Rt△ADE中,∠BAE=30°,cos∠DAE=,∴AD===4,∴⊙O的半径r=AD=2;(3)解:以A、O、E、F为顶点的四边形是菱形,理由:如图3.在Rt△ABC中,∠B=30°,∴∠BAC=60°,连接OF,∴OA=OF,∴△AOF是等边三角形,∴OA=AF,∠AOF=60°,连接EF,OE,∴OE=OF.∵∠OEB=90°,∠B=30°,∴∠AOE=90°+30°=120°,∴∠EOF=∠AOE﹣∠AOF=60°.∵OE=OF,∴△OEF是等边三角形,∴OE=EF.∵OA=OE,∴OA=AF=EF=OE,∴四边形OAFE是菱形.六、解答题(本题14分)24.解:(1)y=100+10(60﹣x)=﹣10x+700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∴x=50时,W最大值=4000,∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:﹣10(x﹣50)2+4000≥3910,解得:47≤x≤53.∵y=100+10(60﹣x)=﹣10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.七、解答题(本题14分)25.解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM.在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH.∵CD=BC,∴CE=CH\1∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2如图2,连接AE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上.∵∠BCF=90°,∠BEF=90°,M为AF的中点,∴CM=AF,EM=AF,∴CM=ME.∵∠EFD=45°,∴∠EFC=135°.∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接CF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD.∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=MG,∴MD=ME,∠MCG=∠MGC.∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°.∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.八、解答题(本题14分)26.解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得解得,∴抛物线解析式为:y=∴抛物线对称轴为直线x=﹣(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx,∴k=﹣∴y=﹣则P点坐标为(1,﹣)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,﹣a﹣1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,﹣)∵N为DM中点∴点M坐标为(2a,)把M代入y=,解得a=4则N点坐标为(4,﹣3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N 由(2)N(2,﹣1)∴N点坐标为(4,﹣3)或(2,﹣1).。
2018年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)下列实数为无理数的是( ) A .5-B .72C .0D .π2.(2分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A .B .C .D .3.(2分)一元二次方程2210x x -+=根的情况是( ) A .两个不相等的实数根 B .两个相等的实数根C .没有实数根D .无法判断4.(2分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是( ) A .平均数B .中位数C .众数D .方差5.(2分)如图,直线12//l l ,且分别与直线l 交于C ,D 两点,把一块含30︒角的三角尺按如图所示的位置摆放,若152∠=︒,则2∠的度数为( )A .92︒B .98︒C .102︒D .108︒6.(2分)下列运算正确的是( ) A .76a a -=B .235a a a =C .336()a a =D .44()ab ab =7.(2分)如图,在ABC ∆中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F ,连接BF ,CF ,若135EDC ∠=︒,CF =,则22AE BE +的值为( )A .8B .12C .16D .208.(2分)如图,在ABC ∆中,90C ∠=︒,3AC BC cm ==,动点P 从点A 出发,/s 的速度沿AB 方向运动到点B ,动点Q 同时从点A 出发,以1/cm s 的速度沿折线AC CB →方向运动到点B .设APQ ∆的面积为2()y cm ,运动时间为()x s ,则下列图象能反映y 与x 之间关系的是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)因式分解:34x x -= .10.(3分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为 元.11.(3分)如图,这是一幅长为3m ,宽为2m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 2m .12.(3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知AOB ∆与△11A OB 位似,位似中心为原点O ,且相似比为3:2,点A ,B 都在格点上,则点1B 的坐标为 .13.(3分)如图,直线1y x a =-+与24y bx =-相交于点P ,已知点P 的坐标为(1,3)-,则关于x 的不等式4x a bx -+<-的解集是 .14.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH BC ⊥于点H ,连接OH ,若4OB =,24ABCD S =菱形,则OH 的长为 .15.(3分)如图,矩形OABC 的顶点A ,C 分别在x 轴,y 轴上,顶点B 在第一象限,1AB =,将线段OA 绕点O 按逆时针方向旋转60︒得到线段OP ,连接AP ,反比例函数(0)k y k x=≠的图象经过P ,B 两点,则k 的值为 .16.(3分)如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60︒,过点(6,0)D 作DA OM ⊥于点A ,作线段OD 的垂直平分线BE 交x 轴于点E ,交AD 于点B ,作射线OB ,以AB 为边在AOB ∆的外侧作正方形1ABCA ,延长1A C 交射线OB 于点1B ,以11A B 为边在AOB ∆的外侧作正方形1112A B C A ,延长21A C 交射线OB 于点2B ,以22A B 为边在△22A OB 的外侧作正方形2223A B C A ⋯按此规律进行下去,则正方形2017201720172018A B C A 的周长为 .三、综合题17.(7分)先化简,再求值:23321(2)22x x x x x +-+-÷++,其中3x =. 18.(7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:(1)这次被调查的人数共有人,a=.(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8,共16分)19.(8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.20.(8分)为迎接“七一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2小题,每小题8分,共16分)21.(8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45︒和65︒,点A距地面2.5米,点B距地面10.5米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65 2.1≈︒≈ 1.4)︒≈,sin650.9︒≈,cos650.422.(8分)如图,在ABC∠交BC于点E,O是AB上一点,∠=︒,AE平分BAC∆中,90C经过A,E两点的O交AB于点D,连接DE,作DEA∠的平分线EF交O于点F,连接AF.(1)求证:BC是O的切线.(2)若4sin5EFA∠=,AF=AC的长.六、解答题(本大题共1小题,共10分)23.(10分)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?七、解答题(本大题共2小题,共24分)24.(12分)如图1,以ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若60ADC∠=︒,求DGBH的值;②如图3,若(090)ADCαα∠=︒<<︒,直接写出DGBH的值(用含α的三角函数表示)25.(12分)在平面直角坐标系中,直线122y x =-与x 轴交于点B ,与y 轴交于点C ,二次函数212y x bx c =++的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上. (1)求二次函数的表达式;(2)如图1,连接DC ,DB ,设BCD ∆的面积为S ,求S 的最大值;(3)如图2,过点D 作DM BC ⊥于点M ,是否存在点D ,使得CDM ∆中的某个角恰好等于ABC ∠的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.2018年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)下列实数为无理数的是( ) A .5-B .72C .0D .π【解答】解:A 、5-是整数,是有理数,选项错误;B 、72是分数,是有理数,选项错误; C 、0是整数,是有理数,选项错误;D 、π是无理数,选项正确;故选:D .2.(2分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A .B .C .D .【解答】解:左视图有2列,每列小正方形数目分别为2,1. 故选:A .3.(2分)一元二次方程2210x x -+=根的情况是( ) A .两个不相等的实数根 B .两个相等的实数根C .没有实数根D .无法判断【解答】解:△2(1)42170=--⨯⨯=-<, 所以方程无实数根.故选:C .4.(2分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是( ) A .平均数B .中位数C .众数D .方差【解答】解:由于方差反映数据的波动情况,应知道数据的方差. 故选:D .5.(2分)如图,直线12//l l ,且分别与直线l 交于C ,D 两点,把一块含30︒角的三角尺按如图所示的位置摆放,若152∠=︒,则2∠的度数为( )A .92︒B .98︒C .102︒D .108︒【解答】解:如图,12//l l , 1352∴∠=∠=︒,又430∠=︒,218034*********∴∠=︒-∠-∠=︒-︒-︒=︒,故选:B .6.(2分)下列运算正确的是( ) A .76a a -=B .235a a a =C .336()a a =D .44()ab ab =【解答】解:A 、76a a a -=,此选项错误;B 、235a a a =,此选项正确;C 、339()a a =,此选项错误;D 、444()ab a b =,此选项错误;故选:B .7.(2分)如图,在ABC ∆中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E,连接EO并延长交O于点F,连接BF,CF,若135∠=︒,CF=,则EDC22+的值为()AE BEA.8B.12C.16D.20【解答】解:四边形BCDE内接于O,且135EDC∠=︒,∴∠=∠=︒-∠=︒,EFC ABC EDC18045ACB∠=︒,90∴∆是等腰三角形,ABC∴=,AC BC又EF是O的直径,∴∠=∠=∠=︒,EBF ECF ACB90∴∠=∠,BCF ACE四边形BECF是O的内接四边形,AEC BFC∴∠=∠,∴∆≅∆,()ACE BFC ASA∴=,AE BFEFC∠=︒,∆中,CF=45Rt ECF216∴=,EF则2222216+=+==,AE BE BF BE EF故选:C.8.(2分)如图,在ABC==,动点P从点A出发,/sAC BC cm∆中,90C∠=︒,3的速度沿AB方向运动到点B,动点Q同时从点A出发,以1/→cm s的速度沿折线AC CB方向运动到点B .设APQ ∆的面积为2()y cm ,运动时间为()x s ,则下列图象能反映y 与x 之间关系的是( )A .B .C .D .【解答】解:(1)过点Q 作QD AB ⊥于点D , ①如图1,当点Q 在AC 上运动时,即03x 剟,由题意知AQ x =、AP =, 45A ∠=︒,QD AQ ∴==, 则2121222y xx x ==; ②如图2,当点Q 在CB 上运动时,即36x <…,此时点P 与点B 重合,由题意知6BQ x =-、AP AB == 45B ∠=︒,)QD x ∴==-,则13)922y x x =⨯-=-+;故选:D .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)因式分解:34x x -= (2)(2)x x x +- . 【解答】解:34x x -2(4)x x =- (2)(2)x x x =+-.故答案为:(2)(2)x x x +-.10.(3分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为 10310⨯ 元.【解答】解:300亿元10310=⨯元. 故答案为:10310⨯.11.(3分)如图,这是一幅长为3m ,宽为2m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 2.4 2m .【解答】解:长方形的面积2326()m =⨯=,骰子落在世界杯图案中的频率稳定在常数0.4附近,∴世界杯图案占长方形世界杯宣传画的40%, ∴世界杯图案的面积约为:2640% 2.4m ⨯=,故答案为:2.4.12.(3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知AOB ∆与△11A OB 位似,位似中心为原点O ,且相似比为3:2,点A ,B 都在格点上,则点1B 的坐标为 2(2,)3-- .【解答】解:由题意得:AOB ∆与△11A OB 位似,位似中心为原点O ,且相似比为3:2, 又(3,1)BB ∴'的坐标是2[3()3⨯-,21()]3⨯-,即B '的坐标是2(2,)3--;故答案为:2(2,)3--.13.(3分)如图,直线1y x a =-+与24y bx =-相交于点P ,已知点P 的坐标为(1,3)-,则关于x 的不等式4x a bx -+<-的解集是 1x > .【解答】解:当1x >时,函数y x a =-+的图象都在4y bx =-的图象下方,所以不等式4x a bx -+<-的解集为1x >;故答案为1x >.14.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH BC ⊥于点H ,连接OH ,若4OB =,24ABCD S =菱形,则OH 的长为 3 .【解答】解:ABCD 是菱形,4BO DO ∴==,AO CO =,242ABCD AC BDS ⨯==菱形, 6AC ∴=,AH BC ⊥,3AO CO ==,132OH AC ∴==. 故答案为315.(3分)如图,矩形OABC 的顶点A ,C 分别在x 轴,y 轴上,顶点B 在第一象限,1AB =,将线段OA 绕点O 按逆时针方向旋转60︒得到线段OP ,连接AP ,反比例函数(0)k y k x=≠的图象经过P ,B 两点,则k 的值为.【解答】解:过点P 作PQ OA ⊥于点Q ,1AB =,OA k ∴=,由旋转性质知OP OA k ==、60POQ ∠=︒,则1cos602OQ OP k =︒=,sin 60PQ OP =︒,即1(2P k ),2k =,解得:0k =(舍)或k =,16.(3分)如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60︒,过点(6,0)D 作DA OM ⊥于点A ,作线段OD 的垂直平分线BE 交x 轴于点E ,交AD 于点B ,作射线OB ,以AB 为边在AOB ∆的外侧作正方形1ABCA ,延长1A C 交射线OB 于点1B ,以11A B 为边在AOB ∆的外侧作正方形1112A B C A ,延长21A C 交射线OB 于点2B ,以22A B 为边在△22A OB 的外侧作正方形2223A B C A ⋯按此规律进行下去,则正方形2017201720172A B CA 的周长为2016201734()(13)+ .【解答】解:由题意:正方形1ABCA正方形1112A B C A 1+,正方形2223A B C A ⋯的边长为1)(1+,正方形3334A B C A 的边长为21)(1+,由此规律可知:正方形2017201720172018A B C A 的边长为20161)(1+. ∴正方形2017201720172018A B C A 的周长为201620162017334(31)(1)4()(13)++=+.故答案为2016201734()(13)+. 三、综合题17.(7分)先化简,再求值:23321(2)22x x x x x +-+-÷++,其中3x =. 【解答】解:23321(2)22x x x x x +-+-÷++ 22(2)332[]22(1)x x x x x x +++=-⨯++- 2122(1)x x x x -++=⨯+- 11x =--, 当3x =时,原式11312=-=--. 18.(7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表: 请根据以上图表,解答下列问题:(1)这次被调查的人数共有 40 人,a = . (2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.【解答】解:(1)这次被调查的人数共有60.1540÷=,则2400.05a =÷=; 故答案为:40;0.05;(2)补全频数直方图如下:401612624----=,(3)估计每月零花钱的数额90x <范围的人数为 612161500127540++⨯=. 四、解答题(本大题共2小题,每小题8,共16分)19.(8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为14. (2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A 佩奇,弟弟抽到B 乔治的概率.【解答】解:(1)姐姐从4张卡片中随机抽取一张卡片,∴恰好抽到A 佩奇的概率14=, 故答案为:14; (2)画树状图为:共有12种等可能的结果数,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果数为1, 所以姐姐抽到A 佩奇,弟弟抽到B 乔治的概率112=. 20.(8分)为迎接“七一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个. (1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆? 【解答】解:(1)设每辆小客车的座位数是x 个,每辆大客车的座位数是y 个,根据题意可得:1546310y x y x -=⎧⎨+=⎩, 解得:2540x y =⎧⎨=⎩.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则2540(10)31040a a +-+…, 解得:133a …,符合条件的a 最大整数为3. 答:最多租用小客车3辆.五、解答题(本大题共2小题,每小题8分,共16分)21.(8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45︒和65︒,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan65 2.1︒≈,sin650.9︒≈,cos650.4︒≈ 1.4)≈【解答】解:如图作AH CN ⊥于H .在Rt ABH ∆中,45BAH ∠=︒,10.5 2.58()BH m =-=, 8()AH BH m ∴==,在Rt AHC ∆中,tan 65CH AH︒=, 8 2.117()CH m ∴=⨯≈, 1789()BC CH BH m ∴=-=-=,22.(8分)如图,在ABC ∆中,90C ∠=︒,AE 平分BAC ∠交BC 于点E ,O 是AB 上一点,经过A ,E 两点的O 交AB 于点D ,连接DE ,作DEA ∠的平分线EF 交O 于点F ,连接AF .(1)求证:BC 是O 的切线.(2)若4sin 5EFA ∠=,AF =AC 的长.【解答】证明:(1)连接OE ,OE OA =,OEA OAE ∴∠=∠, AE 平分BAC ∠,OAE CAE ∴∠=∠,CAE OEA ∴∠=∠,//OE AC ∴,90BEO C ∴∠=∠=︒,BC ∴是O 的切线;(2)过A 作AH EF ⊥于H ,Rt AHF ∆中,4sin 5AH EFA AF ∠==, 5AF =,AH ∴=,AD是O的直径,90AED∴∠=︒,EF平分AED∠,45AEF∴∠=︒,AEH∴∆是等腰直角三角形,8AE∴=,4 sin sin5AEEFA ADEAD∠=∠==,10AD∴=,DAE EAC∠=∠,90DEA ECA∠=∠=︒,AED ACE∴∆∆∽,∴AE AD AC AE=,∴8108 AC=,6.4 AC∴=.六、解答题(本大题共1小题,共10分)23.(10分)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:(1)求y 与x 之间的函数表达式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?【解答】解:(1)设y 与x 之间的函数解析式为y kx b =+,则40805060k b k b +=⎧⎨+=⎩, 解得2160k b =-⎧⎨=⎩, 即y 与x 之间的函数表达式是2160y x =-+;(2)由题意可得,2(20)(2160)22003200w x x x x =--+=-+-,即w 与x 之间的函数表达式是222003200w x x =-+-;(3)22220032002(50)1800w x x x =-+-=--+,2060x 剟,∴当2050x 剟时,w 随x 的增大而增大;当5060x 剟时,w 随x 的增大而减小; 当50x =时,w 取得最大值,此时1800w =元即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.七、解答题(本大题共2小题,共24分)24.(12分)如图1,以ABCD 的较短边CD 为一边作菱形CDEF ,使点F 落在边AD 上,连接BE ,交AF 于点G .(1)猜想BG 与EG 的数量关系,并说明理由;(2)延长DE 、BA 交于点H ,其他条件不变:①如图2,若60ADC ∠=︒,求DG BH的值; ②如图3,若(090)ADC αα∠=︒<<︒,直接写出DG BH 的值(用含α的三角函数表示)【解答】解:(1)BG EG=,理由是:如图1,四边形ABCD是平行四边形,AB CD∴=,//AB CD,四边形CFED是菱形,EF CD∴=,//EF CD,AB EF∴=,//AB EF,A GFE∴∠=∠,AGB FGE∠=∠,BAG EFG∴∆≅∆,BG EG∴=;(2)①如图2,设AG a=,CD b=,则DF AB b==,由(1)知:BAG EFG∆≅∆,FG AG a∴==,//CD BH,60HAD ADC∴∠=∠=︒,60ADE∠=︒,60AHD HAD ADE∴∠=∠=∠=︒,ADH∴∆是等边三角形,2AD AH a b∴==+,∴122 DG FG DF a bBH AB AH b a b++===+++;②解法一:如图3,连接EC交DF于O,过H作HM AD⊥于M,ADC HAD ADHα∠=∠=∠=,AH HD∴=,四边形CFED 是菱形,EC AD ∴⊥,2FD FO =,设HA HD a ==,AB b =,Rt EFO ∆中,cos OF EF α=, cos OF b α∴=,22cos DF OF b α==,Rt AHM ∆中,cos AM AHα=, cos AM a α=,22cos AD AM a α==1()cos cos 2AG AD DF AM OF a b αα=-=-=- ∴cos cos 2cos cos DG a b b BH a bαααα-+==+. 解法二:如图3,连接EC 交DF 于O ,四边形CFED 是菱形,EC AD ∴⊥,2FD FO =,设AG a =,AB b =,则FG a =,EF ED CD b ===,Rt EFO ∆中,cos OF EFα=, cos OF b α∴=,2cos DG a b α∴=+, 过H 作HM AD ⊥于M ,ADC HAD ADH α∠=∠=∠=,AH HD ∴=,11(22cos )cos 22AM AD a b a b αα∴==+=+, Rt AHM ∆中,cos AM AH α=, cos cos a b AH αα+∴=, ∴2cos cos cos cos DG a b a b BH b αααα+==++.25.(12分)在平面直角坐标系中,直线122y x =-与x 轴交于点B ,与y 轴交于点C ,二次函数212y x bx c =++的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC ,DB ,设BCD ∆的面积为S ,求S 的最大值;(3)如图2,过点D 作DM BC ⊥于点M ,是否存在点D ,使得CDM ∆中的某个角恰好等于ABC ∠的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.【解答】解:(1)把0x =代122y x =-得2y =-, (0,2)C ∴-. 把0y =代122y x =-得4x =, (4,0)B ∴,.设抛物线的解析式为1(4)()2y x x m =--,将(0,2)C -代入得:22m =-,解得:1m =-, (1,0)A ∴-.∴抛物线的解析式1(4)(1)2y x x =-+,即213222y x x =--. (2)如图所示:过点D 作DF x ⊥轴,交BC 与点F .设213(,2)22D x x x --,则1(,2)2F x x -,221131(2)(2)22222DF x x x x x =----=-+. 22221114(2)4(444)(2)4222BCD S OB DF x x x x x x x ∆∴==⨯⨯-+=-+=--+-=--+. ∴当2x =时,S 有最大值,最大值为4.(3)如图所示:过点D 作DR y ⊥垂足为R ,DR 交BC 与点G .(1,0)A -,(4,0)B ,(0,2)C -,AC ∴=BC =5AB =,222AC BC AB ∴+=,ABC ∴∆为直角三角形.取AB 的中点E ,连接CE ,则CE BE =,2OEC ABC ∴∠=∠.4tan 3OC OEC OE ∴∠==. 当2MCD ABC ∠=∠时,则1tan tan 2CDR ABC ∠=∠=.设213(,2)22D x x x --,则DR x =,21322CR x x =-+. ∴2131222x x x -+=,解得:0x =(舍去)或2x =. ∴点D 的横坐标为2.当2CDM ABC ∠=∠时,设3MD k =,4CM k =,5CD k =. 1tan 2MGD ∠=, 6GM k ∴=,GD =,2GC MG CM k ∴=-=,GR ∴=,CR =.RD ∴==.∴21322x x CR DR x -+==21129022x x -+=,解得:0x =(舍去)或2911x =. ∴点D 的横坐标为2911. 综上所述,当点D 的横坐标为2或2911.。
2018年辽宁省盘锦市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣的绝对值是()A.2 B.C.﹣D.﹣22.下列图形中是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m34.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣55.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.707.如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°8.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π9.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.FA:FB=1:2 B.AE:BC=1:2C.BE:CF=1:2 D.S△ABE:S△FBC=1:410.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A.△OCN≌△OAMB.四边形DAMN与△OMN面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0,+1)二、填空题(共8小题)11.因式分解:x3﹣x=﹣.12.计算:﹣=.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.14.若式子有意义,则x的取值范围是.15.不等式组的解集是.16.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为.17.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是.(结果保留π)18.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.三、解答题(共8小题)19.先化简,再求值:(1﹣)÷,其中a=2+.20.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?21.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部?22.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?23.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.24.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?25.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.26.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.2018年辽宁省盘锦市中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【知识点】绝对值2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、是中心对称图形,还是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【知识点】中心对称图形3.【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【知识点】同底数幂的除法、合并同类项、同底数幂的乘法、幂的乘方与积的乘方4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选:A.【知识点】科学记数法—表示较小的数5.【分析】根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.【解答】解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,所以这10次测试成绩比较稳定的是丙,故选:C.【知识点】方差6.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:A.【知识点】众数、中位数7.【分析】连接OB,由垂径定理及圆心角定理可得∠AOB=∠AOC=50°,再利用圆周角定理即可得出答案.【解答】解:如图连接OB,∵OA⊥BC,∠AOC=50°,∴∠AOB=∠AOC=50°,则∠ADB=∠AOB=25°,故选:B.【知识点】圆周角定理、垂径定理8.【分析】直接利用弧长公式计算得出答案.【解答】解:的展直长度为:=6π(m).故选:B.【知识点】弧长的计算9.【分析】根据平行四边形的性质得到CD∥AB,CD=AB,根据相似三角形的判定定理和性质定理计算,判断即可.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴△DEC∽△AEF,∴==,∵E为AD的中点,∴CD=AF,FE=EC,∴FA:FB=1:2,A说法正确,不符合题意;∵FE=EC,FA=AB,∴AE:BC=1:2,B说法正确,不符合题意;∵∠FBC不一定是直角,∴BE:CF不一定等于1:2,C说法错误,符合题意;∵AE∥BC,AE=BC,∴S△ABE:S△FBC=1:4,D说法正确,不符合题意;故选:C.【知识点】相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的性质10.【分析】根据反比例函数的比例系数的几何意义得到S△ONC=S△OAM=k,即OC•NC=OA•AM,而OC=OA,则NC=AM,再根据“SAS”可判断△OCN≌△OAM;根据S△OND=S△OAM=k和S△OND+S四边形DAMN=S△OAM+S△OMN,即可得到S四边形DAMN=S△;OMN根据全等的性质得到ON=OM,由于k的值不能确定,则∠MON的值不能确定,无法确定△ONM为等边三角形,则ON≠MN;作NE⊥OM于E点,则△ONE为等腰直角三角形,设NE=x,则OM=ON=x,EM=x﹣x=(﹣1)x,在Rt△NEM中,利用勾股定理可求出x2=2+,所以ON2=(x)2=4+2 ,易得△BMN为等腰直角三角形,得到BN=MN=,设正方形ABCO的边长为a,在Rt△OCN中,利用勾股定理可求出a的值为+1,从而得到C点坐标为(0,+1).【解答】解:∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM,∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,∴A正确;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,∴B正确;∵△OCN≌△OAM,∴ON=OM,∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,∴C错误;作NE⊥OM于E点,如图所示:∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x,在Rt△NEM中,MN=2,∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2 ,∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣,在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2 ,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),∴D正确.故选:C.【知识点】反比例函数图象上点的坐标特征、反比例函数系数k的几何意义、全等三角形的判定与性质二、填空题(共8小题)11.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)【知识点】提公因式法与公式法的综合运用12.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【知识点】二次根式的加减法13.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.【解答】解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.【知识点】正多边形和圆、几何概率14.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【知识点】二次根式有意义的条件15.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0.8,∴不等式组的解集为0.8<x≤8,故答案为:0.8<x≤8.【知识点】解一元一次不等式组16.【分析】根据图象②得出AB、BC的长度,再求出面积即可.【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24,故答案为:24.【知识点】动点问题的函数图象17.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥,由三视图可知圆锥的底面半径为5,高为12,故母线长为13,据此可以求得其侧面积.【解答】解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π,故答案为:65π.【知识点】由三视图判断几何体、圆锥的计算18.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【知识点】含30度角的直角三角形、翻折变换(折叠问题)、勾股定理三、解答题(共8小题)19.【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(﹣)=•=,当a=2+时,原式==+1.【知识点】分式的化简求值20.【分析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;(3)先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(4)用2000乘以样本中最喜爱小品类的人数所占的百分比即可;(5)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.【解答】解:(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×=72°;(3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人),补全条形统计图为:(4)2000×=640,估计该校2000名学生中最喜爱小品的人数为640人;故答案为50;72;640;(5)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,所以抽取的2名学生恰好来自同一个班级的概率==.【知识点】扇形统计图、条形统计图、用样本估计总体、列表法与树状图法21.【分析】(1)延长BG,交AC于点F,过F作FH⊥BD于H,利用直角三角形的性质和三角函数解答即可;(2)连接BC,利用利用直角三角形的性质和三角函数解答即可.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m,∵∠BFH=∠α=30°,在Rt△BFH中,BH=,,FC=30﹣17.32=12.68,再用12.68÷3≈4.23,所以在四层的上面,即第五层,答:此刻B楼的影子落在A楼的第5层;(2)连接BC,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.【知识点】解直角三角形的应用、平行投影22.【分析】(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y元,根据销售收入﹣成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.【知识点】一元一次不等式的应用、分式方程的应用23.【分析】(1)利用等腰三角形的性质和三角形外角的性质得出∠AOE=60°,进而得出∠BEO=90°,即可得出结论;(2)先求出∠AEC=60°,利用锐角三角函数求出AE,最后用三角函数即可得出结论;(3)先判断出△AOF是等边三角形,得出OA=AF,∠AOF=60°,进而判断出△OEF是等边三角形,即可判断出四边相等,即可得出结论.【解答】解:(1)如图1,连接OE,∴OA=OE,∴∠BAE=∠OEA,∵∠BAE=30°,∴∠OEA=30°,∴∠AOE=∠BAE+∠OEA=60°,在△BOE中,∠B=30°,∴∠OEB=180°﹣∠B﹣∠BOE=90°,∴OE⊥BC,∵点E在⊙O上,∴BC是⊙O的切线;(2)如图2,∵∠B=∠BAE=30°,∴∠AEC=∠B+∠BAE=60°,在Rt△ACE中,AC=3,sin∠AEC=,∴AE===2,连接DE,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∠BAE=30°,cos∠DAE=,∴AD===4,∴⊙O的半径r=AD=2;(3)以A、O、E、F为顶点的四边形是菱形,理由:如图3,在Rt△ABC中,∠B=30°,∴∠BAC=60°,连接OF,∴OA=OF,∴△AOF是等边三角形,∴OA=AF,∠AOF=60°,连接EF,OE,∴OE=OF,∵∠OEB=90°,∠B=30°,∴∠AOE=90°+30°=120°,∴∠EOF=∠AOE﹣∠AOF=60°,∵OE=OF,∴△OEF是等边三角形,∴OE=EF,∵OA=OE,∴OA=AF=EF=OE,∴四边形OAFE是菱形.【知识点】圆的综合题24.【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)①根据方程即可解决问题;②列出不等式先求出售价的范围,即可解决问题.【解答】解:(1)y=100+10(60﹣x)=﹣10x+700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000.∴x=50时,W最大值=4000.∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:﹣10(x﹣50)2+4000≥3910,解得:47≤x≤53,∵y=100+10(60﹣x)=﹣10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.【知识点】一元二次方程的应用、二次函数的应用25.【分析】(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可得结论;(2)根据正方形的性质得到点A、E、C在同一条直线上,根据直角三角形斜边上的中线是斜边的一半证明即可;(3)根据题意画出完整的图形,根据平行线分线段成比例定理、等腰三角形的性质证明即可.【解答】解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接BE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上,∵∠BCF=90°,∠BEF=90°,M为BF的中点,∴CM=BF,EM=BF,∴CM=ME,∵∠EFD=45°,∴∠EFC=135°,∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接DF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD,∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=ME,∴MD=ME,∠MCG=∠MGC,∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°,∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.【知识点】四边形综合题26.【分析】(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N坐标,表示点M坐标代入抛物线解析式即可.【解答】解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得解得∴抛物线解析式为:y=∴抛物线对称轴为直线x=﹣(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P点.设过点C′、O直线解析式为:y=kx∴k=﹣∴y=﹣则P点坐标为(1,﹣)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,﹣a﹣1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,﹣)∵N为DM中点∴点M坐标为(2a,)把M代入y=,解得a=0(舍去)或a=4∴a=4则N点坐标为(4,﹣3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点M 由(2)M为(2,﹣1)∴由相似CN=,MN=由面积法求N到MC距离为则N点坐标为(,﹣)∴N点坐标为(4,﹣3)或(,﹣)【知识点】二次函数综合题。
第1页(共23页)页)2018年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2分)下列实数为无理数的是( ) A .﹣5B .C .0D .π2.(2分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A .B .C .D .3.(2分)一元二次方程2x 2﹣x +1=0根的情况是( ) A .两个不相等的实数根B .两个相等的实数根C .没有实数根D .无法判断4.(2分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是( ) A .平均数B .中位数C .众数D .方差5.(2分)如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°6.(2分)下列运算正确的是( ) A .7a ﹣a =6B .a 2•a 3=a 5C .(a 3)3=a 6D .(ab )4=ab 47.(2分)如图,在△ABC 中,∠ACB =90°,过B ,C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF ,CF ,若∠EDC =135°,CF =2 ,则AE 2+BE 2的值为( )A .8B .12C .16D .208.(2分)如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以 cm/s的速度沿AB方向运动到点B,动点Q 同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:x3﹣4x= .10.(3分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为 元.11.(3分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在发现骰子落经过大量重复投掷试验,发现骰子落地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 m2.12.(3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为 .13.(3分)如图,直线y1=﹣x+a与y2=bx﹣4相交于点P,已知点P的坐标为(1,﹣3),则关于x的不等式﹣x+a<bx﹣4的解集是 .14.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为 .15.(3分)如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段OA饶点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数y=(k≠0≠0))的图象经过P,B两点,则k的值为 .16.(3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A 2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为 .三、综合题 17.(7分)先化简,再求值:(2﹣ )÷,其中x =3.18.(7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x /元人数(频数)频率 0≤x <30 6 0.15 30≤x <60 12 0.30 60≤x <90 16 0.40 90≤x <120 b 0.10 120≤x <1502a(1)这次被调查的人数共有 人,a = .(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8,共16分)19.(8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为 .(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A 佩奇,弟弟抽到B 乔治的概率.20.(8分)为迎接“七•一”党的生日,党的生日,某校准备组织师生共某校准备组织师生共310人参加一次大型公益活动,人参加一次大型公益活动,租用租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个. (1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,经学校统计,实际参加活动的人数增加了实际参加活动的人数增加了40人,人,学校决定调整租车方案,学校决定调整租车方案,学校决定调整租车方案,在保持租用车辆总数不变的情况下,在保持租用车辆总数不变的情况下,在保持租用车辆总数不变的情况下,为使所有参为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2小题,每小题8分,共16分)21.(8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米? (结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,≈1.4≈1.4))22.(8分)如图,在△ABC 中,∠C =90°,AE 平分∠BAC 交BC 于点E ,O 是AB 上一点,上一点,经过经过A ,E 两点的⊙O 交AB 于点D ,连接DE ,作∠DEA 的平分线EF 交⊙O 于点F ,连接AF . (1)求证:BC 是⊙O 的切线.(2)若sin ∠EF EFAA =,AF =5 ,求线段AC 的长.六、解答题(本大题共1小题,共10分)23.(10分)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y (个)与每个商品的售价x (元)满足一次函数关系,其部分数据如下所示: 每个商品的售价x (元) … 30 40 50 …每天的销售量y (个)100 80 60 …(1)求y 与x 之间的函数表达式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?七、解答题(本大题共2小题,共24分)24.(12分)如图1,以▱ABCD 的较短边CD 为一边作菱形CDEF ,使点F 落在边AD 上,连接BE ,交AF 于点G . (1)猜想BG 与EG 的数量关系,并说明理由; (2)延长DE 、BA 交于点H ,其他条件不变: ①如图2,若∠ADC =60°,求的值;②如图3,若∠ADC =α=α(0°(0°<α<90°90°)),直接写出的值(用含α的三角函数表示)25.(12分)在平面直角坐标系中,直线y =x ﹣2与x 轴交于点B ,与y 轴交于点C ,二次函数y = x 2+bx +c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上. (1)求二次函数的表达式;(2)如图1,连接DC ,DB ,设△BCD 的面积为S ,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.2018年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2分)下列实数为无理数的是( )A.﹣5 B.C.0 D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确;故选:D.2.(2分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A. B. C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:A.3.(2分)一元二次方程2x2﹣x+1=0根的情况是( )A.两个不相等的实数根 B.两个相等的实数根C.没有实数根 D.无法判断【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:△=(﹣1)2﹣4×4×2×2×2×1=1=﹣7<0,所以方程无实数根.故选:C.4.(2分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数C.众数 D.方差【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.5.(2分)如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°【分析】依据l 1∥l 2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°. 【解答】解:如图,∵l 1∥l 2, ∴∠1=∠3=52°, 又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°30°=98°=98°, 故选:B .6.(2分)下列运算正确的是( )A .7a ﹣a =6B .a 2•a 3=a 5C .(a 3)3=a 6D .(ab )4=ab 4【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方逐一计算可得.【解答】解:A 、7a ﹣a =6a ,此选项错误; B 、a 2•a 3=a 5,此选项正确; C 、(a 3)3=a 9,此选项错误; D 、(ab )4=a 4b 4,此选项错误; 故选:B .7.(2分)如图,在△ABC 中,∠ACB =90°,过B ,C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF ,CF ,若∠EDC =135°,CF =2 ,则AE 2+BE 2的值为( )A .8B .12C .16D .20【分析】由四边形BCDE 内接于⊙O 知∠EFC =∠ABC =45°,据此得AC =BC ,由EF 是⊙O 的直径知∠EBF =∠ECF =∠ACB =90°及∠BCF =∠ACE ,再根据四边形BECF 是⊙O 的内接四边形知∠AEC =∠BFC ,从而证△ACE ≌△BFC 得AE =BF ,根据Rt △ECF 是等腰直角三角形知EF 2=16,继而可得答案.【解答】解:∵四边形BCDE 内接于⊙O ,且∠EDC =135°, ∴∠EFC =∠ABC =180°﹣∠EDC =45°, ∵∠ACB =90°,∴△ABC 是等腰三角形, ∴AC =BC ,又∵EF 是⊙O 的直径, ∴∠EBF =∠ECF =∠ACB =90°,∴∠BCF =∠ACE ,∵四边形BECF 是⊙O 的内接四边形, ∴∠AEC =∠BFC , ∴△ACE ≌△BFC (ASA ), ∴AE =BF ,∵Rt △ECF 中,CF =2 、∠EFC =45°, ∴EF 2=16,则AE 2+BE 2=BF 2+BE 2=EF 2=16, 故选:C .8.(2分)如图,在△ABC 中,∠C =90°,AC =BC =3cm ,动点P 从点A 出发,以cm /s 的速度沿AB 方向运动到点B ,动点Q 同时从点A 出发,以1cm /s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A .B .C .D .【分析】作QD ⊥AB ,分点Q 在AC 、CB 上运动这两种情况,由直角三角形的性质表示出QD 的长,利用三角形面积公式得出函数解析式即可判断.【解答】解:(1)过点Q 作QD ⊥AB 于点D , ①如图1,当点Q 在AC 上运动时,即0≤x ≤3,由题意知AQ =x 、AP = x , ∵∠A =45°,∴QD =AQ =x , 则y = • x •x =x 2; ②如图2,当点Q 在CB 上运动时,即3<x ≤6,此时点P 与点B 重合,由题意知BQ =6﹣x 、AP =AB =3 ,∵∠B =45°,∴QD =BQ =(6﹣x ), 则y = ×3× (6﹣x )=﹣ x +9; 故选:D .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)因式分解:x 3﹣4x = x (x +2)(x ﹣2) .【分析】首先提取公因式x ,进而利用平方差公式分解因式得出即可. 【解答】解:x 3﹣4x =x (x 2﹣4)=x (x +2)(x ﹣2).故答案为:x (x +2)(x ﹣2).10.(3分)上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为 3×3×101010 元. 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【解答】解:300亿元=3×=3×101010元. 故答案为:3×3×101010.11.(3分)如图,这是一幅长为3m ,宽为2m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,经过大量重复投掷试验,发现骰子落发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 2.4 m 2.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可. 【解答】解:长方形的面积=3×=3×2=6(2=6(m 2), ∵骰子落在世界杯图案中的频率稳定在常数0.4附近, ∴世界杯图案占长方形世界杯宣传画的40%, ∴世界杯图案的面积约为:6×6×40%=2.440%=2.4m 2, 故答案为:2.4.12.(3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB 与△A 1OB 1位似,位似中心为原点O ,且相似比为3:2,点A ,B 都在格点上,则点B 1的坐标为 (﹣2,﹣) .【分析】把B 的横纵坐标分别乘以﹣得到B ′的坐标.【解答】解:由题意得:△AOB 与△A 1OB 1位似,位似中心为原点O ,且相似比为3:2, 又∵B (3,1)∴B ′的坐标是[3×[3×((﹣),1×1×((﹣)],即B ′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).13.(3分)如图,直线y 1=﹣x +a 与y 2=bx ﹣4相交于点P ,已知点P 的坐标为(1,﹣3),则关于x 的不等式﹣x +a <bx ﹣4的解集是 x >1 .【分析】观察函数图象得到当x >1时,函数y =﹣x +a 的图象都在y =bx ﹣4的图象下方,所以不等式﹣x +a <bx ﹣4的解集为x >1;【解答】解:当x >1时,函数y =﹣x +a 的图象都在y =bx ﹣4的图象下方,所以不等式﹣x +a <bx ﹣4的解集为x >1; 故答案为x >1.14.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH ,若OB =4,S 菱形ABCD =24,则OH 的长为 3 .【分析】根据菱形面积=对角线积的一半可求AC ,再根据直角三角形斜边上的中线等于斜边的一半. 【解答】解:∵ABCD 是菱形 ∴BO =DO =4,AO =CO ,S 菱形ABCD ==24∴AC =6∵AH ⊥BC ,AO =CO =3 ∴OH =AC =315.(3分)如图,矩形OABC 的顶点A ,C 分别在x 轴,y 轴上,顶点B 在第一象限,AB =1,将线段OA 饶点O 按逆时针方向旋转60°得到线段OP ,连接AP ,反比例函数y =(k ≠0≠0))的图象经过P ,B 两点,则k 的值为.【分析】作PQ ⊥OA ,由AB =1知OA =k ,由旋转性质知OP =OA =k 、∠POQ =60°,据此求得OQ =OPcos 60°60°==k ,PQ =OPsin 60°60°==k ,即P (k ,k ),代入解析式解之可得. 【解答】解:过点P 作PQ ⊥OA 于点Q ,∵AB =1, ∴OA =k ,由旋转性质知OP =OA =k 、∠POQ =60°, 则OQ =OPcos 60°60°==k ,PQ =OPsin 60°60°==k , 即P (k ,k ),代入解析式,得:k 2=k , 解得:k =0(舍)或k =,故答案为:.16.(3分)如图,射线OM 在第一象限,且与x 轴正半轴的夹角为60°,过点D (6,0)作DA ⊥OM 于点A ,作线段OD 的垂直平分线BE 交x 轴于点E ,交AD 于点B ,作射线OB ,以AB 为边在△AOB 的外侧作正方形ABCA 1,延长A 1C 交射线OB 于点B 1,以A 1B 1为边在△AOB 的外侧作正方形A 1B 1C 1A 2,延长A 2C 1交射线OB 于点B 2,以A 2B 2为边在△A 2OB 2的外侧作正方形A 2B 2C 2A 3…按此规律进行下去,则正方形A 2017B 2017C 2017A 2018的周长为 4•4•(()2016•(1+)2017.【分析】从特殊到一般探究规律后即可解决问题;【解答】解:由题意:正方形ABCA 1的边长为, 正方形A 1B 1C 1A 2的边长为+1, 正方形A 2B 2C 2A 3…的边长为(+1)(1+), 正方形A 3B 3C 3A 4的边长为(+1)(1+)2, 由此规律可知:正方形A 2017B 2017C 2017A 2018的边长为(+1)(1+)2016. ∴正方形A 2017B 2017C 2017A 2018的周长为4•4•(( +1)(1+ )2016=4•=4•(()2016•(1+ )2017. 故答案为4•4•(()2016•(1+ )2017.三、综合题17.(7分)先化简,再求值:(2﹣)÷,其中x =3.【分析】先根据分式的混合运算顺序和法则化简原式,再将x 的值代入求解可得. 【解答】解:(2﹣)÷=[﹣]×=×=﹣,当x =3时,原式=﹣=﹣.18.(7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x /元人数(频数)频率 0≤x <3060.15 30≤x <60 12 0.30 60≤x <90 16 0.40 90≤x <120 b 0.10 120≤x <1502a(1)这次被调查的人数共有 40 人,a = 0.05 .(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.【分析】(1)根据0≤x <30组频数及其所占百分比可得总人数,120≤x <150组人数除以总人数可得a 的值. (2)根据以上所求结果即可补全直方图;(3)利用总人数1500乘以对应的比例即可求解.【解答】解:(1)这次被调查的人数共有6÷6÷0.15=400.15=40,则a =2÷=2÷40=0.0540=0.05; 故答案为:40;0.05;(2)补全频数直方图如下:(3)估计每月零花钱的数额x <90范围的人数为.四、解答题(本大题共2小题,每小题8,共16分)19.(8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A 佩奇,弟弟抽到B 乔治的概率.【分析】(1)直接利用求概率公式计算即可;(2)画树状图列出所有等可能结果,根据概率公式求解可得. 【解答】解:(1)∵姐姐从4张卡片中随机抽取一张卡片,∴恰好抽到A 佩奇的概率=, 故答案为:;(2)画树状图为:共有12种等可能的结果数,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果数为1, 所以姐姐抽到A 佩奇,弟弟抽到B 乔治的概率=.20.(8分)为迎接“七•一”党的生日,党的生日,某校准备组织师生共某校准备组织师生共310人参加一次大型公益活动,人参加一次大型公益活动,租用租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个. (1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,经学校统计,实际参加活动的人数增加了实际参加活动的人数增加了40人,人,学校决定调整租车方案,学校决定调整租车方案,学校决定调整租车方案,在保持租用车辆总数不变的情况下,在保持租用车辆总数不变的情况下,在保持租用车辆总数不变的情况下,为使所有参为使所有参加活动的师生均有座位,最多租用小客车多少辆?【分析】(1)根据题意结合每辆大客车的座位数比小客车多15个以及师生共301人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为310+40,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的座位数是x 个,每辆大客车的座位数是y 个,根据题意可得:,解得:.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则 25a +40(10﹣a )≥310+40, 解得:a ≤3,符合条件的a 最大整数为3. 答:最多租用小客车3辆.五、解答题(本大题共2小题,每小题8分,共16分)21.(8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米? (结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,≈1.4≈1.4))【分析】如图作AH ⊥CN 于H .想办法求出BH 、CH 即可解决问题; 【解答】解:如图作AH ⊥CN 于H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5﹣2.5=8(m ), ∴AH =BH =8(m ),在Rt △AHC 中,tan 65°65°==, ∴CH =8×2.1≈17=8×2.1≈17((m ), ∴BC =CH ﹣BH =17﹣8=9(m ),22.(8分)如图,在△ABC 中,∠C =90°,AE 平分∠BAC 交BC 于点E ,O 是AB 上一点,上一点,经过经过A ,E 两点的⊙O 交AB 于点D ,连接DE ,作∠DEA 的平分线EF 交⊙O 于点F ,连接AF . (1)求证:BC 是⊙O 的切线.(2)若sin ∠EF EFAA =,AF =5 ,求线段AC 的长.【分析】(1)连接OE ,根据同圆的半径相等和角平分线可得:OE ∥AC ,则∠BEO =∠C =90°,解决问题;(2)过A 作AH ⊥EF 于H ,根据三角函数先计算AH =4 ,证明△AEH 是等腰直角三角形,则AE = AH =8,证明△AED ∽△ACE ,可解决问题.【解答】证明:(1)连接OE , ∵OE =OA , ∴∠OEA =∠OAE , ∵AE 平分∠BAC , ∴∠OAE =∠CAE , ∴∠CAE =∠OEA , ∴OE ∥AC ,∴∠BEO =∠C =90°, ∴BC 是⊙O 的切线;(2)过A 作AH ⊥EF 于H , Rt △AHF 中,sin ∠EF EFA A =,∵AF =5 , ∴AH =4 ,∵AD 是⊙O 的直径, ∴∠AED =90°, ∵EF 平分∠AED , ∴∠AEF =45°,∴△AEH 是等腰直角三角形, ∴AE = AH =8, ∵sin ∠EF EFA A =sin ∠ADE = = ,∴AD =10,∵∠DAE =∠EAC ,∠DEA =∠ECA =90°, ∴△AED ∽△ACE , ∴, ∴, ∴AC =6.4.六、解答题(本大题共1小题,共10分)23.(10分)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y (个)与每个商品的售价x (元)满足一次函数关系,其部分数据如下所示: 每个商品的售价x (元) … 30 40 50 …每天的销售量y (个)100 80 60 …(1)求y 与x 之间的函数表达式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少? 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式; (3)将所得函数解析式配方成顶点式即可得最值情况. 【解答】解:(1)设y 与x 之间的函数解析式为y =kx +b ,则, 解得 , 即y 与x 之间的函数表达式是y =﹣2x +160; (2)由题意可得,w =(x ﹣20)(﹣2x +160)=﹣2x 2+200x ﹣3200, 即w 与x 之间的函数表达式是w =﹣2x 2+200x ﹣3200; (3)∵w =﹣2x 2+200x ﹣3200=﹣2(x ﹣50)2+1800,20≤x ≤60, ∴当20≤x ≤50时,w 随x 的增大而增大; 当50≤x ≤60时,w 随x 的增大而减小;当x =50时,w 取得最大值,此时w =1800元即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800.七、解答题(本大题共2小题,共24分)24.(12分)如图1,以▱ABCD 的较短边CD 为一边作菱形CDEF ,使点F 落在边AD 上,连接BE ,交AF 于点G . (1)猜想BG 与EG 的数量关系,并说明理由; (2)延长DE 、BA 交于点H ,其他条件不变: ①如图2,若∠ADC =60°,求的值;②如图3,若∠ADC =α=α(0°(0°<α<90°90°)),直接写出的值(用含α的三角函数表示)【分析】(1)证明△BAG≌△EFG可得结论;(2)①如图2,设AG=a,CD=b,则DF=AB=b,分别表示BH和DG的长,代入计算即可;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴ ==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b, Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=AD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH =, ∴ = =cos α.25.(12分)在平面直角坐标系中,直线y =x ﹣2与x 轴交于点B ,与y 轴交于点C ,二次函数y = x 2+bx +c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC ,DB ,设△BCD 的面积为S ,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.【分析】(1)根据题意得到B 、C 两点的坐标,设抛物线的解析式为y = (x ﹣4)(x ﹣m ),将点C 的坐标代入求得m 的值即可;(2)过点D 作DF ⊥x 轴,交BC 与点F ,设D (x , x 2﹣ x ﹣2),则DF =﹣ x 2+2x ,然后列出S 与x 的关系式,最后利用配方法求得其最大值即可; (3)根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点E ,EA =EC =EB =,过D 作Y 轴的垂线,垂足为R ,交AC 的延线于G ,设D (x , x 2﹣ x ﹣2),则DR =x ,CR =﹣ x 2+ x ,最后,分为∠DCM =2∠BAC 和∠MDC =2∠BAC 两种情况列方程求解即可.【解答】解:(1)把x =0代y =x ﹣2得y =﹣2, ∴C (0,﹣2). 把y =0代y =x ﹣2得x =4, ∴B (4,0),.设抛物线的解析式为y =(x ﹣4)(x ﹣m ),将C (0,﹣2)代入得:2m =﹣2,解得:m =﹣1, ∴A (﹣1,0).∴抛物线的解析式y =(x ﹣4)(x +1),即y =x 2﹣x ﹣2. (2)如图所示:过点D 作DF ⊥x 轴,交BC 与点F .设D (x , x 2﹣ x ﹣2),则F (x , x ﹣2),DF =( x ﹣2)﹣( x 2﹣ x ﹣2)=﹣x 2+2x . ∴S △BCD = OB •DF = ×4×4×((﹣ x 2+2x )=﹣x 2+4x =﹣(x 2﹣4x +4﹣4)=﹣(x ﹣2)2+4. ∴当x =2时,S 有最大值,最大值为4.(3)如图所示:过点D 作DR ⊥y 垂足为R ,DR 交BC 与点G .∵A (﹣1,0),B (4,0),C (0,﹣2),∴AC = ,BC =2 ,AB =5,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形.取AB 的中点E ,连接CE ,则CE =BE ,∴∠OEC =2∠ABC .∴tan ∠OEC == . 当∠MCD =2∠ABC 时,则tan ∠CDR =tan ∠ABC = . 设D (x ,x 2﹣ x ﹣2),则DR =x ,CR =﹣ x 2+ x . ∴ =,解得:x =0(舍去)或x =2. ∴点D 的横坐标为2.当∠CDM =2∠ABC 时,设MD =3k ,CM =4k ,CD =5k . ∵tan ∠MGD = , ∴GM =6k ,GD =3k , ∴GC =MG ﹣CM =2k ,∴GR =k ,CR =k . ∴RD =3 k ﹣ k = k . ∴ = =,整理得:﹣ x 2+ x =0,解得:x =0(舍去)或x =. ∴点D 的横坐标为. 综上所述,当点D 的横坐标为2或.。
2018辽宁省盘锦市中考数学(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案涂在答题卡上.每小题3分,共30分)1.(2018辽宁盘锦,1,3分)-|-2|的值为( )A .-2B . 2C .21D .-212.(2018辽宁盘锦,2,3分)2018年8月31日,我国第12届全民运动会即将开幕,据某市财政预算统计,用于体育场馆建设的资金约为14000000,14000000用科学计数法表示为( )A .1.4⨯105B .1.4⨯106C .1.4⨯107D .1.4⨯108 【答案】C3.(2018辽宁盘锦,3,3分)下列调查中适合采用全面调查的是( )A .调查市场上某种白酒的塑化剂的含量B .调查鞋厂生产的鞋底能承受弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看辽宁卫视的时间 【答案】 C4.(2018辽宁盘锦,4,3分)如图下面几何体的左视图是( )A B C D【答案】 B5.(2018辽宁盘锦,5,3分)下列计算正确的是( )A .3mn -3n =mB .(2m )3 =6m 3C .m 8÷m 4 =m 2D .3m 2 ⋅m =3m 3 【答案】 D6.(2018辽宁盘锦,6,3分)某校举行健美操比赛,甲、乙两班各班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是s 2甲=1.9,s 2乙=2.4,则参赛学生身高比较整齐的班级是( )A .甲班B .乙班C .同样整齐D .无法确定 【答案】 A7.(2018辽宁盘锦,7,3分)某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周阅读课外书的时间进行了统计,统计结果如下:由上表知,这50名学生周一阅读课外书时间的众数和中位数分别为( )A .19,13B .19,19C .2,3D .2,2 【答案】D8.(2018辽宁盘锦,8,3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含︒30角的直角三角板的斜边与纸条一边重合,含︒45角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( ) A .︒30 B .︒20 C .︒15 D .︒141【答案】 C9.(2018辽宁盘锦,9,3分)如图,△ABC 中,AB =6,AC =8,BC =10,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是( )A .相交B .相切C .相离D .无法确定【答案】 A10.(2018辽宁盘锦,10,3分)如图,将边长为4的正方形ABCD 的一边BC 与直角边分别是2和4的Rt ∆GEF 的一边GF 重合.正方形ABCD 以每秒1个单位长度的速度沿GE 向右匀速运动,当点A 和点E 重合时正方形停止运动.设正方形的运动时间为t 秒,正方形ABCD 与Rt ∆GEF 重叠部分面积为s ,则s 关于t 的函数图像为( )第9题图 DECAB 第10题图B (G )D【答案】 B 二、三、填空题(每小题3分,共24分) 11.(2018辽宁盘锦,11,3分)若式子xx 1+有意义,则x 的取值范围是_________. 【答案】 01≠-≥x x 且12.(2018辽宁盘锦,12,3分)在一个不透明的袋子里装有6个白球和若干个黄球,它们除了颜色不同外,其它方面均相同,从中随机摸出一个球为白球的概率为43,黄球的个数为_________.【答案】 213.(2018辽宁盘锦,13,3分)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是________cm 2.(不考虑接缝等因素,计算结果用π表示)s1234s1234s1234s1234A B C D第13题图【答案】 300π14.(2018辽宁盘锦,14,3分)如图,等腰梯形ABCD ,AD ∥BC ,BD 平分∠ABC ,∠A =120°,若梯形的周长为10,则AD 的长为________.【答案】 215.(2018辽宁盘锦,15,3分)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为_______________.【答案】 61255=-x x16.(2018辽宁盘锦,16,3分)如图,⊙O 直径AB =8, ∠CBD =30°,则CD =________.【答案】 4BC第14题图 第16题图AB17.(2018辽宁盘锦,17,3分)如图,矩形ABCD 的边AB 上有一点P ,且AD =35,BP =54,以点P 为直角顶点的直角三角形两条直角边分别交线段DC 、线段BC 于点E 、F ,连接EF ,则tan ∠PEF =________.【答案】 251218.(2018辽宁盘锦,18,3分)如图,在平面直角坐标系中,直线l 经过原点O ,且与x 轴正半轴的夹角为30°,点M 在x 轴上,⊙M 半径为2,⊙M 与直线l 相交于A 、B 两点,若∆ABM 为等腰直角三角形,则点M 的坐标为______________.【答案】 )0,22( 或)0,22(-三、解答题(19、20每小题9分,共18分)19.(2018辽宁盘锦,19,9分)先化简,再求值.a a a a a a 1)22(2-÷---,其中︒-⎪⎭⎫⎝⎛=-45tan 211aBP第17题图第18题图解:方法一: a a aa a a 1)22(2-÷--- =()122-⨯⎥⎦⎤⎢⎣⎡---a aa a a a =11-⨯⎪⎭⎫ ⎝⎛-a a a a =112-⨯-a aa a =()()111-⨯-+a aaa a =1+a 方法二:a a aa a a 1)22(2-÷--- =()122-⨯⎥⎦⎤⎢⎣⎡---a a a a a a =111a a a a a a ⨯-⨯-- = 2111a a a --- =()()111a a a +--=1+a当a = 45tan 211-⎪⎭⎫⎝⎛-°=2-1=1时;原式分母为零 原式无意义20.(2018辽宁盘锦,20,9分)如图,点A (1,a )在反比例函数xy 3=(x >0)的图像上,AB 垂直于x 轴,垂足为点B ,将∆ABO 沿x 轴向右平移2个单位长度,得到Rt ∆DEF ,点D 落在反比例函数xky =(x >0)的图像上. (1)求点A 的坐标; (2)求k 值.解:(1)∵点A (1,a )在xy 3=的图象上, ∴13=a =3 ∴点A (1,3)(2)∵△ABO 向右平移2个单位长度,得到△DEF ∴D (3,3) ∵点D 在)0(>=x xky 的图象上, ∴3=3k∴k =9四、解答题(本题14分)21.(2018辽宁盘锦,21,14分)为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了多少学生? (2)补全统计表中所缺的数据;第21题图(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.解:(1)解法一:70÷360126=200(名),本次调查了200名学生 解法二:设共有x 名学生,12636070=x 解得200=x (2)(3)(0.21+0.35)×1500=840(名)答:该校学生整理错题集情况非常好和较好学生人数一共约有840名(4)解: 解法一:画树形图如下:第二次第一次C A 2A 2A 2A 2A 1A 1A 1A 1C BB CB CB 开始由树形图可知,所有可能出现的结果有12种,且每种结果出现的可能性相等,其中两次抽到的错题集都“非常好”的有2种; ∴P (两次抽到的错题集都“非常好”)=122=61 解法二:列表如下由表可知,所有可能出现的结果有12种,且每种结果出现的可能性相等,其中两次抽到的错题集都“非常好”的有2种;∴P (两次抽到的错题集都“非常好”)=122=61五、解答题(22、23每小题12分,共24分)22.(2018辽宁盘锦,22,12分)如图,图①是某仓库的实物图片,图②是该仓库屋顶(虚线部分)的正面示意图,BE 、CF 关于AD 轴对称,且AD 、BE 、CF 都与EF 垂直,AD =3米,在B 点测得A 点的仰角为︒30,在E 点测得D 点的仰角为︒20,EF =6米,求BE的长.(结果精确到0.1米,参考数据:73.13,36.020tan ,94.020cos ,34.020sin ≈≈︒≈︒≈︒)第22题 图① 第22题 图②HGABEDFC解:延长AD 交EF 于点G ,过点B 作BH ⊥AG ,垂足为H .∵BE 、CF 关于AD 轴对称,EF =6 ∴EG =21EF =3 ∵四边形BEGH 是矩形 ∴BH =EG =3 在Rt △ABH 中, AH =BH 30tan ⋅°=3×33=3 DH =AD -AH =33- 在Rt △DEG 中,DG =EG 20tan ⋅°≈3×0.36=1.08∴BE =HG =DH +DG =33-+1.08≈3-1.73+1.08≈2.4(米) 答:仓库设计中BE 的高度约为2.4米.23.(2018辽宁盘锦,23,12分)如图,AB ,CD 是⊙O 的直径,点E 在AB 延长线上,FE ⊥AB ,BE =EF =2,FE 的延长线交CD 延长线于点G ,DG =GE =3,连接FD . (1)求⊙O 的半径(2)求证:DF 是⊙O 的切线.解:(1)设⊙O 的半径为r∵BE =2,DG =3∴OE =r +2,OG =r +3∵EF ⊥AB∴∠AEG =90°在Rt △OEG 中,根据勾股定理得,222OG EG OE =+ ∴222)3(3)2(r r +=++ 解得:2=r(2)∵EF =2,EG =3∴FG =EF +EG =3+2=5∵DG =3,OD =2,∴OG =DG +OD =3+2=5 ∴FG =OG∵DG =EG ,∠G =∠G∴△DFG ≌△E 0G∴∠FDG =∠OEG =90° ∴DF ⊥OD ∴DF 是⊙O 的切线六、解答题(本题12分)(1)FE 第23题图24.(2018辽宁盘锦,24,12分)端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子. (1)请求出两种口味的粽子每盒的价格; (2)设买大枣粽子x 盒,买水果共用了w 元. ①请求出w 关于x 的函数关系式;②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.【解】解:(1)设大枣粽子每盒x 元,普通粽子每盒y 元,根据题意得⎩⎨⎧=-=+1530042y x y x 解得:⎩⎨⎧==4560y x 答:大枣粽子每盒60元,普通粽子每盒45 元.(2)解:①W =1240-60x -45(20-x )= -15x +340②根据题意,得1534018015340240x x -+⎧⎨-+⎩≥≤ 解得326≤x ≤3210 ∵x 是整数∴x 取7,8,9,10 ∴20-x 取13,12,11,10 共有四种购买方案:方案:①购买大枣粽子7盒,普通粽子13盒②购买大枣粽子8盒,普通粽子12盒 ③购买大枣粽子9盒,普通粽子11盒 ④购买大枣粽子10盒,普通粽子10盒根据一次函数性质, ∵015<-=k ∴W 随x 的减小而增大 ∴x =7时W 有最大值∴购买大枣粽子7盒,普通粽子13盒时,购买水果的钱数最多.七、解答题(本题14分)25.(2018辽宁盘锦,25,14分)如图,正方形ABCD 的边长是3,点P 是直线BC 上一点,连接P A ,将线段P A 绕点P 逆时针旋转 90得到线段PE ,在直线BA 上取点F ,使BF =BP ,且点F 与点E 在BC 同侧,连接EF ,CF .(1)如图①,当点P 在CB 延长线上时,求证:四边形PCFE 是平行四边形; (2)如图②,当点P 在线段BC 上时,四边形PCFE 是否还是平行四边形,说明理由; (3)在(2)的条件下,四边形PCFE 的面积是否有最大值?若有,请求出面积的最大值及此时BP 长;若没有,请说明理由.(1)证法一:如图①PFEDCBA∵四边形ABCD 是正方形, ∴AB =BC ,∠ABC =∠PBA =90° 又∵BP =BF ∴△PBA ≌△FBC∴P A =FC ∠P AB =∠FCB 又∵P A =PE ∴PE =FC ∵∠P AB +∠APB = 90° ∴∠FCB +∠APB = 90°第25题图 图①第25题图 图②又∵∠EP A =90°∴∠APB +∠EP A +∠FPC =180° 即∠EPC +∠PCF =180° ∴EP ∥FC∴四边形EPCF 是平行四边形.证法二:延长CF 与AP 相交于点G ,如图②∵四边形ABCD 是正方形,∴AB =BC , ∠ABC =∠PBA =90° 又∵BP =BF ∴△PBA ≌△FCB∴∠P AB =∠FCB ,AP =CF又∵P A =PE ∴PE =FC∵∠P AB +∠APB =90°∴∠FCB +∠APB =90° ∴∠PGC =90°∴∠PGC =∠APE =90°∴EP ∥FC∴四边形EPCF 是平行四边形.(2)证法一:结论:四边形EPCF 是平行四边形,如图③∵四边形ABCD 是正方形,∴AB =BC , ∠ABC =∠CBF =90° 又∵BP =BF ∴△PBA ≌△FBCCAPFEDB第25题 图③GPFEDCBA第26题 图②∴P A =FC ∠P AB =∠FCB 又∵P A =PE ∴PE =FC ∵∠FCB +∠BFC = 90° ∠EPB +∠APB = 90° ∴∠BPE =∠FCB ∴EP ∥FC∴四边形EPCF 是平行四边形.证法二:结论:四边形EPCF 是平行四边形 延长AP 与FC 相交于点G 如图④∵四边形ABC D 是正方形,∴AB =BC , ∠ABC =∠CBF =90° 又∵BP =BF ∴△PBA ≌△FBC ∴P A =FC ∠P AB =∠FCB 又∵P A =PE ∴PE =FC ∵∠FCB +∠BFC =90° ∴∠P AB +∠BFC =90° ∴∠PGF =90° ∴∠PGF =∠APE =90° ∴EP ∥FC∴四边形EPCF 是平行四边形.(3)解:设BP =x ,则PC =3-x 平行四边形PEFC 的面积为S ,S =PC ·BF =PC ·PB =()49233322+⎪⎭⎫ ⎝⎛--=+-=-x x x x xGCAPFEDB第25题 图④当23=x 时, 最大s =49 ∴当BP =23时,四边形PCFE 的面积最大,最大值为49.八、解答题(本题14分)26.(2018辽宁盘锦,26,14分)如图抛物线y =ax 2+bx +3与x 轴相交于点A (-1,0)、B (3,0),与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD =2,连接DE 、OF .(1)求抛物线的解析式;(2)当四边形ODEF 是平行四边形时,求点P 的坐标;(3)过点A 的直线将(2)中的平行四边形ODEF 分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)解:(1)由抛物线经过点A (-1,0)、B (3,0)得, ⎩⎨⎧=++=+-033903b a b a 解得,⎩⎨⎧=-=21b a∴抛物线的解析式为322++-=x x y ; (2)第26题图备用图① 备用图②解法一: 设点P (m ,0)∵点P 在抛物线322++-=x x y 上, ∴PE =322++-m m把0=x 代入322++-=x x y 得, 3=y ∴C (0,3) 设直线BC 解析式为b kx y +=,则⎩⎨⎧==+33b b k 解得⎩⎨⎧=-=31b k ∴直线BC 解析式为3+-=x y∵点F 在直线BC 上,∴PF =3+-=m ∴EF =PE -PF m m 32+-=若四边形ODEF 是平行四边形,则EF =OD =2 ∴232=+-m m , 解得 2,121==m m ∴P (1,0)或 P (2,0) 解法二:如图②第26题 图①把0=x 代入322++-=x x y 得, 3=y ∴C (0,3) 设直线BC 解析式为b kx y +=,则⎩⎨⎧==+303b b k 解得⎩⎨⎧=-=31b k ∴直线BC 解析式为3+-=x y过点D 作DG ⊥EF 于点G ,则四边形ODGP 是矩形 ∴DG =OP若四边形ODEF 是平行四边形 ∴DE ∥OF ∴∠DEF =∠OFP ∵∠DGE =∠OPF =90° ∴△DEG ≌△OFP ∴EG =FP设点P (m ,0)∵点P 在抛物线322++-=x x y 上, ∴PE =322++-m m∵点F 在直线BC 上,∴PF 3+-=m ∵EG =2322-++-m m =122++-m m∴122++-m m =3+-=m∴232=+-m m ,解得 2,121==m m ∴P (1,0)或 P (2,0)(3)当点P (2,0)时,即OP =2,如图③第26题 图②连接DF 、OE 相交于点G ,取OP 的中点H ,连接GH∵四边形ODEF 是平行四边形 ∴OG =GE∴GH 是△OEP 的中位线 ∴GH ∥EP ,GH =21PE 把x =2代入322++-=x x y 得,3=y ,即PE =3∴GH =23 ∵GH ∥EP ∴GH ⊥OP ∴G (1,23) 设直线AG 的解析式为11b x k y +=,则⎪⎩⎪⎨⎧=+-=+0231111b k b k , 解得⎪⎪⎩⎪⎪⎨⎧==434311b k ∴将平行四边形ODEF 的面积等分的直线解析式为4343+=x y 当点P (1,0)时,即OP =1,如图④第26题 图③连接DF 、OE 相交于点G ,取OP 的中点H ,连接GH ,∵四边形ODEF 是平行四边形∴OG =GE∵OH =HP =21OP =21 ∴GH 是△OEP 的中位线 ∴GH ∥EP ,GH =21PE 把x =1代入322++-=x x y 得,4=y ,即PE =4 ∴GH =2∵GH ∥EP ∴∠GHO =∠EPO =90°∴G (21,2) 设直线AG 的解析式为22b x k y +=,则 ⎪⎩⎪⎨⎧=+-=+02212222b k b k 解得⎪⎪⎩⎪⎪⎨⎧==343422b k ∴将平行四边形ODEF 的面积等分的直线解析式为3434+=x y第26题 图④。
2018年辽宁省盘锦市中考数学真题一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣的绝对值是()A.2B.C.﹣D.﹣22.下列图形中是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3 4.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5 5.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.70 7.如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°8.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π9.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.F A:FB=1:2B.AE:BC=1:2C.BE:CF=1:2D.S△ABE:S△FBC=1:410.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC的两边AB、BC 分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A.△ONC≌△OAMB.四边形DAMN与△OMN面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0,+1)二、填空题(每小题3分,共24分)11.因式分解:x3﹣x=.12.计算:﹣=__________.13.如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 .14.若式子有意义,则x的取值范围是.15.不等式组的解集是 .16.如图①,在矩形ABCD 中,动点P 从A 出发,以相同的速度,沿A →B →C →D →A 方向运动到点A 处停止.设点P 运动的路程为x ,△P AB 面积为y ,如果y 与x 的函数图象如图②所示,则矩形ABCD 的面积为 .17.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是 .(结果保留π)18.如图,已知Rt △ABC 中,∠B =90°,∠A =60°,AC =2+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为 .三、解答题(19小题8分,20小题14分,共22分)19.先化简,再求值:(1﹣)÷,其中a=2+.20.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?四、解答题(21小题8分,22小题10分,共18分)21.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.22.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?五、解答题(本题14分)23.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.六、解答题(本题14分)24.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?七、解答题(本题14分)25.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.八、解答题(本题14分)26.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【参考答案】一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.B【解析】||=.故选B.2.C【解析】A.不是中心对称图形,是轴对称图形,故本选项错误;B.不是中心对称图形,是轴对称图形,故本选项错误;C.是中心对称图形,还是轴对称图形,故本选项正确;D.不是中心对称图形,是轴对称图形,故本选项错误.故选C.3.D【解析】A.3x、4y不是同类项,不能合并,此选项错误;B.(﹣a)3•a2=﹣a5,此选项错误;C.(x3y)5=x15y5,此选项错误;D.m10÷m7=m3,此选项正确;故选D.4.A【解析】0.000 005 035m,用科学记数法表示该数为5.035×10﹣6.故选A.5.C【解析】因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,所以这10次测试成绩比较稳定的是丙.故选C.6.A【解析】共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.7.B【解析】如图连接OB,∵OA⊥BC,∠AOC=50°,∴∠AOB=∠AOC=50°,则∠ADB=∠AOB=25°.故选B.8.B【解析】的展直长度为:=6π(m).故选B.9.C【解析】∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴△DEC∽△AEF,∴= =.∵E为AD的中点,∴CD=AF,FE=EC,∴F A:FB=1:2,A说法正确,不符合题意;∵FE=EC,F A=AB,∴AE:BC=1:2,B说法正确,不符合题意;∵∠FBC不一定是直角,∴BE:CF不一定等于1:2,C说法错误,符合题意;∵AE∥BC,AE=BC,∴S△ABE:S△FBC=1:4,D说法正确,不符合题意;故选C.10.C【解析】∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,∴A正确;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,∴B正确;∵△OCN≌△OAM,∴ON=OM.∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,∴C错误;作NE⊥OM于E点,如图所示:∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM= x,∴EM=x﹣x=(﹣1)x.在Rt△NEM中,MN=2.∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2.∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣.在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a ﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),∴D正确.故选C.二、填空题(每小题3分,共24分)11.x(x+1)(x﹣1)【解析】原式=x(x2﹣1)=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).12.【解析】原式=3﹣2=.故答案为:.13.【解析】如图所示:连接OA.∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC ∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.14.1≤x≤2【解析】根据二次根式的意义,得,∴1≤x≤2.故答案为:1≤x≤2.15.0<x≤8【解析】∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.16.24【解析】从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.故答案为:24.17.65π【解析】由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π.故答案为:65π.18.或【解析】分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得:∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=.∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得:∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD\1AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH= AN=1,HN=,由折叠可得:∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=.故答案为:或.三、解答题(19小题8分,20小题14分,共22分)19.解:原式=(﹣)=•=,当a=2+时,原式==+1.20.解:(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×=72°;(3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人),补全条形统计图为:(4)2000×=640,估计该校2000名学生中最喜爱小品的人数为640人;故答案为:50;72;640;(5)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,所以抽取的2名学生恰好来自同一个班级的概率==.四、解答题(21小题8分,22小题10分,共18分)21.解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.22.解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.五、解答题(本题14分)23.(1)证明:如图1,连接OE,∴OA=OE,∴∠BAE=∠OEA.∵∠BAE=30°,∴∠OEA=30°,∴∠AOE=∠BAE+∠OEA=60°.在△BOE中,∠B=30°,∴∠OEB=180°﹣∠B﹣∠BOE=90°,∴OE⊥BC.∵点E在⊙O上,∴BC是⊙O的切线;(2)解:如图2\1∠B=∠BAE=30°,∴∠AEC=∠B+∠BAE=60°.在Rt△ACE中,AC=3,sin∠AEC=,∴AE===2,连接DE\1AD是⊙O的直径,∴∠AED=90°.在Rt△ADE中,∠BAE=30°,cos∠DAE=,∴AD===4,∴⊙O的半径r=AD=2;(3)解:以A、O、E、F为顶点的四边形是菱形,理由:如图3.在Rt△ABC中,∠B=30°,∴∠BAC=60°,连接OF,∴OA=OF,∴△AOF是等边三角形,∴OA=AF,∠AOF=60°,连接EF,OE,∴OE=OF.∵∠OEB=90°,∠B=30°,∴∠AOE=90°+30°=120°,∴∠EOF=∠AOE﹣∠AOF=60°.∵OE=OF,∴△OEF是等边三角形,∴OE=EF.∵OA=OE,∴OA=AF=EF=OE,∴四边形OAFE是菱形.六、解答题(本题14分)24.解:(1)y=100+10(60﹣x)=﹣10x+700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∴x=50时,W最大值=4000,∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:﹣10(x﹣50)2+4000≥3910,解得:47≤x≤53.∵y=100+10(60﹣x)=﹣10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.七、解答题(本题14分)25.解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM.在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH.∵CD=BC,∴CE=CH\1∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2如图2,连接AE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上.∵∠BCF=90°,∠BEF=90°,M为AF的中点,∴CM=AF,EM=AF,∴CM=ME.∵∠EFD=45°,∴∠EFC=135°.∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接CF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD.∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=MG,∴MD=ME,∠MCG=∠MGC.∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°.∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.八、解答题(本题14分)26.解:(1)把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣1,得解得,∴抛物线解析式为:y=∴抛物线对称轴为直线x=﹣(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,﹣1)关于直线x=1的对称点C′(2,﹣1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx,∴k=﹣∴y=﹣则P点坐标为(1,﹣)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,﹣a﹣1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,﹣)∵N为DM中点∴点M坐标为(2a,)把M代入y=,解得a=4则N点坐标为(4,﹣3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N 由(2)N(2,﹣1)∴N点坐标为(4,﹣3)或(2,﹣1).。