二(3)高考特殊数列求和的常用方法
- 格式:doc
- 大小:107.50 KB
- 文档页数:3
数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础。
在高考和各种数学竞赛中都占有重要的地位。
数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧。
一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、 差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n ; 3、)1(211+==∑=n n k S nk n ; 4、)12)(1(6112++==∑=n n n kS n k n ; 5、213)]1(21[+==∑=n n k S n k n . 例1:已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x , 由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32=x x x n --1)1(=211)211(21--n =1-n 21. 解析:如果计算过程中出现了这些关于n 的多项式的求和形式,可以直接利用公式。
练习:(1)等比数列{}n a 的前n 项和21n n S =-,则2222123n a a a a ++++=_____ ;(2)计算机是将信息转换成二进制数进行处理的。
二进制即“逢2进1”,如2(1101)表示二进制数,将它转换成十进制形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制220051(11111)个转换成十进制数是______ ;二、错位相减这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列。
数列求和的基本方法与技巧(1) 姓名引言: 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考中占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 接下去的几节课我们一起来研究数列求和的基本方法和技巧.方法一、公式法:1、等差数列求和公式: d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 3、1(1)1232nn k n nS k k n =+==+++++=∑ 方法二、错位相减法:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列或的前n 项和,其中分别是等差数列和等比数列.如:{}n n a b A {}n nab {},{}n n a b 若数列是首项为公差为d 的等差数列,数列是首先为,公比为q 的等比数{}n a 1,a {}n b 1b 列.(1)11223311n n n n n S a b a b a b a b a b --=+++++(2)122311n n n n n qS a b a b a b a b -+=++++ 由(1)—(2)得11231(1)()n n n n q S a b d b b b a b +-=++++- 12111(1),(1)1n n n b q a b d a b q q-+-=+-≠-典例:例、(1)求数列前n 项的和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n(2)求数列的前n 项和.{(1)(2)}nn +-A n S (3)求和121111135(21)333n n S n -⎛⎫⎛⎫⎛⎫=+⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1(4)求和: 2311234n n S x x x nx-=++++⋅⋅⋅+()x R ∈实战演练:1、(07福建文科17)数列的前项和为,,.{}n a n n S 11a =*12()n n a S n +=∈N (1)求数列的通项;{}n a n a (2)求数列的前项和.{}n na n n T 2、 (2008年全国卷)在数列中,,.}{n a 11a =122nn n a a +=+(Ⅰ)设.证明:数列是等差数列;12nn n a b -=}{n b (Ⅱ)求数列的前项和}{n a n nS 3、(08陕西文)已知数列的首项,,….{}n a 123a =121n n n a a a +=+1,2,3,n =(Ⅰ)证明:数列是等比数列;1{1}na -(Ⅱ)数列的前项和.{}nna n n S 数列求和的基本方法与技巧(2) 姓名方法三:裂项相消法这是分解与组合思想在数列求和中的具体应用.裂项相消法的实质是将数列中的每项(通项)分解,使之能前后能消去一些项,最终达到求和的目的.)()1(n f n f a n -+=如:可裂项的代数式结构有(1)设数列是首项为公差为d 的等差数列 (){}n a 1a 0,0n a d ≠≠则 111111(n n n n n b a a d a a ++==-1111()()n m n m nc n m a a n md a a ==->-(2)111)1(1+-=+=n n n n a n (3)1111()(2)22n a n n n n ==-++ 123n S a a a =+++ 11111111111(1)(((2322421122n n n n =-+-++-+--++ 1111111111(1)232435122n n n n =-+-+-++-+--++ 1111(1)2212n n =+--++(4)1111[(1)(2)2(1)(1)(2)n a n n n n n n n ==-+++++(5)n a ==(6)22221111()(2)4(2)n n n n n +=-++(6)数列为等比数列,公比为q ,前n 项和为,则{}n b n S 11111,n n n n n b S S S S +++=-11111(n n n n n b S S q S S ++=-例、求下列数列的前n 项和(1)11(42)()2n a n n =-+(2)13693n a n=++++ (3)首项1公比3,前n 项和是,求{}n a n S 1212231n n n n a a aT S S S S S S +=+++ 实战演练:有 党的建立业要论,认头牢立和主施)位开照党誓和入党誓想体组织次确集季度召”、““四师格党学习学系员合我础1、(10山东)已知等差数列满足:,,的前n 项和为.{}n a 37a =5726a a +={}n a n S (Ⅰ)求及;n a n S (Ⅱ)令b n =(n N *),求数列的前n 项和.211n a -∈{}n b n T 2、(08江西)数列为等差数列,为正整数,其前项和为,数列为等比数列,{}n a n a n n S {}n b 且,数列是公比为64的等比数列,.113,1a b =={}n a b 2264b S =(1)求;,n n a b (2)求证.1211134n S S S +++< 3、(06湖北卷)设数列的前n 项和为,点均在函数y =3x -2的图{}n a n S (,)()n n S n N *∈像上.(Ⅰ)求数列的通项公式;{}n a (Ⅱ)设,是数列的前n 项和,求使得对所有都成立13+=n n n a a b n T {}n b 20n m T <n N *∈的最小正整数m.4、设数列满足且{}n a 10a =1111.11n na a +-=--(Ⅰ)求的通项公式;{}na (Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:1数列求和的基本方法与技巧(3) 姓名方法三:分组求和有一类数列,既不是等差数列,也不是等比数列,但是将这类数列通项公式适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.如:23[1(3)][3(3)][5(3)][21(3)]n n S n =+-++-++-++-+- =(13521)n ++++-+ 等差数列23(3)(3)(3)(3)n -+-+-++-等比数列例1、求下列数列的前n 项和(1)999999999n ++++个(2)1(2nn a n=-(3)121(3)n n a n -=-+-(4)21(2)2nn na =+(5)2113n nn a +=-+实战演练:1、设数列满足{}n a 112,32nn n a a a +=-=A (1)求数列的通项公式;{}n a (2)令,求数列的前n 项和1n n b na =-nS2、(07浙江理科)已知数列中的相邻两项是关于的方程{}n a 212k k a a -,x 的两个根,且.2(32)320k k x k x k -++=A 212(123)k k a a k -≤= ,,,(I )求,,,;1a 2a 3a 7a (II )求数列的前项和.{}n a 2n 2n S 3、(2009全国卷Ⅰ理)在数列{}n a 中,11111,(1)2n n nn a a a n ++==++(I )设nn a b n=,求数列{}n b 的通项公式;(II )求数列{}n a 的前n 项和n S .数列求和的基本方法与技巧(4) 姓名方法四:奇偶项讨论、配对(并项)求和针对一些特殊的数列,如需对项数进行奇偶讨论、或者将某些项合并在一起就具有某种特殊的效果,因此,在数列求和时,可将这些项放在一起先求和,然后再求和.引例:设数列的通项公式是,求该数列的前n 项和.{}n a 2(1)3nn a =+-A n S 方法一、对项数奇偶讨论当n 为奇数时(1)5(1)5(1)=n n S =-++-+++-项11(1)52322n n n +--⨯+⨯=-当n 为偶数时=(1)5(1)5(1)5=n n S =-++-+++-+ 项(1)5222n nn =-⨯+⨯=2n所以23,2,n n n S n n -⎧=⎨⎩为奇数为偶数方法二、奇偶项配对(并项求和)利用递推性质 :当时,有成立2,*n n N ≥∈14n n a a -+=当n 为奇数时123421()()()n n n n S a a a a a a a --=+++++++ 14(1)232n n -=⨯+-=-当n 为偶数时12341()()()422n n n nS a a a a a a n -=++++++=⨯= 所以23,2,n n n S n n -⎧=⎨⎩为奇数为偶数方法三、分组求和当n 为奇数时=(23)(23)(23)(23)n n S =-+++-++- 个括号2223n =+++-个23n -当n 为偶数时=(23)(23)(23)(23)n n S =-+++-++- 个括号2220n =++++个2n 所以23,2,n n n S n n -⎧=⎨⎩为奇数为偶数1例:求下列数列的前n 项和(1),1,2n nn n a +⎧=⎨⎩为正奇数,n 为正偶数(2)2(1)(21)nnn a n =+--(3)22cos n a n n π=-+⨯实战演练:1、已知数列的前项和为,且,数列满足,且{}n a n n S *22()n n S a n N =-∈{}n b 11b =点在直线上.*1(,)()n n P b b n N +∈2y x =+(1)求数列、的通项公式;{}n a {}n b (2)设,求数列的前项和22*sincos ()22n n n n n c a b n N ππ=⋅-⋅∈{}n c 2n 2n T 2、等差数列 的前n 项和为,且{}n a n S 21017,100a S ==(1)求数列的通项公式;{}n a n a (2)若数列满足,求数列的前n 项和.{}n b (1)nn n b a n =-+A {}n b n T。
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;。
求数列前n 项和的8种常用方法一.公式法(定义法):i.等差数列求和公式:特别地,当前〃项的个数为奇数时,S2灯|=(2&+1).%1,即前〃项和为中间项乘以项数。
这个公 式在很多时候可以简化运算;2.等比数列求和公式:(1) q = 1, S n =叫:。
1(1-矿)(2)S n =—~,特别要注意对公比的讨论:3. 可转化为等差、等比数列的数列;4. 常用公式:(2)1» = l + 2 + 3+L +〃=_〃(〃+1):22 = ]2 + 22 + 32 +L + / =项〃 +1 )(2〃 +1 )=项〃 + '(〃 +1 ):4-1 63 2(3)£(2Sl)=l + 3+5+L +(2〃-1)=片.▲■I例 1 已知 log3X= T ,求x+x 2+x 3 + ...+x n 的前〃项和.log? 3解:由 log3 x = —zl_ => log 3 x = -log 3 2 n x = 5= x + x 2 + x 3 +L +y*n J = 1(1-1)A2(4)log 2 3由等比数列求和公式得x(l —x 1-X1&例 2 设S “=l + 2+3+ • +〃,解:易知 S =]_〃(〃+1), "2S..2",求_/•(〃)=— 的最大值.(〃 + 32)S tS . =!(〃+1)(〃+2)jt+i 2n .・'(〃)-(〃 + 32)s* — / + 34〃+ 64= ]_________1_______ 1〃 +34+丝 一(V ;-_L)2+50 - 50n JnQ1・•・当而-如即〃 =8时,f(n) =_.V82 50二.倒序相加法:如果一个数列{%},与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前〃项和即可用倒序相加法。
如:等差数列的前〃项和即是用此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到〃个(0+4).例3求sii?1°+sin22°+sin23° +-+sin288°+sin289°的值解:设S=sin2l°+sin22°+sin23°+•••+sin288°+sin289°........①将①式右边反序得S=sin289°+sin288°+…+sin23°+sin22°+sin21°........②(反序)又因为sinx=cos(90°-x),sin2x+cos2x=1①得(反序相加)2S=(sin21°+cos2l°)+(sin22°+cos22。
可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和的常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。
数列求和的基本思路是,抓通项,找规律,套方法。
下面介绍数列求和的几种常用方法:一、直接(或转化)由等差、等比数列的求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n3、 )1(211+==∑=n n k S n k n4、)12)(1(6112++==∑=n n n k S n k n 5、 213)]1(21[+==∑=n n k S n k n 例1 设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T . 解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =. 设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=,即22520q q -+=, 解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312n n a +=3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-={}n b ∴是等差数列. 12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+= 故3(1)ln 22n n n T +=.练习:设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n =n n 64341++=50)8(12+-n n 501≤ ∴ 当 88-n ,即n =8时,501)(max =n f 二、错位相减法例3 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==. (Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++ ,① 3252321223222n n n n n S ----=+++++ ,② ②-①得22122221222222n n n n S ---=+++++- , 221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭ 1111212221212n n n ----=+⨯-- 12362n n -+=-.三、逆序相加法把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)例4 设函数222)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP OP +=,且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f n f n f n f S ∈+⋯+++= (III )略(I )∵)(2121OP OP OP +=,且点P 的横坐标为21. ∴P 是12P P 的中点,且121x x +=()()()()()122112122212112222224214212222222222222p x x x x x x x x x x x x x y y y ++++=+=++++=+=++∴= 由(I )知,121x x +=()()()121,122f f f x x +==-且 ()()12111212n n n n f f f f n n n n n n f f f f n n n n S S -⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭又,(1)+(2)得:()()()11221211211113223222n n n n n f f f f f f f f n n n n n n f n n S S ⎡-⎤⎡-⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=++++=+-+-∴=四、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n 等。
数列专题 数列求和常用方法(学生版)一、公式法1.等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2. 推导方法:倒序相加法.2.等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. 例1已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 跟踪练习1、已知等差数列{a n }的前n 项和为S n ,a 2=0,a 4=1,则S 4=( )A .12B .1C .2D .32、等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项的和为( )A .-24B .-3C .3D .83、(2022·天津模拟)设1+2+22+23+…+2n -1>128(n ∈N *),则n 的最小值为( )A .6B .7C .8D .94、设数列{a n }(n ∈N *)的各项均为正数,前n 项和为S n ,log 2a n +1=1+log 2a n ,且a 3=4,则S 6=( )A .128B .65C .64D .635、已知数列{a n }的前n 项和S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b =( )A .-1B .0C .1D .46、已知等比数列{a n },a 1=1,a 4=18,且a 1a 2+a 2a 3+…+a n a n +1<k ,则k 的取值范围是( ) A .⎣⎡⎦⎤12,23 B .⎣⎡⎭⎫12,+∞C .⎣⎡⎭⎫12,23D .⎣⎡⎭⎫23,+∞ 7、(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是( )A .a n =n (n +1)2B .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为2 0202 021 C .数列⎩⎨⎧⎭⎬⎫1a n 的前2 020项的和为4 0402 021 D .数列{a n }的第50项为2 5508、(多选)设数列{a n }的前n 项和为S n ,若S 2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有( )A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n9、在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.10、数列{a n }满足:a 1=1,点(n ,a n +a n +1)在函数y =kx +1的图象上,其中k 为常数,且k ≠0.(1)若a 1,a 2,a 4成等比数列,求k 的值;(2)当k =3时,求数列{a n }的前2n 项的和S 2n .11、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;二、分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成的,则求和时可用分组转化法,分别求和后再相加减.例2(2022·北京模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧b n -n 2,n 为偶数,2a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .跟踪练习1、已知数列{a n }的通项公式为a n =2n +n ,若数列{a n }的前n 项和为S n ,则S 8=( )A .546B .582C .510D .5482、(2022·珠海模拟)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项和为( )A .1 009B .1 010C .2 019D .2 0203、若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为__ _____.4、(2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .5、已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数. (1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.6、已知等比数列{a n }的前n 项和为S n ,且S n =2n +a .(1)求a n ;(2)定义[x ]为取整数x 的个位数,如[1]=1,[32]=2,[143]=3,求[a 1]+[a 2]+[a 3]+…+[a 100]的值.7、已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.8、(2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .9、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.10、(2022·青岛模拟)从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n .注:如果选择多个条件分别解答,按第一个解答计分.11、(2022·株洲质检)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(1)1n (n +1)=1n -1n +1; (2)1n (n +2)=12⎝⎛⎭⎫1n -1n +2; (3)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (4)1n +n +1=n +1-n .例3(2022·南京质检)已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.跟踪练习1、(2022·北京模拟)数列{a n }的通项公式为a n =1n +n +1 ,若{a n }的前n 项和为9,则n的值为( )A .576B .99C .624D .625 2、(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n ,数列⎩⎨⎧⎭⎬⎫1a n +1的前n 项和为B n ,则下列结论正确的是( ) A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +143、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =____ ____. 4、已知数列⎩⎨⎧⎭⎬⎫1(2n -1)(2n +1)的前n 项和为T n ,若对任意的n ∈N *,不等式12T n <a 2-a 恒成立,则实数a 的取值范围是__ __.5、(2022·本溪模拟)已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .6、已知数列{a n }的前n 项和为S n ,且S n +1=4a n ,n ∈N *,a 1=1.(1)在下列三个结论中选择一个进行证明,并求{a n }的通项公式; ①数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列; ②数列{}a n +1-2a n 是等比数列;③数列{}S n +1-2S n 是等比数列.(2)记b n =S n +2S n S n +1,求数列{b n }的前n 项和T n . 注:如果选择多个结论分别解答,则按第一个解答计分.7、给出以下三个条件:①4a 3,3a 4,2a 5成等差数列;②∀n ∈N *,点(n ,S n )均在函数y =2x -a 的图象上,其中a 为常数;③S 3=7.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{a n }是一个公比为q (q >0,且q ≠1)的等比数列,且它的首项a 1=1,________.(1)求数列{a n }的通项公式;(2)令b n =2log 2a n +1(n ∈N *),证明:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <12. 注:如果选择多个条件分别解答,则按第一个解答计分.8、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .9、设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34.10、已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n =n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)记b n =2n +1a 2n,求数列{b n }的前n 项和S n .11、(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .12、已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n +1-a n ,c n +1=b n b n +2c n,n ∈N *. (1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1d,n ∈N *.13、已知数列{a n }满足a 1=12,1a n +1=1a n+2(n ∈N *). (1)求数列{a n }的通项公式;(2)求证:a 21+a 22+a 23+…+a 2n <12.14、若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,S 2=4. ①求数列{a n }的通项公式;②设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .四、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.例4(2022·江门模拟)已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ;(2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .跟踪练习1、(2022·广东模拟)在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1.(1)求{a n }的通项公式;(2)若b n =3na n,求数列{b n }的前n 项和S n .2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .3、(2022·湖南模拟)某同学在复习数列时,发现曾经做过的一道题目因纸张被破坏,导致一个条件看不清(即下题中“已知”后面的内容看不清),但在(1)的后面保留了一个“答案:S 1,S 3,S 2成等差数列”的记录,具体如下:记等比数列{a n }的前n 项和为S n ,已知_____________.①判断S 1,S 2,S 3的关系;(答案:S 1,S 3,S 2成等差数列)②若a 1-a 3=3,记b n =n 12|a n |,求证:b 1+b 2+…+b n <43. (1)请在本题条件的“已知”后面补充等比数列{a n }的首项a 1的值或公比q 的值(只补充其中一个值),并说明你的理由;(2)利用(1)补充的条件,完成②的证明过程.4设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.5、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.6、设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .7、(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n .8、(2022·重庆调研)在等差数列{a n}中,已知a6=12,a18=36.(1)求数列{a n}的通项公式a n;(2)若________,求数列{b n}的前n项和S n,在①b n=4a n a n+1,②b n =(-1)n·a n,③b n=2n ana 这三个条件中任选一个补充在第(2)问中,并对其求解.9、(2022·沈阳模拟)已知正项数列{a n}的前n项和为S n,且a2n+1=2S n+n+1,a2=2.(1)求数列{a n}的通项公式a n;(2)若b n=a n·2n,数列{b n}的前n项和为T n,求使T n>2 022的最小的正整数n的值.。
数列求和常见的7种方法数列求和常见的7种方法一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和分段求和法(合并法求和)利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.。
特殊数列求和的常用方法
数列求和是数列学习中的一个重点内容,在中学数学的数列学习中,除了要求掌握等差、等比数列前n 项求和外,还要能够求一些特殊数列的前n 项和,现就特殊数列求和的常用方法归纳如下:
一折项求和法 将一个数列的每一项折成n 项,转化成若干个数列(等差、等比、常数数列等等)求和
例①a n =n+1)21
(-n ,求数列{a n }的前n 项和S n
②求数列2,22,222,2222,…的前n 项和S n
解:①S n =(1+2+3+…+n)+])2
1(1[22)1(])21()21(211[12n n n n -++=+⋅⋅⋅+++- ②a n =22…2=2×11…1=2×)110(9
29110-=-n n 则S n =)]21()101010[(9
2)]110()210()110[(9222n n n +⋅⋅⋅++-+⋅⋅⋅++=-⋅⋅⋅+-+- 81
)91010(21n n --=+ 二并项求和法 将数列相邻两项(或若干项)合并成一项(或一组)得到一个新的容易求和的数列
例2、①求1002-992+982-972+…+22-12的值
②求数列1,
21,21,31,31,31,41,41,41,41…前100项的和 解:①1002-992+982-972+…+22-12=(100+99)(100-99)+(98-97)(98-97)+…+(2+1)(2
-1)=(100+99)+(98+97)+…+(2+1)=
2
)1100(100+=5050 ②根据21有2项,31有3项,41有4项,项数和1+2+3+…+14=105,则最后一项为141,且141有9项,S 100=1+(21+21)+(31+31+31)+(41+41+41+41)+…+(141+141+…+14
1) =1+1+1+1+…+1+9×141=13149 三裂项求和法 将数列的每一项裂成两项之差,使得相邻的正负项能相互抵消,剩下项易求和的形式
例3、①求)
12)(12(1751531311+-+⋅⋅⋅+⨯+⨯+⨯n n 的值; ②a n =1
1++n n ,求数列的前n 项和S n n 个
解:①由)
12)(12(2121121+-=+--n n n n 得 )
12)(12(1751531311+-+⋅⋅⋅+⨯+⨯+⨯n n 12)1211(21)]121121()7151()5131()311[(21+=+-=+--+⋅⋅⋅+-+-+-=n n n n n ②a n =11
++n n =n n n n n
n -+=-+-+1)()1(122
则S n =11)1()34()23()12(-+=
-++⋅⋅⋅+-+-+-n n n 四反序求和法 将数列的前后项反序,得一新数列,与原数列对应项相加(仿照等差数列求和公式推导思想)
例4、a n =2
4410031003
+--n n ,求数列的前2006项和S 2006 解:由12
42244424424424424411=+++=⋅+++=+++--x x x x x x x x x x 而(1-1003)+(2006-1003)=(2-1003)+(2005-1003)=…=1 则2441003110031+--+2
44244244100320051003
200510032100321003200610032006+++=+------=…=1 即a 1+a 2006=a 2+a 2005=……= a 2006+a 1=1,故S 2006=a 1+a 2+a 3+…+a 2006
S 2006=a 2006+a 2005+a 2004+…+a 1,2S 2006=(a 1+a 2006)+(a 2+a 2005)+…+(a 2006+a 1)
2 S 2006=1+1+…+1=2006,即S 2006=1003.
五错位求和法 将一个数列的每一项都作相同的变换,然后得到新的数列,错动一个位置与原数列各项相减(仿照等比数列求和公式推导思想)
例5、已知a ≠0且a ≠1,求数列1,3a,5a 2, 7a 3…(2n-1)a n-1前n 项和S n
解:由S n =1+3a+5a 2+7a 3+…+(2n-1)a n-1得
a S n =a+3a+5a 2+7a 3+…+(2n-1)a n
则(1-a)S n =1+2a+2a 2+2a 3+…+2a n-1-(2n-1)a n
由于a≠0且a≠1,则(1-a)S n =1+2a
a a n ---1)1(1-(2n-1)a n 故S n =21
)
1()12()12(1a a n a n a n n --++-++s 六公式求和法 除等差、等比数列求和公式外,常用公式有 1+2+3+…+n=2)1(+n n ,12+22+32+…+n 2=6
1n(n+1)(2n+1)
13+23+33+…+n 3=22)1(4
1+n n ,1+3+5+…+(2n -1)=n 2 例6、求1·n+22(n-1)+32(n-2)+…+(n-1)2·2+n 2·1的和S n
解:a k =k 2[n-(k-1)]=k 2[(n+1)-k]=(n+1)k 2-k 3
则S n =(n+1)·12-13+(n+1)·22-23+(n+1)·32-33+…+(n+1)n 2-n 3
=(n+1)(12+23+…+n 2)-(13+23+33+…+n 3) =(n+1)[61n(n+1)(2n+1)]-22)1(41+n n =12
)1)(2(2++n n n 七奇偶分析法 当数列中的项有符号限制时,应分n 为奇数、偶数进行讨论,一般地,先求S 2n ,再求S 2n+1,且S 2n+1=S 2n +a 2n+1
例7、若a n =(-1)n -1·(4n -3),求S n
解:当n=2k 时,S n =a 1+a 2+…+a n =(1-5)+(9-13)+…+[(4n -7)―(4n ―3)]=-4+(-4)+…+(-4) 即S n =-4k=-4·2
n =-2n 当n=2k+1时,S n =S 2k+1=S 2k +a 2k+1=-2(n -1)+(-1)2k (4n -3)=2n -1
故S n =⎩⎨
⎧--)(12)(2为奇数为偶数n n n n。