北京市西城(北区)2012-2013学年高一上学期期末考试数学试题
- 格式:doc
- 大小:904.50 KB
- 文档页数:9
北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学 2013.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 在0到2π范围内,与角3π-终边相同的角是( ) A.3π B. 23π C. 43πD.53π2. α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( )A. (4,2)-B. (4,2)--C. (4,2)D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( )A. 3-B. 3C. 13-D.135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是π(0)2,,那么()f x 的解 析式可以是( ) A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A. 6π B.4π C.3π D.2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( )A.4π B.2π C. πD. 2π9. 设角θ的终边经过点(3,4)-,则πcos()4θ+的值等于( )A.B.C.D. -10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅的值为( ) A .3B .2C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>. 其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)C已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+.(Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧AB 上靠近B 的三等分点时,求AP AB ⋅的值; (Ⅱ)求AP OP '⋅的最大值和最小值.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合{11}P x x =-<<,{}M a =. 若M P ⊆,则a 的取值范围是________. 2. lg 2lg 5+-=________. 3. 满足不等式122x>的x 的取值范围是_______. 4. 设()f x 是定义在R 上的奇函数,若()f x 在(0,)+∞上是减函数,且2是函数()f x 的一个零点,则满足()0x f x >的x 的取值范围是________. 5. 已知集合{1,2,,}U n =,n *∈N .设集合A 同时满足下列三个条件:①A U ⊆;②若x A ∈,则2x A ∉; ③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是________;(写出一个即可) (2)当7n =时,满足条件的集合A 的个数为________.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6. (本小题满分10分)已知函数21()1f x x =-. (Ⅰ)证明函数()f x 为偶函数;(Ⅱ)用函数的单调性定义证明()f x 在(0,)+∞上为增函数.7. (本小题满分10分)设函数(2)(4)2()(2)()2x x x f x x x a x -+≤⎧=⎨-->⎩. (Ⅰ)求函数()f x 在区间[2,2]-上的最大值和最小值;(Ⅱ)设函数()f x 在区间[4,6]-上的最大值为()g a ,试求()g a 的表达式.8. (本小题满分10分)已知函数()log a g x x =,其中1a >.(Ⅰ)当[0,1]x ∈时,(2)1xg a +>恒成立,求a 的取值范围; (Ⅱ)设()m x 是定义在[,]s t 上的函数,在(,)s t 内任取1n -个数1221,,,,n n x x x x --,设12x x <<21n n x x --<<,令0,ns x t x ==,如果存在一个常数0M >,使得11()()nii i m xm x M -=-≤∑恒成立,则称函数()m x 在区间[,]s t 上的具有性质P .试判断函数()()f x g x =在区间21[,]a a上是否具有性质P ?若具有性质P ,请求出M 的最小值;若不具有性质P ,请说明理由.(注:1102111()()()()()()()()ni i n n i m x m x m x m x m x m x m x m x --=-=-+-++-∑)。
北京市西城区2012—2013学年度第一学期期末试卷高三数学(文科) 2013.1本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =(A )1(0,)2(B )1(,1)2(C )1(,1)(0,)2-∞-(D )1(,1)(,1)2-∞- 2.复数5i2i=+ (A )1+2i (B )―1+2i (C )―1―2i (D )1―2i3.执行如图所示的程序框图,则输出S = (A )2 (B )6 (C )15 (D )31 4.函数1()ln f x x x=-的零点个数为(A )0 (B )1 (C )2 (D )35.某四棱锥的三视图如图所示,该四棱锥的体积是(A )(B )(C (D 6.过点M (2,0)作圆x 2+y 2=1的两条切线MA ,MB (A ,B )为切点),则MA MB ⋅=(A (B )52(C (D )327.设等比数列{a n }的公比为q ,前n 项和为S n .则“||q =S 6=7S 2”的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件8.已知函数()f x 的定义域为R .若∃常数c >0,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数: ①()||f x x =;②()sin f x x =;③3()f x x x =-. 其中,具有性质P 的函数的序号是 (A )① (B )③(C )①② (D )②③第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知向量a =(1,3),b =(m ,2m ―1).若向量a 与b 共线,则实数m =________. 10.平行四边形ABCD 中,E 为CD 的中点.若在平行四边形ABCD 内部随机取一点M ,则点M 取自△ABE 内部的概率为________.11.双曲线2213645x y -=的渐近线方程为______;离心率为________. 12.若函数2log , 0()(), 0x x f x g x x >⎧=⎨<⎩是奇函数,则(8)g -=________.13.已知函数()sin()6f x x π=+,其中[,]3x a π∈-.当2a π=时,()f x 的值域是________.14.设函数2()65f x x x =-+,集合{(,)|()()0,A a b f a f b =+≤且()()0}f a f b -≥在直角坐标系aOb 中,集合A 所表示的区域的面积为________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos2B +cos B =0.(Ⅰ)求角B 的值;(Ⅱ)若b =a +c =5,求△ABC 的面积.16.(本小题满分13分)为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70),得到如图所示的频率分布直方图.现采用分层抽样的方法,第3,4,5组中随机抽取6名学生做初检.(Ⅰ)求每组抽取的学生人数;(Ⅱ)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.17.(本小题满分14分)如图,直三棱柱ABC —A 1B 1C 1中,AC ⊥BC ,AC =BC =CC 1=2,M ,N 分别为AC ,B 1C 1的中点.(Ⅰ)求线段MN 的长;(Ⅱ)求证:MN ∥平面ABB 1A 1;(Ⅲ)线段CC 1上是否存在点Q ,使A 1B ⊥平面MNQ ?说明理由.18.(本小题满分13分) 已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)若x =―1是()f x 的一个极值点,求b 的值; (Ⅱ)求f (x )的单调区间.19.(本小题满分14分)如图,A ,B 是椭圆22221(0)x y a b a b+=>>的两个顶点.||AB =AB 的斜率为12-. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l 平行于AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于C ,D .证明:△OCM 的面积等于△ODN 的面积. 20.(本小题满分13分)如图,设A 是由n ×n 个实数组成的n 行n 列的数表,其中ij a (i ,j =1,2,3,…,n )表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记S (n ,n )为所有这样的数表构成的集合.对于A ∈S (n ,n ),记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)对如下数表A ∈S (4,4),求()l A 的值;(Ⅱ)证明:存在A ∈S (n ,n )使得()24l A n k =-,其中k=0,1,2,…,n ; (Ⅲ)给定n 为奇数,对于所有的A ∈S (n ,n ),证明:()0l A ≠.北京市西城区2012—2013学年度第一学期期末试卷高三数学(文科)参考答案及评分标准 2013.1一、选择题:本大题共8小题,每小题5分,共40分。
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_____.10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则 BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(26f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2x f x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 21cos2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,7[76,8[82,8[88,9[94,1元件A81240 32 8元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =;(Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6;12 13.1[,1]2-,[,62ππ; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解法一21cos2B B =-,所以 2cos 2sin B B B =. ………………3分因为 0B <<π, 所以 sin 0B >,从而 tan B = ………………5分所以 π3B =. ………………6分解法二: 依题意得 2cos21B B +=,所以 2sin(216B π+=, 即 1sin(262B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<, 所以 5266B ππ+=. ………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin sin BC BAC A⋅==. (8)分因为 512C A B π=π--=, ………………9分所以 5sin sin sin()1246C πππ==+=, ………………11分所以 △ABC 的面积1sin 2S AC BC C =⋅=. (13)分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin sin BC BAC A⋅==. (8)分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得 1AB =………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . (11)分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. (11)分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. (1)分元件B 为正品的概率约为4029631004++=. (2)分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. (7)分所以,随机变量X 的分布列为:X90 45 30 15-P35 320 15 120 (8)分3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=. ………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. (3)分令()0f x '=,得1x ,2x =()f x 和()f x '的情况如下:故()f x的单调减区间为(,-∞,)+∞;单调增区间为(. (5)分③ 当0b <时,()f x的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x的单调减区间为(,-∞,(,)+∞;无单调增区间. (7)分(Ⅱ)解:因为0b >,13[,44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. (9)分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. (5)分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则 221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. (7)分设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.----………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ (10)分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. (12)分对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l An =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=. (13)分。
北京市西城区2013 — 2014学年度第一学期期末试卷高一数学 2014.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.若sin 0<α,且cos 0>α,则角α是( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角(D )第四象限的角2.已知向量1(1,0)=e ,2(0,1)=e ,那么122|+=|e e ( )(A )1(B (C )2(D 3.若角α的终边经过点(1,2)P -,则tan =α( )(A (B ) (C )2- (D )12-4.已知正方形ABCD 的边长为1,则AB AC ⋅=( )(A (B )1(C (D )25.在平面直角坐标系xOy 中,函数2sin()6y x π=-的图象( ) (A )关于直线6x π=对称 (B )关于直线6x π=-对称 (C )关于点(,0)6π对称(D )关于点(,0)6π-对称 6.已知非零向量,OA OB 不共线,且13BM BA =,则向量OM =( ) (A )1233OA OB +(B )2133OA OB +(C )1233OA OB -(D )1433OA OB -7.已知函数1()cos 22f x x x =+,则()12f π=( )(A )2(B )2(C )1(D 8.设a ,b 是两个非零向量,且+=-a b a b ,则a 与b 夹角的大小为( ) (A )120︒(B )90︒(C )60︒(D )30︒9.已知函数()sin cos f x x x =ωω在区间[,]63ππ-上单调递增,则正数ω的最大值是( ) (A )32(B )43(C )34 (D )2310.已知函数()cos(sin )f x x =,则下列结论中正确的是( ) (A )()f x 的定义域是[1,1]- (B )()f x 的值域是[1,1]- (C )()f x 是奇函数(D )()f x 是周期为π的函数二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin()6π-=______.12. 若sin =α,且(0,)∈πα,则α=______. 13. 已知向量(1,3)=a ,(2,)k =-b .若向量a 与b 共线,则实数k =_____. 14. 若tan 2=α,且32π∈(π,)α,则sin()2π+=α______. 15. 已知向量(cos ,sin )αα=a ,(cos ,sin )ββ=b .若π,3〈〉=a b ,则c o s ()-=αβ_____. 16. 定义在R 上的非常值函数()f x 同时满足下述两个条件:① 对于任意的x ∈R ,都有2()()3f x f x π+=; ② 对于任意的x ∈R ,都有()()66f x f x ππ-=+.则其解析式可以是()f x =_____.(写出一个满足条件的解析式即可)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知3tan 4=-α. (Ⅰ)求πtan()4-α的值;(Ⅱ)求2sin 3cos 3sin 2cos --αααα的值.18.(本小题满分12分)已知函数2()sin 22cos2f x x x x =⋅. (Ⅰ)求()f x 的最小正周期;(Ⅱ)若[,]84x ππ∈,求()f x 的最大值与最小值.19.(本小题满分12分)如图,正六边形ABCDEF 的边长为1.,M N 分别是,BC DE 上的动点,且满足BM DN =.(Ⅰ)若,M N 分别是,BC DE 的中点,求AM AN ⋅的值; (Ⅱ)求AM AN ⋅的取值范围.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 已知集合2{|430}A x x x =-+>,{|02}B x x =<≤,那么A B =_____.2. 已知2log 3a =,32b=,21log 3c =.将,,a b c 按从小到大排列为_____. 3. 若函数2()2f x x x =-在区间(,)a +∞上是增函数,则a 的取值范围是_____. 4. 函数12()|21|xf x x =--的零点个数为_____.5. 给定数集A .若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.给出如下四个结论:① 集合{4,2,0,2,4}A =--为闭集合; ② 集合{|3,}A n n k k ==∈Z 为闭集合; ③ 若集合12,A A 为闭集合,则12AA 为闭集合;④ 若集合12,A A 为闭集合,且1A R Ø,2A R Ø,则存在c ∈R ,使得12()c A A ∉.其中,全部正确结论的序号是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()log (2)1a f x x =+-,其中1a >.(Ⅰ)若()f x 在[0,1]上的最大值与最小值互为相反数,求a 的值; (Ⅱ)若()f x 的图象不经过第二象限,求a 的取值范围.7.(本小题满分10分)已知函数()|2|f x x x =-. (Ⅰ)解不等式()3f x <;(Ⅱ)设0a >,求()f x 在区间[0,]a 上的最大值.8.(本小题满分10分)设函数()f x ,()g x 的定义域分别为f g D D ,,且f g D D Ø.若对于任意f x D ∈,都有()()g x f x =,则称()g x 为()f x 在g D 上的一个延拓函数.给定2() 1 (01)f x x x =-<≤.(Ⅰ)若()h x 是()f x 在[1,1]-上的延拓函数,且()h x 为奇函数,求()h x 的解析式; (Ⅱ)设()g x 为()f x 在(0,)+∞上的任意一个延拓函数,且()g x y x=是(0,)+∞上的单调函数.(ⅰ)判断函数()g x y x=在(0,1]上的单调性,并加以证明; (ⅱ)设0s >,0t >,证明:()()()g s t g s g t +>+.北京市西城区2013 —2014学年度第一学期期末试卷一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.D;3.C;4.B;5.C;6.A;7.A;8.B;9.C;10.D.二、填空题:本大题共6小题,每小题4分,共24分.11.12-;12.3π,或32π;13.6-;14.5-;15.12;16.sin3x等(答案不唯一).注:12题,得出一个正确的结论得2分.三、解答题:本大题共3小题,共36分.17.(Ⅰ)解:因为3 tan4=-α,所以πtan tanπ4tan()π41tan tan4--=+⋅ααα【3分】7=-. 【6分】(Ⅱ)解:因为3 tan4=-α,所以2sin3cos2tan33sin2cos3tan2--=--αααααα【9分】1817=. 【12分】18.(Ⅰ)解:1cos4()2cos22xf x x x-=⋅1cos4422xx-=+【2分】1sin(4)62xπ=-+.【4分】因为242Tππ==,所以()f x的最小正周期是2π.【6分】(Ⅱ)解:由(Ⅰ)得,1 ()sin(4)62f x xπ=-+.因为84x ππ≤≤, 所以 54366x πππ≤-≤, 【 8分】 所以 1sin(4)126x π≤-≤, 【 9分】所以 131sin(4)622x π≤-+≤. 【10分】所以,当6x π=时,()f x 取得最大值32;当4x π=时,()f x 取得最小值1.【12分】19.(本小题满分12分)(Ⅰ)解:如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系. 【 1分】因为ABCDEF 是边长为1的正六边形,且,M N 分别是,BC DE 的中点,所以 5(,)44M ,1(2N , 【 3分】所以 5311848AM AN ⋅=+=. 【 4分】 (Ⅱ)解:设BM DN t ==,则[0,1]t ∈.【 5分】所以(1,)22t M +,(1N t -. 【 7分】 所以3(1)(1)22t AM AN t t ⋅=+⋅-+2112t t ++=-213(1)22t =--+ 【10分】 当0t =时,AM AN ⋅取得最小值1; 【11分】 当1t =时,AM AN ⋅取得最大值32. 【12分】一、填空题:本大题共5小题,每小题4分,共20分.1.{|01}x x <<;2.c b a <<;3. [1,)+∞;4. 2;5.②④. 注:5题,选出一个正确的序号得2分,有错选不给分.6.(Ⅰ)解:函数()log (2)1a f x x =+-的定义域是(2,)-+∞. 【 1分】因为 1a >,所以 ()log (2)1a f x x =+-是[0,1]上的增函数. 【 2分】 所以 ()f x 在[0,1]上的最大值是(1)log 31a f =-;最小值是(0)log 21a f =-.【 4分】 依题意,得 log 31(log 21)a a -=--, 【 5分】 解得a =【 6分】 (Ⅱ)解:由(Ⅰ)知,()log (2)1a f x x =+-是(2,)-+∞上的增函数. 【 7分】在()f x 的解析式中,令0x =,得(0)log 21a f =-, 所以,()f x 的图象与y 轴交于点(0,log 21)a -. 【 8分】 依题意,得(0)log 210a f =-≤, 【 9分】 解得 2a ≥. 【10分】 7.(Ⅰ)解:原不等式可化为22230x x x ≥⎧⎨--<⎩,,(1) 或22230.x x x <⎧⎨-+>⎩,(2) 【 1分】解不等式组(1),得 23x ≤<;解不等式组(2),得2x <. 【 3分】 所以原不等式的解集为{|3}x x <. 【 4分】(Ⅱ)解:222,2,()|2|2, 2.x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩ 【 5分】① 当01a <<时,()f x 是[0,]a 上的增函数,此时()f x 在[0,]a 上的最大值是2()2f a a a =-+. 【 6分】② 当12a ≤≤时,()f x 在[0,1]上是增函数,在[1,]a 上是减函数,此时()f x 在[0,]a 上的最大值是(1)1f =. 【 7分】③ 当2a >时,令()(1)(2)10f a f a a -=-->,解得1a >. 所以,当21a <≤此时()(1)f a f ≤,()f x 在[0,]a 上的最大值是(1)1f =;当1a >此时()(1)f a f >,()f x 在[0,]a 上的最大值是2()2f a a a =-.【 9分】记()f x 在区间[0,]a 上的最大值为()g a ,所以222,01,()1,112,1a a a g a a a a a ⎧-+<<⎪⎪=≤≤+⎨⎪->+⎪⎩ 【10分】8.(Ⅰ)解:当0x =时,由()h x 为奇函数,得(0)0h =. 【 1分】任取[10)x ∈-,,则(01]x -∈,, 由()h x 为奇函数,得22()()[()1]1h x h x x x =--=---=-+, 【 2分】所以()h x 的解析式为221,01,()0,0,1,10.x x h x x x x ⎧-<≤⎪==⎨⎪-+-≤<⎩【 3分】(Ⅱ)解:(ⅰ)函数()g x y x=是(0,1]上的增函数. 【 4分】证明如下:因为()g x 为()f x 在(0,)+∞上的一个延拓函数,所以当(01]x ∈,时,2()()1g x f x x ==-. 记()()1()g x f x k x x x x x===-,其中(0,1]x ∈. 任取12,(0,1]x x ∈,且12x x <,则210x x x ∆=->, 因为211221212112()(1)11()()()0x x x x y k x k x x x x x x x -+∆=-=---=>, 所以函数()g x y x=是(0,1]上的增函数. 【 6分】 (ⅱ)由()g x y x = 是(0,)+∞上的单调函数,且(0,1]x ∈时,()g x y x =是增函数,从而得到函数()g x y x= 是(0,)+∞上的增函数. 【 7分】因为 0s >,0t >, 所以 s t s +>,s t t +>, 所以()()g s t g s s t s+>+, 即 ()()()s g s t s t g s ⋅+>+⋅. 【 8分】 同理可得:()()()t g s t s t g t ⋅+>+⋅.将上述两个不等式相加,并除以s t +,即得 ()()()g s t g s g t +>+. 【10分】。
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2(B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =,① 处可以填入( )(A )2k < (B )3k < (C )4k <(D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2x f x =; ②()sin f x x =; ③3()f x x x =-. 其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值;(Ⅱ)若2BC =,4A π=,求△ABC 的面积. 16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值. 17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分) 已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围. 19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N . (Ⅰ)求12y y 的值;明:12k k 为定(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合. 对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j cA为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =;(Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准 2013.1 一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =.………………3分因为0B <<π, 所以 sin 0B >, 从而 tan B =, (5)分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分 因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分 所以 π3B =. ………………6分 (Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ……………7分所以 sinsin BC BAC A⋅==. ………………8分因为 512C A B π=π--=, ………………9分所以 5sin sinsin()1246C πππ==+=, ………………11分所以 △ABC 的面积1sin 2S AC BC C =⋅=. ………………13分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ……………7分所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得 1AB = ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结因为四边形ABCD 为正方形,所以O 为BD 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分 (Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 ⎩⎨⎧=+-=-.044,03y x z x取1=x ,得(1,1,3)=n . ………………11分 易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||11⋅==〈〉n v n v n v . ………………13分 由图可知二面角B AC E --的平面角是钝角,所以二面角B AC E --的余弦值为11113-. ………………14分 解法二:取AD 中点M ,BC 中点N ,连结PM ,MN .因为ABCD 为正方形,所以CD MN //.由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---. 所以 )1,0,3(-=,)0,4,4(-=.设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分 易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||11⋅==〈〉n v n v n v . ………………13分 由图可知二面角B AC E --的平面角是钝角,所以二面角B AC E --的余弦值为11113-. ………………14分 17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:………………8分 3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分 (ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=. ………………13分 18.(本小题满分13分)(Ⅰ)解:① 当0b =时,1()f x x=.故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分 令()0f x '=,得1x =,2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(. ………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立, 故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ..................7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 分 整理得 2440y ny --=. (9)10分所以 134y y =-. ………………同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分 (Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分 注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分 2020-2-8。
北京市西城区(北区)2012-2013学年度第一学期高一年级期末考试数学试卷(满分:150分 考试时间:120分钟) A 卷(必修模块4) 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1. 在0到2π范围内,与角3π-终边相同的角是( ) A. 3πB. 23πC. 43πD. 53π2. α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是π(0)2,,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =-的最小正周期是( )A.4π B. 2πC. πD. 2π 9. 设角θ的终边经过点(3,4)-,则πcos()4θ+的值等于( )A. 10B. 10-C. 10D. 10-10. 在矩形ABCD 中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅的值为( )CA. 3B. 2C.2D.3二、填空题:本大题共6小题,每小题4分,共24分。
北京市西城区(北区)2012-2013学年下学期高一期末考试数学试卷试卷满分:150分 考试时间:120分钟一、本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1. 在数列{}n a 中,12n n a a +=+,且11a =,则4a 等于( ) (A )8 (B )6 (C )9 (D )72. 将一根长为3m 的绳子在任意位置剪断,则剪得两段的长都不小于1m 的概率是 ( )(A )14(B )13 (C )12 (D )233. 在△ABC 中,若222a b c +<,则△ABC 的形状是( )(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定 4. 若0a b <<,则下列不等式中成立的是( ) (A )33a b > (B )a b < (C )11a b> (D )11a b <5. 若实数x ,y 满足10,0,0,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2z x y =+的最小值是( )(A )12-(B )0 (C )1 (D )-1 6. 执行如图所示的程序框图,输出s 的值为( )(A )2(B )12- (C )3 (D )237. 已知100件产品中有5件次品,从中任意取出3件产品,设A 表示事件“3件产品全不是次品”,B 表示事件“3件产品全是次品”,C 表示事件“3件产品中至少有1件次品”,则下列结论正确的是( )(A )B 与C 互斥 (B )A 与C 互斥(C )任意两个事件均互斥 (D )任意两个事件均不互斥8. 口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次。
则“两次取球中有3号球”的概率为( )(A )59 (B )49 (C )25 (D )129. 设O 为坐标原点,点A (4,3),B 是x 正半轴上一点,则△OAB 中OBAB的最大值为( ) (A )43 (B )53 (C )54 (D )4510. 对于项数为m 的数列{}n a 和{}n b ,记b k 为12,(1,2,,)k a a a k m ⋯=⋯中的最小值。
北京市西城区2012—2013学年度第一学期期末试卷高三数学(理科) 2013.1本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时间120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =(A )1(0,)2(B )(-1,1)(C )1(,1)(,)2-∞-+∞ (D )(-∝,-1)∪(0,+∞) 2.在复平面内,复数5i2i-的对应点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是(A )sin 1ρθ= (B )sin ρθ=(C )cos 1ρθ=(D )cos ρθ=4.执行如图所示的程序框图.若输出S =15,则框图中①处可以填入 (A )k <2 (B )k <3 (C )k <4 (D )k <5 5.已知函数()cos f x x b x =+,其中b 为常数.那么“b =0”是“()f x 为奇函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 6.已知a ,b 是正数,且满足2<a +2b <4,那么a 2+b 2的取值范围是 (A )416(,)55(B )4(,16)5(C )(1,16)(D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是 (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知向量a =(1,3),b =(―2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________.10.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4.以AC 为直径的圆交AB 于点D ,则BD =________;CD =________.11.设等比数列{a n }的各项均为正数,其前n 项和为S n .若a 1=1,a 3=4,S k =63,则k =________.12.已知椭圆22142x y +=的两个焦点是F 1,F 2,点P 在该椭圆上.若12||||2PF PF -=,则△PF 1F 2的面积是________.13.已知函数()sin(2)6f x x π=+,其中[,]6x a π∈-.当3a π=时,()f x 的值域是________;若()f x 的值域是1[,1]2-,则a 的取值范围是________.14.已知函数()f x 的定义域为R .若∃常数c >0,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数: ①()2x f x =;②()sin f x x =;③3()f x x x =-. 其中,具有性质P 的函数的序号是________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若BC =2,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥P —ABCD 中,底面ABCD 为正方形,P A =PD ,P A ⊥平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB ∥平面EAC ;(Ⅱ)求证:平面P AD ⊥平面ABCD ; (Ⅲ)求二面角E —AC —B 的余弦值. 17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(i )记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ii )求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求()f x 的单调区间;(Ⅱ)设b >0.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线y 2=4x 的焦点为F .过点P (2,0)的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,直线AF ,BF 分别与抛物线交于点M ,N . (Ⅰ)求y 1y 2的值;(Ⅱ)记直线MN 的斜率为k 1,直线AB 的斜率为k 2. 证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n ×n 个实数组成的n 行n 列的数表,其中a ij (i ,j =1,2,3,…,n )表示位于第i 行第j 列的实数,且a ij ∈{1,―1}.记S (n ,n )为所有这样的数表构成的集合.对于A ∈S (n ,n ),记r i (A )为A 的第i 行各数之和,c j (A )为A 的第j 列各数之积.令1()()nj j l A c A ==∑.(Ⅰ)请写出一个A ∈S (4,4),使得l (A )=0; (Ⅱ)是否存在A ∈S (9,9),使得l (A )=0?说明理由; (Ⅲ)给定正整数n ,对于所有的A ∈S (n ,n ),求l (A )的取值集合.北京市西城区2012—2013学年度第一学期期末试卷高三数学(理科)参考答案及评分标准 2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.B 3.A 4.C 5.C 6.B 7.C 8.B二、填空题:本大题共6小题,每小题5分,共30分.9.-1 10.165,12511.6 1213.1[,1]2-,[,]62ππ14.①③ 注:10、13题第一问2分,第二问3分;14题结论完全才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分准给分. 15.(本小题满分13分)(Ⅰ)解法一:因为 s i n 21c o s 2B B =-,所以 2s i nc o s2s i n B B B =.………… 3分因为0<B <π,所以sin B >0,从而 t a n B = ………… 5分 所以 3B π=.………… 6分解法二:依题意得s i n 2c o s 21B B +=, 所以 2s i n (2)16B π+=,即 1s i n (2)62Bπ+=.………… 3分因为 0<B <π,所以 132666B πππ<+<, 所以 5266B ππ+=. ………… 5分 所以 3B π=.………… 6分(Ⅱ)解法一:因为 4A π=,3B π=,根据正弦定理得 s i n s i n A C B CB A =, ………… 7分所以 s i n s i n B C BAC A⋅==.………… 8分因为 512C A B ππ=--=, ………… 9分所以 5s i n s i n s i n (1246C πππ==+ ………… 11分所以△ABC 的面积 1s i n 2S AC BC C =⋅=. ………… 13分解法二:因为 4A π=,3B π=,根据正弦定理得 s i n s i n A C B CB A =, ………… 7分所以 s i n s i n B C BAC A⋅==.………… 8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅,…… 9分化简为 2220A B A B --=,解得 1AB =………… 11分所以△ABC 的面积 1s i n 2S AC BC B =⋅=. ………… 13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO . 因为四边形ABCD 为正方形,所以O 为BD 中点. 因为E 为棱PD 中点. 所以 PD ∥EO . ………… 3分 因为 PB ⊄平面EAC ,EO ⊂平面EAC , 所以直线PB ∥平面EAC . ………… 4分 (Ⅱ)证明:因为P A ⊥平面PDC ,所以P A ⊥CD . ………… 5分 因为四边形ABCD 为正方形,所以AD ⊥CD , 所以CD ⊥平面P AD . ………… 7分 所以平面P AD ⊥平面ABCD . ………… 8分 (Ⅲ)解法一:在平面P AD 内过D 作直线Dz ⊥AD .因为平面P AD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由Dz ,DA ,DC 两两垂直,建立如图所示的空间直角坐标系D -xyz .… 9分设AB =4,则D (0,0,0),A (4,0,0),B (4,4,0),C (0,4,0), P (2,0,2),E (1,0,1). 所以 (3,0,1)EA =-,(4,4,0)AC =-.设平面EAC 的法向量为n =(x ,y ,z ),则有00EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n .所以 30440x z x y -=⎧⎨-+=⎩.取x =1,得n =(1,1,3).………… 11分 易知平面ABCD 的法向量为v =(0,0,1). ………… 12分 所以||c o s ,|11|||||⋅〈〉==n v n v n v .………… 13分由图可知二面角E —AC —B 的平面角是钝角, 所以二面角E —AC —B的余弦值为. ………… 14分解法二:取AD 中点M ,BC 中点N ,连接PM ,MN . 因为ABCD 为正方形,所以MN ∥CD . 由(Ⅱ)可得MN ⊥平面P AD . 因为P A =PD ,所以PM ⊥AD .由MP ,MA ,MN 两两垂直,建立如图所示的空间直角坐标系M -xyz .9分设AB =4,则A (2,0,0),B (2,4,0),C (―2,4,0), D (―2,0,0),P (0,0,2),E (―1,0,1).所以 (3,0,1)EA =-,(4,4,0)AC =-.设平面EAC 的法向量为n =(x ,y ,z ),则有00EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n .所以30440x z x y -=⎧⎨-+=⎩.取x =1,得n =(1,1,3).………… 11分 易知平面ABCD 的法向量为v =(0,0,1). ………… 12分 所以||c o s ,||||||⋅〈〉==n v n v n v .………… 13分由图可知二面角E —AC —B 的平面角是钝角, 所以二面角E —AC —B的余弦值为. ………… 14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=.………… 1分 元件B 为正品的概率约为4029631004++=.………… 2分 (Ⅱ)解:(i )随机变量X 的所有取值为90,48,30,-15.………… 3分433(90)545P X ==⨯=;133(45)5420P X ==⨯=; 411(30)545p X ==⨯=;111(15)5420P X =-=⨯=. ………… 7分………… 8分 3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………… 9分(ii )设生产的5件元件B 中正品有n 件,则次品有5-n 件. 依题意,得 50n ―10(5―n )≥140,解得196n ≥. 所以 n=4,或 n=5. ………… 11分 设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=. ………… 13分18.(本小题满分13分)(Ⅰ)解:①当b =0时,1()f x x=. 故()f x 的单调减区间为(-∞,0),(0,+∞);无单调增区间. … 1分②当b >0时,222'()()b x f x x b -=+.………… 3分令'()0f x =,得 1x 2x = ()f x 和'()f x 的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………… 5分③当b <0时,()f x 的定义域为{|D x x =∈≠R .因为222'()0()b x f x x b -=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞; 无单调增区间.………… 7分(Ⅱ)解:因为b >0,13[,]44x ∈,所以()1f x ≥等价于2b x x ≤-+,其中13[,]44x ∈.………… 9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =. … 11分则“13[,]44x ∃∈,使得2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4.………… 13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为x =my +2.………… 1分 将其代入y 2=4x ,消去x ,整理得 y 2―4my ―8=0. ………… 4分 从而 y 1y 2=―8. ………… 5分(Ⅱ)证明:设M (x 3,y 3),N (x 4,y 4).则 2212343411212342341212344444y y y y y y k x x y y y y k x x y y y y y y ----+=⨯=⨯=---+-. …… 7分 设直线AM 的方程为x =ny +1,将其代入y 2=4x ,消去x , 整理得 y 2―4ny ―4=0. ………… 9分 所以 y 1y 3=―4. ………… 10分 同理可得y 2y 4=―4. ………… 11分 故112121223412444k y y y y y y k y y y y ++===--+-+. ………… 13分 由(Ⅰ)得122k k =,为定值. ………… 14分20.(本小题满分13分)………… 3分 (Ⅱ)解:不存在A ∈S (9,9),使得l (A )=0.………… 4分证明如下:假设存在A ∈S (9,9),使得l (A )=0.因为(){1,1}i r A ∈-,(){1,1}j c A ∈-(19i ≤≤,19j ≤≤), 所以1()r A ,2()r A ,…,9()r A ,1()c A ,2()c A ,…,9()c A这18个数有9个1,9个-1.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个―1,从而M =(―1)9=―1. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而 M =m 2=1. ②①、②相矛盾,从而不存在A ∈S (9,9),使得l (A )=0. …… 8分 (Ⅲ)解:记这n 2个实数之积为p .一方面,从“行”的角度看,有 12()()()n p r A r A r A =⋅⋅⋅;另一方面,从“列”的角度看,有 12()()()n p c A c A c A =⋅⋅⋅. 从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ … 10分 注意到(){1,1}i r A ∈-,(){1,1}j c A ∈-(1i n ≤≤,1j n ≤≤). 下面考虑1()r A ,2()r A ,…,()n r A ,1()c A ,2()c A ,…,()n c A 中 -1的个数:由③知,上述2n 个实数中,-1的个数一定为偶数,该偶数记为2k (0≤k ≤n );则1的个数为2n ―2k ,所以 ()(1)21(22)2(l A k n k n k =-⨯+⨯-=-. ………… 12分对数表A 0:a ij =1(i ,j =1,2,3,…,n ),显然0()2l A n =.将数表A 0中的A 11由1变为―1,得到数表A 1,显然1()24l A n =-. 将数表A 1中的A 22由1变为―1,得到数表A 2,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为―1,得到数表k A .即数表k A 满足:a 11=a 22=…=a kk =-1(1≤k ≤n ),其余a ij =1.所以12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-. 由k 的任意性知,l (A )的取值集合为 {2(2)|0,1,2,,}n k k n -=. ………… 13分。
北京市西城区2013 — 2014学年度第一学期期末试卷高一化学2014.1试卷满分:120分考试时间:100分钟A 卷〔必修模块1〕满分100分可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32Cl 35.5 Cu 64说明:请将选择题的答案填在第4页选择题答题表中。
第一部分(选择题共50分)每小题只有一个选项......符合题意(1 ~ 25小题,每小题2分)1.目前,很多自来水厂用氯气杀菌、消毒。
下列关于氯气的性质描述正确的是A.无味B.无毒C.黄绿色D.不溶于水2.下列物质不属于...空气污染物的是A.SO2B.CO2 C.NO2 D.NO 3.当光束通过下列分散系时,可观察到丁达尔效应的是A.乙醇溶液B.氯化钠溶液C.硫酸铜溶液D.氢氧化铁胶体4.在水溶液里或熔融状态下能导电的化合物是电解质。
下列物质不属于...电解质的是A.Fe B.NaOH C.H2SO4D.Na2SO45.下列物质与危险化学品标志的对应关系不正确...的是A B C D乙醇天然气浓硫酸氢氧化钠6.下列溶液中,常温下可以用铁罐装运的是A.浓盐酸B.稀硫酸C.浓硝酸D.硫酸铜溶液7.合金具有许多优良的物理、化学或机械性能。
下列物质属于合金的是A.水银B.不锈钢C.陶瓷D.玻璃8.下列试剂可以用带磨口玻璃瓶塞的试剂瓶保存的是A.氢氟酸B.水玻璃C.氢氧化钠D.浓盐酸9.下列物质中,既能与盐酸又能与氢氧化钠溶液反应,且有气体生成的是A.Si B.SO2C.Al D.Al2O310.下列变化中,需加入适当的氧化剂才能完成的是A.Fe → FeCl3B.CuO → Cu C.HNO3→ NO D.SO3→ H2SO4 11.浓硫酸不具有...的性质是A.吸水性B.脱水性C.挥发性D.强氧化性12.某些补铁剂的成分中含有硫酸亚铁,长期放置会因氧化而变质。
检验硫酸亚铁是否变质的试剂是A.稀盐酸B.KSCN溶液C.氯水D.铁粉13.下列有关氧化还原反应的叙述中,正确的是A.一定有氧气参加B.还原剂本身被还原C.氧化反应先于还原反应发生D.一定有电子转移(得失或偏移)14.下列电离方程式书写不.正确..的是A.CuCl2== Cu2+ +2Cl-B.Ba(OH)2== Ba2++(OH)2-C.Al2(SO4)3== 2A13++3SO42-D.HNO3== H++NO-315.下列图示的四种实验操作是常用的分离提纯的方法,其名称从左到右依次是A.蒸发、蒸馏、过滤、萃取B.过滤、蒸馏、蒸发、萃取.过滤、蒸发、蒸馏、分液.萃取、蒸馏、蒸发、过滤16.下列变化不属于...氧化还原反应的是A.加热氢氧化铁固体B .金属钠露置于空气中C .铜丝放入浓硫酸中并加热D .将氯气通入冷的消石灰浊液中 17.下列关于SO 2性质的说法中,不正确...的是 A .能使品红溶液褪色 B .能与水反应生成硫酸 C .能与NaOH 溶液反应 D .能使酸性KMnO 4溶液褪色 18.下列有关硅及其化合物用途的说法中,不正确...的是 A .硅单质是制造光电池的主要原料 B .二氧化硅是制造光导纤维的材料 C .可用石英坩埚加热氢氧化钠固体 D .玻璃、水泥、陶瓷都是硅酸盐产品19.下列化学反应中,能用离子方程式 H ++ OH -== H 2O 表示的是 A .2H 2 + O 2 ==== 2H 2O B .HCl + NaOH == NaCl + H 2OC .2HCl + Cu(OH)2 == CuCl 2 + 2H 2OD .Ba(OH)2 + H 2SO 4 == BaSO 4↓+ 2H 2O20.已知某溶液中存在较多的243H SO NO +--、、,该溶液中还可能大量存在的离子组是 A .4Na NH Cl ++-、、B .22Mg Ba Br ++-、、C .Mg 2+、Cl -、Fe 2+D .K +、SiO 23-、Cl -21.下列除杂过程中,所选用的试剂或方法不正确...的是 A .NaCl 固体中有NH 4Cl 固体:加热 B .自来水中含有Cl -等可溶性杂质:蒸馏 C .Na 2CO 3固体中有少量NaHCO 3固体:加热D .CO 2气体中混有SO 2气体:将混合气体通过盛有NaOH 溶液的洗气瓶 22.下列化学反应的离子方程式书写正确的是A .氯气通入氯化亚铁溶液中:Fe 2++Cl 2== 2Cl -+Fe 3+ B .氯气与氢氧化钠溶液反应:Cl 2 + 2OH -== Cl -+ ClO -+ H 2O C .大理石与稀盐酸反应:CO 23-+ 2H +== CO 2 ↑ + H 2OD .铜与稀硝酸反应:Cu + H + + NO -3== Cu 2+ + NO↑ + H 2O23.下列关于钠及其化合物性质的叙述,正确的是A .钠能与硫酸铜稀溶液反应,置换出红色的铜点燃B.氧化钠和过氧化钠都能与水反应,生成物完全相同C.过氧化钠是淡黄色固体,可用作呼吸面具的氧气来源D.质量相等的碳酸钠和碳酸氢钠分别与足量盐酸反应,产生气体的质量相同24.若N A表示阿伏加德罗常数,下列说法正确的是A.1 mol Na2O2与水反应时,转移电子的数目为2 N AB.标准状况下,22.4 L水中含有水分子的数目为N AC.14 g N2中含有电子的数目为7 N AD.数目为N A的一氧化碳分子和0.5 mol甲烷的质量比为7︰4 25.将适量铁粉放入三氯化铁溶液中,完全反应后,溶液中的3Fe+浓度相等。
北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学 2013.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3π B.23π C.43π D.53π 2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( )A.(4,2)-B.(4,2)--C.(4,2)D.(4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( )A.3-B.3C.13- D.135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是π(0)2,,那么()f x 的解 析式可以是( ) A.sin x B.cos x C.sin 1x +D.cos 1x +6. 已知向量(1,=a ,(=-b ,则a 与b 的夹角是( )A. 6πB.4π C.3π D.2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos2y x =的图象( ) A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( )A.4π B.2π C.πD.2π9. 设角θ的终边经过点(3,4)-,则πcos()4θ+的值等于( )A.10B.10C.10D.10-10. 在矩形ABCD中,AB =,1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( ) A .3B .2C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=sin2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______.16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>. 其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+.(Ⅰ)求()3f π的值; (Ⅱ)求()f x 的单调递增区间; (Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 AB 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.AB 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.1. 已知集合{11}P x x =-<<,{}M a =. 若M P ⊆,则a 的取值范围是________.2. lg2lg5+-=________. 3. 满足不等式122x>的x 的取值范围是_______.4. 设()f x 是定义在R 上的奇函数,若()f x 在(0,)+∞上是减函数,且2是函数()f x 的一个零点,则满足()0x f x >的x 的取值范围是________.5. 已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件: ①A U ⊆;②若x A ∈,则2x A ∉; ③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是________;(写出一个即可) (2)当7n =时,满足条件的集合A 的个数为________.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6. (本小题满分10分)已知函数21()1f x x =-. (Ⅰ)证明函数()f x 为偶函数;(Ⅱ)用函数的单调性定义证明()f x 在(0,)+∞上为增函数.7. (本小题满分10分)设函数(2)(4)2()(2)()2x x x f x x x a x -+≤⎧=⎨-->⎩. (Ⅰ)求函数()f x 在区间[2,2]-上的最大值和最小值;(Ⅱ)设函数()f x 在区间[4,6]-上的最大值为()g a ,试求()g a 的表达式.8. (本小题满分10分)已知函数()log a g x x =,其中1a >.(Ⅰ)当[0,1]x ∈时,(2)1x g a +>恒成立,求a 的取值范围; (Ⅱ)设()m x 是定义在[,]s t 上的函数,在(,)s t 内任取1n -个数1221,,,,n n x x x x -- ,设12x x << 21n n x x --<<,令0,ns x t x==,如果存在一个常数0M >,使得11()()nii i m xm x M -=-≤∑恒成立,则称函数()m x 在区间[,]s t 上的具有性质P . 试判断函数()()f x g x =在区间21[,]a a上是否具有性质P ?若具有性质P ,请求出M 的最小值;若不具有性质P ,请说明理由.(注:1102111()()()()()()()()nii n n i m x m xm x m x m x m x m x m x --=-=-+-++-∑ )北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学参考答案及评分标准 2013.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B. 二、填空题:本大题共6小题,每小题4分,共24分.11. 2; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③.注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分. 17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分所以sin 3tan cos 4ααα==-. …………………5分 (Ⅱ)24sin22sin cos 25ααα==-, …………………8分27cos22cos 125αα=-=, …………………11分 所以24717sin 2cos2252525αα+=-+=-. …………………12分 18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122==. …………………4分(Ⅱ)()cos )sin 1f x x x -+ …………………6分sin 1x x =+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分 又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()22AP a a = ,(2,0)AB a =, …………………3分所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{11}a a -<<; 2. 12; 3. {1}x x >-; 4. (2,0)(0,2)- ;5. {2},或{1,4},或{2,3},或{1,3,4};16. 注:一题两空的试题每空2分. 二、解答题:本大题共3小题,共30分. 6. 证明:(Ⅰ)由已知,函数()f x 的定义域为{0}D x x =∈≠R . …………………1分设x D ∈,则x D -∈,2211()11()()f x f x x x -=-=-=-. …………………3分 所以函数()f x 为偶函数. …………………4分(Ⅱ)设12x x ,是(0,)+∞上的两个任意实数,且12x x <,则210x x x ∆=->,21222111()()1(1)y f x f x x x ∆=-=--- …………………6分 22212121222222121212()()11=x x x x x x x x x x x x --+=-=. …………………8分 因为120x x <<, 所以210x x +>,210x x ->,所以0y ∆>, …………………9分 所以()f x 在(0,)+∞上是增函数. …………………10分7.解:(Ⅰ)在区间[2,2]-上,()(2)(4)f x x x =-+.所以()f x 在区间[2,1]--上单调递增,在区间[1,2]-上单调递减, ……………1分 所以()f x 在区间[2,2]-上的最大值为(1)9f -=, …………………3分最小值为(2)0f =. …………………4分(Ⅱ)当2a ≤时,()f x 在[4,1]--上单调递增,在[1,6]-上单调递减,所以()f x 的最大值为9. …………………5分当28a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减, 此时(1)9f -=,222()()922a a f +-=≤,所以()f x 的最大值为9. ……………7分 当810a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减. 此时222()()(1)22a a f f +-=>-,所以()f x 的最大值为2(2)4a -.………………8分 当10a >时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在[2,6]单调递增,此时(6)4(6)(1)f a f =->-,所以()f x 的最大值为4(6)a -. …………………9分综上,298,(2)()810,44(6)10.a a g a a a a ≤⎧⎪-⎪=<≤⎨⎪->⎪⎩ …………………10分 8.解:(Ⅰ)当[0,1]x ∈时,(2)1xg a+>恒成立,即[0,1]x ∈时,log (2)1xa a +>恒成立, …………………1分因为1a >,所以2xaa +>恒成立, …………………2分即2xa a -<在区间[0,1]上恒成立,所以21a -<,即3a <, …………………4分 所以13a <<. 即a 的取值范围是(1,3). …………………5分 (Ⅱ)由已知()f x =log a x ,可知()f x 在2[1,]a 上单调递增,在1[,1]a上单调递减,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a -=<<<<<= ,当存在某一个整数{1,2,3,,1}k n ∈- ,使得1k x =时,1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211[()()][()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-21()(1)()(1)123f f f a f a=-+-=+=. …………………7分当对于任意的{0,1,2,3,,1}k n ∈-,1k x ≠时,则存在一个实数k 使得11k k x x +<<,此时1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211()()[()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-011()()()()()()k k k n k f x f x f x f x f x f x ++=-+-+-……(*) 当1()()k k f x f x +>时,(*)式01()()2()3n k f x f x f x +=+-<, 当1()()k k f x f x +<时,(*)式0()()2()3n k f x f x f x =+-<, 当1()()k k f x f x +=时,(*)式01()()()()3n k k f x f x f x f x +=+--<.……………9分综上,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a-=<<<<<= ,均有11()()3nii i f x f x-=-≤∑.所以存在常数3M ≥,使11()()ni i i f x f x M -=-≤∑恒成立,所以函数()f x 在区间21[,]a a上具有性质P .此时M 的最小值为3. …………………10分。