2016年秋季学期新苏科版八年级数学上册 第1章 1.3 探索三角形全等的条件(1)
- 格式:doc
- 大小:63.00 KB
- 文档页数:3
苏科版八年级上册1.3探索三角形全等的条件SSS培优训练1.3探索三角形全等的条件SSS一、选择题1.如图,已知,再添加一个条件仍不能判定≌的是A. B.C. D.2.如图,点F、C在线段BE上,且,,补充一个条件,不一定使≌成立的是A. B. C. D.3.如图,点A,E,F,D在同一直线上,,,,则图中全等三角形共有A.1对B.2对C.3对D.4对4.如图,已知,则不一定能使≌的条件是A. B.C.D.5.如图,尺规作图作的平分线的方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于点C 、D ,再分别以点C 、D 为圆心,大于的长为半径画弧,两弧交于点P ,作射线由作法得≌从而得两角相等的根据是A.SASB.SSSC.AASD.ASA6.如图,点E 、F 、C 、B 在同一直线上,,,添加下列一个条件,不能判定≌的条件是A. B. C. D.二、填空题7.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:;≌;;四边形ABCD的面积,其中,正确的结论有__________.8.阅读下面材料:下面是“作角的平分线”的尺规作图过程.已知:.求作:射线OC,使它平分.如图,作法如下:以点O为圆心,任意长为半径作弧,交OA于E,交OB于D;分别以点D,E为圆心,以大于的同样长为半径作弧,两弧交于点C;作射线则射线OC就是所求作的射线.请回答:该作图的依据是______.9.如图,已知,若使≌则可添加的一个条件是______.10.如图,,垂足为点A,,,射线,垂足为点B,一动点E从A点出发以秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持,当点E运动______秒时,与全等.11.如图,在和中,点B、F、C、E在同一条直线上,,,要使≌,则只需添加一个适当的条件是______只填一个即可12.如图,点A,B,C在同一条直线上,,请你只添加一个条件,使得≌你添加的条件是______要求:不再添加辅助线,只需填一个答案即可三、解答题13.已知:如图,点A,D,C,B在同一条直线上,,,求证:.14.点F、B、E、C在同一直线上,并且,能否由上面的已知条件证明≌?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件添加到已知条件中,使≌,并给出证明.提供的三个条件是:;;.15.在数学活动课上,李老师让同学们试着用角尺平分如图所示有两组同学设计了如下方案.方案:将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度位于OA,OB上,且交点分别为M,N,即,过角尺顶点P的射线OP就是的平分线.方案:在边OA,OB上分别截取,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与点M,N重合,即,过角尺顶点P的射线OP就是的平分线.方案与方案是否可行?若可行,请证明;若不可行,请说明理由.16.如图,已知,,AC与BD相交于E,F是BC的中点,求证:.17.阅读材料,解答问题数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.小惠说:如图1,我用相同的两块含角的直角三角板可以画角的平分线.画法如下:在的两边上分别取点M,N,使;把直角三角板按如图所示的位置放置,两斜边交于点P.射线OP是的平分线.小旭说:我只用刻度尺就可以画角平分线.请你也参与探讨,解决以下问题:小惠的做法正确吗?说明理由;请你和小旭一样,只用刻度尺画出图2中的平分线,并简述画图的过程.苏科版数学八年级培优训练(教师卷)1.3探索三角形全等的条件SSS一、选择题1.如图,已知,再添加一个条件仍不能判定≌的是A.B.C.D.答案:D解析:【分析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.根据全等三角形的判定定理分别判定即可.【解答】解:A、根据HL可判定≌,故本选项不符合题意;B、根据SAS可判定≌,故本选项不符合题意;C、根据SSS可判定≌,故本选项不符合题意;D、根据SSA不能判定≌,故本选项符合题意;故选:D.2.如图,点F、C在线段BE上,且,,补充一个条件,不一定使≌成立的是A. B. C.答案:A解析:【分析】本题考查三角形全等的判定方法.解题关键是掌握全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.解题时,根据题中的已知条件,,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【解答】解:在和中,,.A.当时,由已知条件,,可知SSA不能判定两个三角形全等,故此选项符合题意;B.当时,由已知条件,,可知SAS能判定两个三角形全等,故此选项不符合题意;C.当时,由已知条件,,可知AAS能判定两个三角形全等,故此选项不符合题意;D.当时,由已知条件,,可知ASA能判定两个三角形全等,故此选项不符合题意.故选A.3.如图,点A,E,F,D在同一直线上,,,,则图中全等三角形共有A.1对B.2对C.3对D.4对答案:C解析:【分析】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,求出,,根据SAS推出≌,≌,求出,,推出,根据SAS推出≌即可.【解答】解:,,,,,在和中,,≌,在和中,,≌,,,,在和中,,≌,即全等三角形有3对.故选C.4.如图,已知,则不一定能使≌的条件是A.B.C.D.答案:A解析:解:A、,BC为公共边,若,则不一定能使≌,故本选项正确;B、,BC为公共边,若,则≌,故本选项错误;C、,BC为公共边,若,则≌,故本选项错误;D、,BC为公共边,若,则≌,故本选项错误;故选:A.利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,尺规作图作的平分线的方法如下:以O为圆心,任意长为半径画弧交OA、OB于点C、D,再分别以点C、D为圆心,大于的长为半径画弧,两弧交于点P,作射线由作法得≌从而得两角相等的根据是A.SASB.SSSC.AASD.ASA答案:B解析:解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即;以点C,D为圆心,以大于长为半径画弧,两弧交于点P,即;在和中,≌.故选:B.认真阅读作法,从角平分线的作法得出与的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,点E、F、C、B在同一直线上,,,添加下列一个条件,不能判定≌的条件是A.B.C.D.答案:A解析:解:A、添加不能判定≌,故本选项符合题意;B、添加可用SAS进行判定,故本选项不符合题意;C、添加然后可用ASA进行判定,故本选项不符合题意;D、添加可用AAS进行判定,故本选项不符合题意;故选:A.分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.二、填空题7.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:;≌;;四边形ABCD的面积,其中,正确的结论有__________.答案:解析:【分析】此题考查全等三角形的判定和性质,关键是根据SSS证明与全等和利用SAS证明与全等.先证明与全等,再证明与全等即可判断.【解答】解:在与中,,≌,故正确;,在与中,,≌,,,,故正确.四边形的面积,故正确.故答案为.8.阅读下面材料:下面是“作角的平分线”的尺规作图过程.已知:.求作:射线OC,使它平分.如图,作法如下:以点O为圆心,任意长为半径作弧,交OA于E,交OB于D;分别以点D,E为圆心,以大于的同样长为半径作弧,两弧交于点C;作射线则射线OC就是所求作的射线.请回答:该作图的依据是______.答案:SSS解析:解:连接EC,DC,由作图可得,,在和中,≌,,平分.故答案为:SSS.【分析】由作图可得,,根据三角形全等的判定方法“SSS”解答.本题考查了全等三角形的应用,以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.9.如图,已知,若使≌则可添加的一个条件是______.答案:解析:解:,理由是:在和中≌,故答案为:.此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理就行.本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,,垂足为点A,,,射线,垂足为点B,一动点E从A点出发以秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持,当点E运动______秒时,与全等.答案:0,2,6,8解析:【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.先分两种情况:当E在线段AB上时,当E在BN上,再分别分成两种情况,进行计算即可.【解答】解:当E在线段AB上,时,≌,,,,点E的运动时间为秒;当E在BN上,时,,,,点E的运动时间为秒;当E在线段AB上,时,≌,这时E在A点未动,因此时间为0秒;当E在BN上,时,≌,,点E的运动时间为秒,故答案为0,2,6,8.11.如图,在和中,点B、F、C、E在同一条直线上,,,要使≌,则只需添加一个适当的条件是______只填一个即可答案:解析:解:,理由是:,,,,,在和中,≌,故答案为:答案不唯一求出,,根据SAS推出两三角形全等即可.本题考查了全等三角形的判定的应用,关键是注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.12.如图,点A,B,C在同一条直线上,,请你只添加一个条件,使得≌你添加的条件是______要求:不再添加辅助线,只需填一个答案即可答案:答案不唯一解析:解:添加的条件是,理由是:,,,,在和中,,≌,故答案为:答案不唯一.此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.三、解答题13.已知:如图,点A,D,C,B在同一条直线上,,,求证:.答案:证明:,,,在和中,,≌,,在和中,,≌,.解析:证明≌,由全等三角形的性质得出,根据SAS证明≌,则可得出.本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键.14.点F、B、E、C在同一直线上,并且,能否由上面的已知条件证明≌?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件添加到已知条件中,使≌,并给出证明.提供的三个条件是:;;.答案:解:不能;选择条件:;,,即,在和中,≌.解析:此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.由可得,再有条件不能证明≌;可以加上条件,利用SAS定理可以判定≌.15.在数学活动课上,李老师让同学们试着用角尺平分如图所示有两组同学设计了如下方案.方案:将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度位于OA,OB上,且交点分别为M,N,即,过角尺顶点P的射线OP就是的平分线.方案:在边OA,OB上分别截取,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与点M,N重合,即,过角尺顶点P的射线OP就是的平分线.方案与方案是否可行?若可行,请证明;若不可行,请说明理由.答案:解:方案不可行;理由如下:只有,,不能判断≌,不能判定OP就是的平分线;方案可行;理由如下:在和中,,≌,.就是的平分线.解析:只有,,不能判断≌,得出方案不可行;由SSS证得≌,得出得出方案可行.本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.16.如图,已知,,AC与BD相交于E,F是BC的中点,求证:.答案:证明:在和中,,≌,,是BC的中点,,在和中,,≌,.解析:先利用AAS证明≌,再利用SSS证明≌即可.本题主要考查了全等三角形的判定与性质,解题的关键是熟练掌握利用AAS和SSS证明三角形全等,此题难度不大.17.阅读材料,解答问题数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.小惠说:如图1,我用相同的两块含角的直角三角板可以画角的平分线.画法如下:在的两边上分别取点M,N,使;把直角三角板按如图所示的位置放置,两斜边交于点P.射线OP是的平分线.小旭说:我只用刻度尺就可以画角平分线.请你也参与探讨,解决以下问题:小惠的做法正确吗?说明理由;请你和小旭一样,只用刻度尺画出图2中的平分线,并简述画图的过程.答案:解:小惠的做法正确.理由如下:如图1,过O点作于C,于D.,由题意,,,..在和中,,≌,,,于C,于D,点O在的平分线上,,,,即射线OP 是的平分线;如图2,射线RX 是的平分线,作图过程是:用刻度尺作,,连接TW ,UV 交于点X ,射线RX 即为所求的平分线.解析:过O 点作于C ,于D ,求出≌,根据全等三角形的性质得出,,根据角平分线性质求出根据三角形内角和定理求出即可;根据全等三角形的判定定理SSS ,用刻度尺作出即可.本题考查了角平分线定义和全等三角形的判定和性质的应用,主要考查学生的理解能力和动手操作能力,题目比较好,难度适中.。
1.3 探索三角形全等的条件(4)预习目标1.经历探索三角形全等“角角边”条件的过程,体会通过操作、归纳获得数学结论的过程.2.掌握三角形全等的“角角边”条件,并能运用“角角边”判定两个三角形全等.3.能够进一步结合具体问题和情境进行有条理的思考和简单的推理证明.4.进一步学会文字语言、符号语言和图形语言的表达和相互转化.教材导读1、练一练已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.2、提问:你有什么发现?阅读教材P19~P20内容,回答下列问题:三角形全等的条件——“角角边”两_______分别相等且其中一组_______的对边相等的两个三角形全等(简写成“角角边”或“_______”).符号语言:如上图在△ABC和△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).热身练习1 .如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件___________;根据“AAS”,那么补充的条件为____________,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?做一做1、已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.变化一下怎么做?(1)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中∠A和∠A'的角平分线.求证:AD=A'D'.(2)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'的BC和B'C'边上的中线.求证:AD=A'D'.小结这节课你学到了什么?课后作业1.如图,∠1=∠2,∠3=∠4,则图中全等的三角形有_____________________.2.如图,∠BAC=∠ABD,请你添加一个条件:_______,使OC=OD(填一个即可).3.如图,AD∥BC,∠A=90°,以点B为圆心,BC的长为半径作弧,交射线AD与点E,连接BE,过点C作CF ⊥BE,垂足为F.求证:AB=FC.4.如图,AC、BD互相平分于点O,过点O的直线分别交AB、CD于点E、F,那么OE 与OF相等吗?为什么?。
一、学习目标:1、要掌握尺规作图的方法及一般步骤。
2、通过“作图题〞练习,提高学生的几何语言表达能力。
3、通过画图,培养学生的作图能力及动手能力二、学习重难点:重点:会作一个角等于角难点:熟练掌握相等角的作图,作图时要做到标准使用尺规,标准使用作图语言,标准地按照步骤作出图形。
探究案三、合作探究学生阅读教材,并答复以下问题:〔1〕什么是尺规作图?〔2〕什么是根本作图?一些复杂的尺规作图,都是由根本作图组成的,前面我们学过的用尺规作一条线段等于线段,这是一种根本作图,下面我们将再学习一种新的根本作图。
议一议:如图,∠AOB,用直尺和圆规作∠A′O′B′,使∠A′O′B′=∠AOB。
作法:(1)作射线O′A′.(2)以点___为圆心,以____ 为半径画弧,交OA于点C,交OB于点D.(3)以点_____为圆心,以____长为半径画弧,交O′A′于点C′.(4)以点_____为圆心,以_____长为半径画弧,交前面的弧于点D′.(5)过点D′作射线______∠A′O′B′就是所求作的角.想一想:通过以上作图过程。
你能证明∠A′O′B′=∠AOB吗?如何验证?(小组交流)随堂检测1.尺规作图的画图工具是( )A.刻度尺、圆规B.三角板、量角器C.直尺和量角器D.无刻度的直尺和圆规2.以下各作图题中,可直接用“边边边〞条件作出三角形的是( )A.腰和底边,求作等腰三角形B.两条直角边,求作直角三角形C.高,求作等边三角形D.腰长,求作等腰三角形3.利用直尺和圆规作一个角等于角的示意图如图,那么说明∠A’O’B’=∠AOB的依据是。
4.如图,∠α和∠β(∠α>∠β).求作∠AOB,使∠AOB=2∠α-∠β课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获___________________________________________________________________________ ______________________________________________________________________________ _参考答案探究案〔1〕什么是尺规作图?在几何里,把限定用直尺和圆规来画图,称为尺规作图.〔2〕什么是根本作图?最根本,最常用的尺规作图,通常称根本作图.议一议:(2)O,任意长,(3)O’,OC,(4) C’,CD,(5)O’B’想一想:根据SSS判定全等,然后得出对应角相等.随堂检测1. D2.A3.SSS4.作法:(1)作∠COD=∠α(2)以射线OD为边,在∠COD外部作∠DOA=∠α(3)以射线OC为一边,在∠COD内部作∠BOC=∠β.那么∠AOB就是所求作的角.如图:如有侵权请联系告知删除,感谢你们的配合!。
八年级数学苏科版上册1.3探索三角形全等的条件课时练一.全等三角形的判定1.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 2.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.3.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.4.已知如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.5.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?二.直角三角形全等的判定6.如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0B.1C.2D.37.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.ASA B.AAS C.SAS D.HL8.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等9.如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′三.全等三角形的判定与性质10.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,连接BE,点D 恰好在BE上,则∠3=()A.60°B.55°C.50°D.无法计算11.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=.13.如图,在3×3的正方形网格中,∠1+∠2+∠3+∠4+∠5=.14.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.15.如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM =AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.16.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.17.如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.四.全等三角形的应用18.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cm B.7cm C.8cm D.9cm19.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS20.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB =DE,那么判定△ABC和△DEC全等的依据是()A.SSS B.SAS C.ASA D.AAS21.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)22.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离,你能说说其中的道理吗?参考答案一.全等三角形的判定1.B.2.1或7.3.SAS、ASA.4.3.5.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.二.直角三角形全等的判定6.D.7.A.8.D.9.C.三.全等三角形的判定与性质10.B.11.B.12.65°.13.225°14.(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,,∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,,∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.15.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.16.解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.17.证明:(1)∵∠DAB+∠EAC=90°,∠DAB+∠ABD=90°,∴∠EAC=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∵DE=AD+AE,∴DE=BD+CE;(2)BD﹣CE=DE,理由如下:∵CE⊥AN,BD⊥AN,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD﹣CE=AE﹣AD=DE.四.全等三角形的应用18.A.19.B.20.B.21.③;ASA.22.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD(对顶角),EC=BC,∴△ABC≌△DEC,∴AB=ED,即量出DE的长,就是A、B的距离。
1.3 探索三角形全等的条件(AAS)说课稿一、教材分析本节课是苏科版数学八年级上册的第1.3节,主要内容是探索三角形全等的条件之一:边角边(AAS)的相关知识。
本节课的学习目标是理解和掌握AAS全等定理的条件和证明方法,培养学生观察能力和逻辑思维能力。
二、教学目标1.知识与能力目标:–了解AAS全等定理的条件;–掌握使用AAS全等定理判断三角形全等的方法;–能够运用AAS全等定理进行简单的证明。
2.过程与方法目标:–培养学生观察能力,能够观察图形中的关键特征;–培养学生的逻辑思维能力,能够灵活运用已有的数学知识。
3.情感态度价值观目标:–培养学生对于数学规律的兴趣和好奇心;–培养学生的合作意识和团队精神。
三、教学重难点1.教学重点:–AAS全等定理的条件;–使用AAS全等定理进行三角形全等判断和简单证明。
2.教学难点:–培养学生观察能力,能够发现图形中的关键特征;–培养学生的逻辑思维能力,运用已有的数学知识进行证明。
四、教学准备1.教学工具:–电脑;–投影仪;–白板、黑板和粉笔;–教材和教辅资料。
2.教学资源:–教材中关于AAS全等定理的相关内容;–课堂练习题和作业题。
五、教学过程1. 导入与热身(5分钟)•引导学生回顾前几节课学到的三角形全等的判定方法;•提问:在已知两个角相等的情况下,我们如何判断三角形全等?2. 学习新知(15分钟)•出示AAS全等定理的表述,并解释定理中的关键词汇;•通过多个实例,展示使用AAS全等定理进行三角形全等判断的具体步骤;•与学生一起完成教材中相关练习题。
3. 总结规律(10分钟)•引导学生总结AAS全等定理的条件和判断方法;•请学生归纳并记录AAS全等定理的条件和运用步骤。
4. 深化理解(15分钟)•设计一个情境问题,要求学生运用AAS全等定理进行证明;•让学生尝试进行证明,并与同学讨论各自的解法;•通过展示学生的不同解法,引导他们发现证明中的关键步骤和逻辑思路。
1.3 探索三角形全等的条件
第1课时
【基础训练】
1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.
2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.
3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.
4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).
A.∠B=∠D B∠C=∠E
C.∠1=∠2 D.∠3=∠4
5.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°
C.45°D.30°
【提优拔尖】
6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.
7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:
(1)∠C=∠D;
(2)△AOC≌△BOD.
8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.
9.复习“全等三角形”的知识时,老师布置了一道作业题:
“如图(1),已知在△ABC中,AB=AC,P是△ABC内的任意一点,将AP绕点A顺时针旋转至AQ,使么QAP=∠BAC,连接BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图(1)的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其他条件不变,发现“BQ=CP”仍然成立,请你就图(2)说明理由.
10.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.
11.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.
参考答案
1.△DCB SAS ∠DBC DB
2.△ACE SAS △ACD SAS
3.BC AD 4.C 5.A
6.全等
7.略
8.AE⊥BD.
9.略
10.略
11.略。