一元二次方程培优训练
- 格式:doc
- 大小:247.27 KB
- 文档页数:12
一元二次方程拓展提高题1、已知0200052=--x x,则()()211223-+---x x x 的值是 . 2、已知0120042=+-a a ,则_________120044007222=++-a a a . 3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=b a.4、已知方程043222=-+-a ax x 没有实数根,则代数式_____21682=-++-a a a .5、已知x x y -+=62,则y 的最大值为 .6、已知0=++c b a ,2=abc ,0φc ,则( )A 、0πabB 、2-≤+b aC 、3-≤+b aD 、4-≤+b a 7、已知8=-b a ,0162=++c ab ,则________=++c b a . 8、已知012=-+m m ,则________2006223=-+m m . 9、已知4=-b a ,042=++c ab ,则________=+b a .10、若方程02=-+q px x 的二根为1x ,2x ,且11φx ,03φ++q p ,则2x ( ) A 、小于1 B 、等于1 C 、大于1 D 、不能确定11、已知α是方程0412=-+x x 的一个根,则ααα--331的值为 .12、若132=-x x ,则=+--+200872129234x x x x ( )A 、2011B 、2010C 、2009D 、2008 13、方程22323=--+x x 的解为 . 14、已知06222=+-y x x ,则x y x 222++的最大值是( )A 、14B 、15C 、16D 、18 15、方程m x x =+-2||22恰有3个实根,则=m ( )A 、1B 、1.5C 、2D 、2.5 16、方程9733322=-+-+x x x x 的全体实数根之积为( )A 、60B 、60-C 、10D 、10-17、关于x 的一元二次方程0522=--a x x (a 为常数)的两根之比3:2:21=x x ,则=-12x x ( )A 、1B 、2C 、21 D 、23 18、已知是α、β方程012=-+x x 的两个实根,则_______34=-βα. 19、若关于x 的方程xax x x x x a 1122++-=-只有一解,求a 的值。
培优练习201809121.已知a、b、c是三个不全为0的实数,那么关于x的方程x2+(a+b+c)x+a2+b2+c2=0的根的情况是( )A. 有两个负根B. 有两个正根C. 两根一正一负D. 无实数根2.已知关于x的二次三项式4x2−(k+2)x+k−1是一个完全平方式,则k的值是___3.已知一直角三角形的三边长为a,b,c,∠B=90∘,那么关于x的方程a(x2−1)−2cx+b(x2+1)=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定4.如果关于x的方程02934322=+-++kkkxx的两个实数根分别为x1﹑x2,那么2018220171xx的值为___.5.若关于x的方程x2+2ax+7a−10=0没有实根,那么,必有实根的方程是( )A. x2+2ax+3a−2=0B. x2+2ax+5a−6=0C. x2+2ax+10a−21=0D. x2+2ax+2a+3=06.自然数n 使4n 2+5n 为完全平方数,则n=7.三个关于x 的方程:①x 2−x+m=0,②(m −1)x 2+2x+1=0和③(m −2)x 2+2x −1=0,若其中至少有两个方程有实根,则实数m 的取值范围是( )A.m ≤2B.m ≤41或1≤m ≤2C.m ≥1D.41≤m ≤18.有两个一元二次方程:M:ax 2+bx+c=0;N:cx 2+bx+a=0.其中a+c=0,以下列四个结论中,错误的是( )A. 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根.B. 如果方程M 有两根符号相同,那么方程N 的两根符号也相同.C. 如果5是方程M 的一个根,那么51是方程N 的一个根. D. 如果方程M 和方程N 有一个相同的根,那么这个根必是x=1.9.关于x 的方程(k-1)x 2+2kx+2=0.(1)求证:无论k 为何值,方程总有实数根; (2)设x 1,x 2是方程(k-1)x 2+2kx+2=0的两个根,记S=212112x x x x x x +++,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.10. 若的△ABC 三条边长a 、b 、c 满足b+c=10,61122+-=a a bc ,则△ABC 的周长等于______,面积等于______.11.若a,b是整数,已知关于x的方程41x2−ax+a2+ab−a−b−1=0有两个相同的实根,则a−b等于()A. 1B. 2C. ±1D. ±212.设方程|x2+ax|=4,只有3个不相等的实数根,求a的值和相应的3个根。
⼀元⼆次⽅程专题能⼒培优(含答案)第2章⼀元⼆次⽅程 2.1 ⼀元⼆次⽅程专题⼀利⽤⼀元⼆次⽅程的定义确定字母的取值1.已知2(3)1m x -+=是关于x 的⼀元⼆次⽅程,则m 的取值范围是()A.m ≠3B.m ≥3C.m ≥-2D. m ≥-2且m ≠32. 已知关于x 的⽅程21(1)(2)10mm x m x +++--=,问:(1)m 取何值时,它是⼀元⼆次⽅程并写出这个⽅程;(2)m 取何值时,它是⼀元⼀次⽅程?专题⼆利⽤⼀元⼆次⽅程的项的概念求字母的取值3.关于x 的⼀元⼆次⽅程(m-1)x 2+5x+m 2-1=0的常数项为0,求m 的值.4.若⼀元⼆次⽅程2(24)(36)80a x a x a -+++-=没有⼀次项,则a 的值为 .专题三利⽤⼀元⼆次⽅程的解的概念求字母、代数式5.已知关于x 的⽅程x 2+bx+a=0的⼀个根是-a (a≠0),则a-b 值为() A.-1 B.0 C.1 D.26.若⼀元⼆次⽅程ax 2+bx+c=0中,a -b+c=0,则此⽅程必有⼀个根为 .7.已知实数a 是⼀元⼆次⽅程x 2-2013x+1=0的解,求代数式22120122013a a a +--的值.知识要点:1.只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次),等号两边都是整式的⽅程,叫做⼀元⼆次⽅程.2.⼀元⼆次⽅程的⼀般形式是ax 2+bx+c=0(a ≠0),其中ax 2温馨提⽰:1.⼀元⼆次⽅程概念中⼀定要注意⼆次项系数不为0的条件.2.⼀元⼆次⽅程的根是两个⽽不再是⼀个.⽅法技巧:1.ax k+bx+c=0是⼀元⼀次⽅程的情况有两种,需要分类讨论.2.利⽤⼀元⼆次⽅程的解求字母或者代数式的值时常常⽤到整体思想,需要同学们认真领会. 答案:1. D 解析:3020mm-≠+≥,解得m≥-2且m≠32.解:(1)当212,10mm+=+≠时,它是⼀元⼆次⽅程.解得:m=1.当m=1时,原⽅程可化为2x2-x-1=0;(2)当20,10m+=或者当m+1+(m-2)≠0且m2+1=1时,它是⼀元⼀次⽅程.解得:m=-1,m=0.故当m=-1或0时,为⼀元⼀次⽅程.3.解:由题意,得:210,10.mm-=-≠解得:m=-1.4.a=-2 解析:由题意得360,240.aa+=-≠解得a=-2.5. A 解析:∵关于x的⽅程x2+bx+a=0的⼀个根是-a(a≠0),∴a2-ab+a=0.∴a(a-b+1)=0.∵a≠0,∴1-b+a=0.∴a-b=-1.6.x=-1 解析:⽐较两个式⼦会发现:(1)等号右边相同;(2)等号左边最后⼀项相同;(3)第⼀个式⼦x2对应了第⼆个式⼦中的1,第⼀个式⼦中的x对应了第⼆个式⼦中的-1.故==-.解得x=-1.7.解:∵实数a是⼀元⼆次⽅程x2-2013x+1=0的解,∴a2-2013a+1=0. ∴a2+1=2013a,a2-2013a=-1.∴2.2 ⼀元⼆次⽅程的解法专题⼀利⽤配⽅法求字母的取值或者求代数式的极值1.若⽅程25x2-(k-1)x+1=0的左边可以写成⼀个完全平⽅式;则k的值为()A.-9或11 B.-7或8 C.-8或9 C.-8或92.如果代数式x2+6x+m2是⼀个完全平⽅式,则m= .3.⽤配⽅法证明:⽆论x为何实数,代数式-2x2+4x-5的值恒⼩于零.专题⼆利⽤△判定⼀元⼆次⽅程根的情况或者判定字母的取值范围4.已知a,b,c分别是三⾓形的三边,则⽅程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有⼀个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的⽅程kx2+3x+2=0有实数根,则k的取值范围是()6.定义:如果⼀元⼆次⽅程ax2+bx+c=0(a≠0)满⾜a+b+c=0,那么我们称这个⽅程为“凤凰”⽅程.已知ax2+bx+c=0(a≠0)是“凤凰”⽅程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c专题三解绝对值⽅程和⾼次⽅程7.若⽅程(x2+y2-5)2=64,则x2+y2= .8.阅读题例,解答下题:例:解⽅程x2-|x-1|-1=0.解:(1)当x-1≥0,即x≥1时,x2-(x-1)-1=0,∴x2-x=0.解得:x1=0(不合题设,舍去),x2=1.(2)当x-1<0,即x<1时,x2+(x-1)-1=0,∴x2+x-2=0.解得x1=1(不合题设,舍去),x2=-2.综上所述,原⽅程的解是x=1或x=-2.10.请先阅读例题的解答过程,然后再解答:代数第三册在解⽅程3x (x+2)=5(x+2)时,先将⽅程变形为3x (x+2)-5(x+2)=0,这个⽅程左边可以分解成两个⼀次因式的积,所以⽅程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中⾄少有⼀个等于0;反过来,如果两个因式有⼀个等于0,它们的积等于0.因此,解⽅程(x+2)(3x-5)=0,就相当于解⽅程 x+2=0或3x-5=0,得到原⽅程的解为x 1=-2,x 2=53.根据上⾯解⼀元⼆次⽅程的过程,王⼒推测:a ﹒b >0,则有 0,0a b >??>?或者0,0.a b请判断王⼒的推测是否正确?若正确,请你求出不等式51023x x ->-的解集,如果不正确,请说明理由.专题五利⽤根与系数的关系求字母的取值范围及求代数式的值11. 设x 1、x 2是⼀元⼆次⽅程x 2+4x -3=0的两个根,2x 1(x 22+5x 2﹣3)+a =2,则a = . 12.(2012·怀化)已知x 1、x 2是⼀元⼆次⽅程()0262=++-a ax x a 的两个实数根,⑴是否存在实数a ,使-x 1+x 1x 2=4+x 2成⽴?若存在,求出a 的值;若不存在,请你说明理由;⑵求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.13.(1)教材中我们学习了:若关于x 的⼀元⼆次⽅程ax 2+bx+c=0的两根为x 1、x 2,x 1+x 2=-b a ,x 1·x 2=ca .根据这⼀性质,我们可以求出已知⽅程关于x 1、x 2的代数式的值.例如:已知x 1、x 2为⽅程x 2-2x-1=0的两根,则:(1)x 1+x 2=____,x 1·x 2=____,那么x 12+x 22=( x 1+x 2)2-2 x 1·x 2=__ __.请你完成以上的填空..........(2)阅读材料:已知2210,10m m n n --=+-=,且1mn ≠.求1mn n+的值.解:由210n n +-=可知0n ≠.∴21110n n +-=.∴211是⽅程210x x --=的两根.∴11m n +=.∴1mn n+=1.(3)根据阅读材料所提供的的⽅法及(1)的⽅法完成下题的解答.已知222310,320m m n n --=+-=,且1mn ≠.求221m n+的值.知识要点:1.解⼀元⼆次⽅程的基本思想——降次,解⼀元⼆次⽅程的常⽤⽅法:直接开平⽅法、配⽅法、公式法、因式分解法.2.⼀元⼆次⽅程的根的判别式△=b-4ac 与⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的根的关系:当△>0时,⼀元⼆次⽅程有两个不相等的实数解;当△=0时,⼀元⼆次⽅程有两个相等的实数解;△<0时,⼀元⼆次⽅程没有实数解.3.⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的两根x 1、x 2与系数a 、b 、c 之间存在着如下关系: x 1+x 2=﹣,x 1?x 2=.温馨提⽰: 1.x 2+6x+m 2是⼀个完全平⽅式,易误以为m=3.2.若⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的两根x 1、x 2有双层含义:(1)ax 12+bx 1+c=0,ax 22+bx 2+c=0;(2)x 1+x 2=﹣,x 1?x 2=.⽅法技巧:1.求⼆次三项式ax 2+bx+c 极值的基本步骤:(1)将ax 2+bx+c 化为a (x+h )2+k ;(2)当a>0,k>0时,a (x+h )2+k ≥k ;当a<0,k<0时,a (x+h )2+k ≤k.2.若⼀元⼆次⽅程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).3.解绝对值⽅程的基本思路是将绝对值符号去掉,所以要讨论绝对值符号内的式⼦与0的⼤⼩关系.4.解⾼次⽅程的基本思想是将⾼次⽅程将次转化为关于某个式⼦的⼀元⼆次⽅程求解.5.利⽤根与系数求解时,常常⽤到整体思想.答案: 1.A 解析:根据题意知,-(k-1)=±2×5×1,∴k-1=±10,即k-1=10或k-1=-10,得k=11或k=-9.2. ±3 解析:据题意得,m 2=9,∴m=±3.3.证明:-2x 2+4x -5=-2(x 2-2x )-5=-2(x 2-2x+1)-5+2=-2(x -1)2∴⽆论x 为何实数,代数式-2x 2+4x-5的值恒⼩于零.4.A 解析:△=(2c )2﹣4(a +b )(a +b )=4(a +b +c )(c ﹣a ﹣b ).根据三⾓形三边关系,得c ﹣a ﹣b <0,a +b +c >0.∴△<0.∴该⽅程没有实数根.5.A 解析:当kx 2+3x+1=0为⼀元⼀次⽅程⽅程时,必有实数根,此时k=0;当kx 2+3x+1=0为⼀元⼆次⽅程且有实数根时,如果有实数根,则203420k k ≠?-??≥?.解得98k ≤且k ≠0.综上所述98k ≤.6.A 解析:∵⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴△=b 2-4ac=0,⼜a +b +c =0,即b =-a -c ,代⼊b 2-4ac =0得(-a -c )2-4ac =0,化简得(a-c )2=0,所以a =c .7.13 解析:由题意得x 2+y 2-5=±8.解得x 2+y 2=13或者x 2+y 2=-3(舍去).8.解:①当x+2≥0,即x≥-2时,x 2+2(x+2)-4=0,∴x 2+2x=0.解得x 1=0,x 2=-2;②当x+2<0,即x <-2时,x 2-2(x+2)-4=0,∴x 2-2x -8=0. 解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去).综上所述,原⽅程的解是x=0或x=-2. 9.4 1-,﹣3;41,3.发现的⼀般结论为:若⼀元⼆次⽅程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).11.8 解析:∵x 1x 2=-3,x 22+4x 2-3=0,∴2x 1(x 22+5x 2-3)+a =2转化为2x 1(x 22+4x 2-3+ x 2)+a =2. ∴2x 1x 2+a =2.∴2×(-3)+a =2.解得a =8.12.解:(1)根据题意,得△=(2a )2-4×a (a -6)=24a ≥0.∴a ≥0.⼜∵a -6≠0,∴a ≠6.由根与系数关系得:x 1+x 2=-62-a a ,x 1x 2=6-a a. 由-x 1+x 1x 2=4+x 2 得x 1+x 2 +4=x 1x 2.∴-62-a a +4 =6-a a,解得a =24.经检验a =24是⽅程-62-a a +4 =6-a a的解.(2)原式=x 1+x 2 +x 1x 2 +1=-62-a a +6-a a +1=a-66为负整数,∴6-a 为-1或-2,-3,-6.解得a =7或8,9,12.13.解:(1)2,-1, 6.(3)由n 2+3n-2=0可知n ≠0,∴1+3n -2n 2=0.∴2n 2- 3n -1=0.⼜2m 2-3m-1=0,且mn ≠1,即m ≠1n .∴m 、1n是⽅程2x 2-3x-1=0的两根.∴m+1n = 32,m ·1n =-12,∴m 2+ 1n 2=(m+ 1n )2-2m ·1n =( 32)2-2·(-12)= 134.2.3 ⼀元⼆次⽅程的应⽤专题⼀、利⽤⼀元⼆次⽅程解决⾯积问题 1.在⾼度为2.8m 的⼀⾯墙上,准备开凿⼀个矩形窗户.现⽤9.5m 长的铝合⾦条制成如图所⽰的窗框.问:窗户的宽和⾼各是多少时,其透光⾯积为3m 2(铝合⾦条的宽度忽略不计).条所占⾯积为原矩形图案⾯积的三分之⼀,应如何设计每个彩条的宽度?3. 数学的学习贵在举⼀反三,触类旁通.仔细观察图形,认真思考,解决下⾯的问题:(1)在长为a m,宽为b m的⼀块草坪上修了⼀条1m宽的笔直⼩路(如图(1)),则余下草m;坪的⾯积可表⽰为2(2)现为了增加美感,设计师把这条⼩路改为宽恒为1m的弯曲⼩路(如图(2)),则此时m;余下草坪的⾯积为2(3)聪明的鲁鲁结合上⾯的问题编写了⼀道应⽤题,你能解决吗?相信⾃⼰哦!(如图(3)),在长为50m,宽为30m的⼀块草坪上修了⼀条宽为xm的笔直⼩路和⼀条长恒m.求⼩路的宽x.为xm的弯曲⼩路(如图3),此时余下草坪的⾯积为14212专题⼆、利⽤⼀元⼆次⽅程解决变化率问题4.据报道,我省农作物秸杆的资源巨⼤,但合理利⽤量⼗分有限,2012年的利⽤率只有30%,⼤部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利⽤量的增长率相同,要使2014年的利⽤率提⾼到60%,求每年的增长率.(取2≈1.41)5.某种电脑病毒传播⾮常快,如果⼀台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你⽤学过的知识分析,每轮感染中平均⼀台电脑会感染⼏台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?6.(2012·⼴元)某中⼼城市有⼀楼盘,开发商准备以每平⽅⽶7000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平⽅⽶5670 元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引⼒.请问房产销售经理的⽅案对购房者是否更优惠?为什么?专题三、利⽤⼀元⼆次⽅程解决市场经济问题7.(2012·济宁)⼀学校为了绿化校园环境,向某园林公司购买了⼀批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司⽀付树苗款8800元.请问该校共购买了多少棵树苗?8.(2012·南京)某汽车销售公司6⽉份销售某⼚家的汽车,在⼀定范围内,每部汽车的售价与销售量有如下关系:若当⽉仅售出1部汽车,则该部汽车的进价为27万元,每多售出1 部,所有售出的汽车的进价均降低0.1万元/部;⽉底⼚家根据销售量⼀次性返利给销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当⽉售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当⽉盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)专题四、利⽤⼀元⼆次⽅程解决⽣活中的其他问题9. (1)经过凸n边形(n>3)其中⼀个顶点......的对⾓线有条.(2)⼀个凸多边形共有14条对⾓线,它是⼏边形?10.如图每个正⽅形是由边长为1的⼩正⽅形组成.(1)观察图形,请填与下列表格:正⽅形边长 1 3 5 7 … n (奇数)红⾊⼩正⽅形个数 … 正⽅形边长 2 4 6 8 … n (偶数)红⾊⼩正⽅形个数…(2)在边长为n (n≥1)的正⽅形中,设红⾊⼩正⽅形的个数为P 1,⽩⾊⼩正⽅形的个数为P 2,问是否存在偶数n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.知识要点:列⽅程解决实际问题的常见类型:⾯积问题,增长率问题、经济问题、疾病传播问题、⽣活中的其他问题. 温馨提⽰:1.若设每次的平均增长(或降低)率为x ,增长(或降低)前的数量为a ,则第⼀次增长(或降低)后的数量为a(1±x),第⼆次增长(或降低)后的数量为a(1±x)2.2.⾯积(体积)问题属于⼏何图形的应⽤题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与已知量的内在联系,根据⾯积(体积)公式列出⼀元⼆次⽅程.3.列⽅程解决实际问题时,⽅程的解必须使实际问题有意义,因此要注意检验结果的合理性. ⽅法技巧:1. 变化率问题中常⽤a (1±x )n=b ,其中a 是起始量,b 是终⽌量,n 是变出次数,x 是变化率.变化率问题⽤直接开平⽅法求解简单.2.解决⾯积问题常常⽤到平移的⽅法,利⽤平移前后图形⾯积不变建⽴等量关系.答案:1.解:设⾼为x ⽶,则宽为9.50.523x --⽶.由题意,得9.50.5233xx --?=. 解得121.5,3x x == (舍去,⾼度为2.8m 的⼀⾯墙上). 当x=1.5时,宽9.50.529.50.53233x ----==.答:⾼为1.5⽶,宽为2⽶.2.解:设横、竖彩条的宽度分别为2xcm 、3xcm ,由题意,得(20-6x )(30-4x )=(1-13)×20×30.整理,得6x 2-65x +50=0.。
一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。
解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。
给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。
解方程3a+6=0,得到a=-2.因此,这是一元一次方程。
根据题意,方程x+bx+a=0的一个根是-a(a≠0)。
由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.2.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
一元二次方程专题培优训练精选专题一利用一元二次方程的定义确定字母的取值1.已知(m-3)x^2+m+2x=1是关于x的一元二次方程,则m 的取值范围是()A.m≠3.B.m≥3.C.m≥-2.D。
m≥-2且m≠3已知(m-3)x^2+m+2x=1是关于x的一元二次方程,则m 的取值范围是()A。
m≠3.B。
m≥3.C。
m≥-2.D。
m≥-2且m≠32.已知关于x的方程(m+1)x^m+1+(m-2)x^-1=,问:1)m取何值时,它是一元二次方程并写出这个方程;2)m取何值时,它是一元一次方程?已知关于x的方程(m+1)x^m+1+(m-2)x^-1=,问:1)m取何值时,它是一元二次方程并写出这个方程;2)m取何值时,它是一元一次方程?3.若一元二次方程ax^2+bx+c=0中,a-b+c=0,则此方程必有一个根为.a^2+1若一元二次方程ax^2+bx+c=0中,a-b+c=0,则此方程必有一个根为.a^2+14.已知实数a是一元二次方程x-2013x+1=0的解,求代数式a-2012a-的值.2013^2已知实数a是一元二次方程x-2013x+1=0的解,求代数式a-2012a-的值.2013^2方法技巧:1.ax+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.方法技巧:1.ax+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.专题二利用配方法求字母的取值或者求代数式的极值21.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A.-9或11.B.-7或8.C.-8或9.C.-8或9 若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A。
-9或11.B。
-7或8.C。
《一元二次方程》培优练习一.选择题1.下列方程中是一元二次方程的是()A.2x+1=0B.y2+x=1C.x2+1=0D.2.将方程3x2+1=6x化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A.3,﹣6,1B.3,6,1C.3,1,﹣6D.3,1,63.已知关于x的方程x2+kx﹣2=0的一个根是1,则它的另一个根是()A.﹣3B.3C.﹣2D.24.用配方法解方程x2﹣6x﹣4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣6)2=4D.(x﹣3)2=55.若实数x,y满足(x2+y2+3)(x2+y2﹣3)=0,则x2+y2的值为()A.3或﹣3B.3C.﹣3D.16.关于x的一元二次方程(2﹣a)x2+x+a2﹣4=0的一个根为0,则a的值为()A.2B.0C.2或﹣2D.﹣27.一元二次方程﹣x2+6x﹣10=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.某地区举办的篮球比赛共有x支球队参加,每两队之间都只进行一场比赛,共进行了45场比赛,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=459.8月23号到校前,小希将收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,小希给()个同学发了短信.A.10B.11C.12D.1310.已知m是方程3x2﹣2x﹣2=0的一个实数根,则代数式的值()A.2B.C.D.二.填空题11.若(m+1)x|m|+1+6mx﹣2=0是关于x的一元二次方程,则m =.12.若关于x的一元二次方程x2+x﹣m=0有两个实数根,则m的取值范围是.13.关于x的一元二次方程ax2+bx+c=0满足a﹣b+c=0,则方程一定有一个根是x=.14.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为.15.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为.16.已知方程2x2+kx﹣2k+1=0的两个实数根的平方和为,则k 的值为.三.解答题17.用适当的方法解下列方程:(1)2x2+1=3x(2)x2+6x+4=018.已知关于x的方程(a﹣1)x2+2x+a+1=0.(1)若该方程有一根为0,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个实数根?求出此时a的值.19.一个矩形的长为a,宽为b(a>0,b>0),则矩形的面积为a•b.代数式xy(x>0,y>0)可以看作是边长为x和y的矩形的面积.我们可以由此解一元二次方程:x2+x﹣6=0(x>0).具体过程如下:①方程变形为x(x+1)=6;②画四个边长为x+1、x的矩形如图放置;③由面积关系求解方程.∵S ABCD=(x+x+1)2,又S ABCD=4x(x+1)+12.∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,∴(2x+1)2=25,∵x>0,∴x=2.参照上述方法求关于x的二次方程x2+mx﹣n=0的解(x>0,m >0,n>0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)20.“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.21.某批发城在冬天到来之际进了一批保暖衣,男生的保暖衣每件价格60元,女生的保暖衣每件价格40元,第一批共购买100件.(1)第一批购买的保暖衣的总费用不超过5400元,求女生保暖衣最少购买多少件?(2)第二批购买保暖衣,购买男、女生保暖衣的件数比为3:2,价格保持第一批的价格不变;第三批购买男生保暖衣的价格在第一批购买的价格上每件减少了元,女生保暖衣的价格比第一批购买的价格上每件增加了元,男生保暖衣的数量比第二批增加了m%,女生保暖衣的数量比第二批减少了m%,第二批与第三批购买保暖衣的总费用相同,求m的值.参考答案一.选择题1.解:A、未知数的最高次数是1,不是一元二次方程,故本选项错误;B、含有两个未知数,不是一元二次方程,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、分母中含有未知数,不是一元二次方程,故本选项错误;故选:C.2.解:方程整理得:3x2﹣6x+1=0,二次项系数为3;一次项系数为﹣6,常数项为1,故选:A.3.解:设方程的另一个根为t,根据题意得1•t=﹣2,解得t=﹣2.故选:C.4.解:方程x2﹣6x﹣4=0变形得:x2﹣6x=4,配方得:x2﹣6x+9=13,即(x﹣3)2=13,故选:A.5.解:设t=x2+y2(t≥0),则原方程转化为(t+3)(t﹣3)=0,所以t+3=0或t﹣3=0.所以t=﹣3(舍去)或t=3,即x2+y2的值为3.故选:B.6.解:∵(2﹣a)x2+x+a2﹣4=0是关于x的一元二次方程,∴2﹣a≠0,即a≠2①由一个根是0,代入(2﹣a)x2+x+a2﹣4=0,可得a2﹣4=0,解之得a=±2;②由①②得a=﹣2.故选:D.7.解:∵△=62﹣4×(﹣1)×(﹣10)=36﹣40=﹣4<0,∴方程没有实数根.故选:D.8.解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.9.解:设小希给x个同学发了短信,依题意,得:1+x+x2=157,解得:x1=﹣13,x2=12.故选:C.10.解:∵m是方程3x2﹣2x﹣2=0的一个实数根,∴3m2﹣2m=2,3m2﹣2=2m,∴3m﹣=2,∴原式==,故选:C.二.填空题(共6小题)11.解:由(m+1)x|m|+1+6mx﹣2=0是关于x的一元二次方程,得,解得m=1,故答案为:1.12.解:∵关于x的一元二次方程x2+x﹣m=0有两个实数根,∴△≥0,∴△=1﹣4(﹣m)≥0,即m≥﹣,故答案为:m≥﹣.13.解:将x=﹣1代入ax2+bx+c=0的左边得:a×(﹣1)2+b×(﹣1)+c=a﹣b+c,∵a﹣b+c=0,∴x=﹣1是方程ax2+bx+c=0的根.故答案为:﹣1.14.解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故答案为:36(1+x)2=48.15.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,所以等腰三角形的底为3,腰为6,这个等腰三角形的周长为3+6+6=15.故答案为15.16.解:∵方程2x2+kx﹣2k+1=0有两个实数根,∴△=k2﹣4×2(﹣2k+1)≥0,解得k≥6﹣8或k<﹣6﹣8.设方程2x2+kx﹣2k+1=0两个实数根为x1、x2.则x1+x2=﹣,x1•x2=﹣k+,∴x12+x22=(x1+x2)2﹣2x1x2=+2k﹣1=,即k2+8k﹣33=0,解得k1=3,k2=﹣11(不合题意,舍去).故答案是:3.三.解答题(共5小题)17.解:(1)∵2x2+1=3x,∴(2x﹣1)(x﹣1)=0,∴x=或x=1;(2)∵x2+6x+4=0,∴a=1,b=6,c=4,∴△=36﹣16=20,∴x==﹣318.解:(1)将x=0代入方程(a﹣1)x2+2x+a+1=0得a+1=0,解得:a=﹣1.将a=﹣1代入原方程得﹣2x2+2x=0,解得:x1=0,x2=1.∴a=﹣1,方程的另一根为1.(2)当a=1时,方程为2x+2=0,解得:x=﹣1;故a的值为﹣1.19.解:①方程变形为x(x+m)=n;②画四个边长为x+m、x的矩形如图放置;③由面积关系求解方程.∵S ABCD=(x+x+m)2,又S ABCD=4x(x+m)+m2.∴(x+x+m)2=4x(x+m)+m2,又x(x+m)=n,∴(2x+m)2=4n+m2,∵x>0,∴x=(﹣m)(m>0,n>0).20.解:(1)设该公司计划在线下销售量为x万件,则3000﹣x≥25%x天天向上独家原创解得:x≤2400∴该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣25m=0解得:m1=0(不合题意,舍去),m2=25∴m的值为25.21.解:(1)设女生保暖衣购买x件.40x+60(100﹣x)≤5400解之得x≥30答:女生保暖衣最少购30件;(2)设购买男、女生保暖衣的件数分别为3a、2a.根据题意,得设m%=t,则m=100t.3a×(1+t)×(60﹣20t)+2a×(1﹣t)×(40+30t)=3a×60+2a×406t2﹣5t=0解得:t1=0(舍去),∴m=100t=.答:m的值是.。
一元二次方程培优训练题一、选择题:1.若关于x 的一元二次方程﹙m -1﹚x 2+5x +m 2-3m +2=0的常数项为0,则m 的值为﹙﹚A . 1 B . 2C . 1或2 D. 02.已知关于x 的一元二次方程ax 2+bx +c=0,bx 2+cx +a=0,cx 2+ax +b=0恰有一个公共实数根,则bca2+acb2+abc2的值﹙﹚A . 0B . 1C . 2 D. 33.方程02ac x c b xb a的一个根为()A1 B 1 Cc b Da 4.已知m 、n 是方程0719992xx 的两个根,则)82000)(61998(22n nmm ()A 、1990 B 、1992 C 、-1992 D 、19995.我们知道,一元二次方程21x没有实数根,即不存在一个实数的平方等于1.若我们规定一个新数“i ”,使其满足21i(即方程21x有一个根为i )。
并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有22123242,1,1,11ii iii i i i ii,从而对于任意正整数n ,我们可以得到4144nn ni ii i i i , 同理可得421n i , 43n i i , 41ni.那么23420122013i iiiii的值为( )A. 0B.1 C.1 D. i二、填空题:6.若关于x 的方程x 2+px +q=0与x 2+qx +p=0只有一个公共根,则﹙p +q ﹚2014= 。
7.已知关于x 的一元二次方程002acbx ax的系数满足b c a,则此方程必有一根为。
8.若044342yxyx ,则4x+y 的值为。
变式1:2222222,06b则ababa。
变式2:若032yxy x ,则x+y 的值为。
变式3:若142yxy x ,282x xy y ,则x+y 的值为9.方程0132x x 与032x x的所有实数根的和是10.已知b a ,0122a a,0122b b,则ba ,abba= 。
1、已知关于x 的一元二次方程()0122=+--k x k kx 有两个不相等的实根,求k 的取值范围2、关于x 的方程0122=--x k x 有实根,求k 的取值范围 3、已知关于x 的方程0342=+-x kx 有实根,则k 的非负整数值是 4、方程012=--x x 的两根为 5、解方程03222=-+a x a x6、 设c b a ,,是ABC ∆三边的长,且关于x 的方程()())0(0222>=--++n ax n n x c n x c 有两个相等的实数根,求证ABC ∆是直角三角形。
7、已知关于x 的方程()()011222=++---m x m x m ,当m 为何非负整数时, (1)方程只有一个实数根 (2)方程有两个相等的实根 (3)方程有两个不相等的实根8、 求证:k 为何实数,方程()()0112122=---+x k x k 一定有两个不相等的实根。
9、 已知n m ,为整数,关于x 的三个方程:()0372=++--n x m x 有两个不相等的实根; ()0642=++++n x m x 有两个相等的实根;()0142=++--n x m x 没有实根; 求n m ,的值。
10、若方程),(022是实数q p q px x =-+没有实根,(1)求证41<+q p ; (2)试写出上述命题的逆命题。
11、 关于x 的方程()()024*******=++++++b ab a x a x 有实根,求b a ,的值。
12、 设m 是有理数,问k 为何值时,方程04234422=+-++-k m m x mx x 的根是有理数。
13、 设0≠c ,关于x 的一元二次方程02=++bc ax x 和02=++ca bx x 有一个公共根,求证:这两个方程的其他二根为方程02=++ab cx x 的根。
14、若关于x 的两个方程02=++b ax x 和02=++a bx x 只有一个公共解,(1)求此公共解; (2)求非公共解之和。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q 两点之间的距离是多少cm ?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P 、Q 分别从点A 、C 同时出发,问经过多长时间P 、Q 两点之间的距离是10cm ?(3)若点P 沿着AB →BC →CD 移动,点P 、Q 分别从点A 、C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试探求经过多长时间△PBQ 的面积为12cm 2?【答案】(1)2cm ;(2)85s 或245s ;(3)经过4秒或6秒△PBQ 的面积为 12cm 2.【解析】 试题分析:(1)作PE ⊥CD 于E ,表示出PQ 的长度,利用PE 2+EQ 2=PQ 2列出方程求解即可;(2)设x 秒后,点P 和点Q 的距离是10cm .在Rt △PEQ 中,根据勾股定理列出关于x 的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.3.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.4.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m ,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ , ∴x 1=-3m,x 2=1, ∵m 为正整数,且方程的两个根均为整数,∴m =-1或-3.点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.5.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;(2)对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.(1)把x=-1代入得1+m-2=0,解得m=1∴2--2=0. ∴∴另一根是2;(2)∵, ∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.8.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)552t ±=。
一元二次方程培优训练(90分钟120分)一、学科内综合题(每小题8分,共48分)1.随着城市人口的不断增加,美化城市、改善人们的居住环境,已成为城市建设的一项重要内容,•某城市到2006•年要将该城市的绿地面积在2004•年的基础上增加44%,同时,要求该城市到2006年人均绿地的占有量在2004年基础上增加21%,•为保证实验这个目标,这两年该城市人口的平均增长率应控制在多少以内?(精确1%)2.如图,在△ABC中,∠B=90°,AB=4cm,BC=10cm,点P•从点B•出发沿BC•以1cm/s 的速度向点C移动,问:经过多少秒后,点P到点A的距离的平方比点P到点B•的距离的8倍大1?3.已知关于x的方程(a-1)x2-(2a-3)x+a=0有实数根.(1)求a的取值范围;(2)设x1,x2是方程(a-1)x2-(2a-3)x+a=0的两个根,且x12+x22=9,求a的值.4.设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值.5.一扇上部是半圆形下部是矩形的钢窗,它的高等于宽,如果窗的全部面积是257m2,求它的高和宽.( =227)6.某水果批发商场经销一种高档水果,如果每千克赢利10元,每天可售出500•千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,•日销售量将减少20千克,现该商场要保证每天赢利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?二、学科间综合题(10分)7.如图,AO=OB=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A以2cm/s速度向B 爬行,同时另一只蚂蚁由O点以3cm/s的速度沿OC方向爬行,几秒钟后,•两只蚂蚁与O点组成的三角形面积为450cm2?O C BA三、应用题(每小题10分,共20分)8.在等腰△ABC中,a=3,b,c是x2+mx+2-12m=0的两个根,试求△ABC的周长.9.一幢33层的大楼有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,•往上走一层楼梯感到3分不满意,现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层时,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯即直接从楼梯上楼)四、创新新(12分)10.问题:构造ax 2+bx+c=0解题,已知:21a +1a -1=0,b 4+b 2-1=0,且1a ≠b 2,求21ab a + 的值.五、中考题(共30分)11.(6分)某商场今年2月份的营业额为400万元,3•月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份营业额的平均增长率是__________.12.(6分)解方程:222(1)6(1)11x x x x +++++=7时,利用换元法将方程化为6y 2-7y+2=0,•则应设y=_________.13.(6分)已知关于x 的方程x 2-3x+m=0的一个根是另一个根的2倍,则m 的值为________.14.(12分)已知:关于x 的两个方程①2x 2+(m+4)x+m -4=0与②mx 2+(n -2)x+m -3=0,方程①有两个不相等的负实数根,方程②有两个实数根.(1)求证:方程②两根的符号相同;(2)设方程②的两根分别为α、β,若α:β=1:2,且n 为整数,求m 的最小整数值.附加题(20分)设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0•有两个不相等的实数根x1,x2.(1)若x12+x22=0,求m的值;(2)求22121211mx mxx x+--的最大值.答案:一、1.解:设2004年城市的人口总量为m ,绿地面积为n ,•这两年该城市人口的年平均增长率为x ,由题意,得2(144%)(1)n m x nm++=1+21%,整理,得 (1+x )2=1.44 1.2,11.21 1.1x +=±. ∴x 1=21239%,1111x ≈=-(舍去). 答:这两年该城市人口的平均增长率应控制在9%以内.点拨:本题重点考查增长率的问题.2.分析:假设当P 点移到E 点时可满足本题的条件,那么就有△ABE 为直角三角形,BE=PB ,EA=PA ,由题意,得PA 2-8PB=1.解:设经过x 秒后点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1,由题意,得BE=PB=1×x=xcm ,AE=PA=42+x 2.∴42+x 2-8x=1.解得x 1=3,x 2=5.答:经过3秒或5秒后,点P 到点A 的距离的平方比点P 到点B 的距离的8倍大1. 点拨:本题应用了勾股定理和路程=速度×时间这个公式.3.解:(1)由b 2-4ac ≥0,得(2a -3)2-4a (a -1)≥0,a ≤98. (2)∵x 1,x 2是方程(a -1)x 2-(2a -3)x+a=0的两个根,∴x 1+x 2=231a a --,x 1x 2=1a a -. 又∵x 12+x 22=9,∴(x 1+x 2)2-2x 1x 2=9.(231a a --)2-2×1a a -=9. 整理,得7a 2-8a=0,a (7a -8)=0. ∴a 1=0,a 2=87(舍去). 点拨:本题主要应用根与系数的关系及根的情况.4.分析:由△=b 2-4ac ,得△=4(2m -3)2-4(4m 2-14m+8)=4(2m+1).∵方程有两个整数根,∴△=4(2m+1)是一个完全平方数,所以2m+1也是一个完全平方数.∵4<m<40,∴9<2m+1<81,∴2m+1=16,25,36或49,∵m 为整数,∴m=12或24.代入已知方程,得x=16,26或x=38,25.综上所述m 为12,或24.点拨:本题应用的方程有整数根,b 2-4ac 必为一个完全平方数求解.5.分析:如图所示,半圆的直径=矩形的长=窗宽=窗高;矩形的宽=窗高-半圆半径;全窗面积=半圆面积+矩形面积.解:设半圆的半径为xm ,则半圆的直径为2xm ,半圆的面积为22x πm 2, 矩形面积为x ·2x=2x 2(m 2), ∴根据题意,有2πx 2+2x 2=257,∴25x 2=25.∴x=1或x=-1(舍去), 当x=1时,2x=2.答:窗的高和宽都是2m .点拨:本题借助图分析比较直观简单,另外本题中x=-1虽符合所列方程,•但不符合题意,故舍去.6.解:设每千克水果应涨价x 元,由题意,得(500-20x )(10+x )=6 000,解得x 1=5,x 2=10.要使顾客得到实惠,应取x=5.点拨:本题与实际问题有关,应考虑题中要使顾客得到实惠这个条件得以应用. 二、7.分析:本题可以分两种情况进行讨论.解:(1)当蚂蚁在AO 上运动时,设xs 后两只蚂蚁与O 点组成的三角形面积为450cm 2. 由题意,得12×3x ×(50-2x )=450. 整理,得x 2-25x+150=0.解得x 1=15,x 2=10.(2)当蚂蚁在OB 上运动时,设xs 钟后,两只蚂蚁与O 点组成的三角形面积为450cm 2.由题意,得12×3x (2x -50)=450. 整理,得x 2-25x -150=0.解得x 1=30,x 2=-5(舍去).答:15s ,10s ,30s 后,两蚂蚁与O 点组成的三角形的面积均为450cm 2.点拨:本题考查的是学生的抽象思维能力,使学生学会用运动的观点来观察事物,同时要注意检验解的合理性.三、8.分析:在等腰三角形中,要分清楚腰与底边,本题应进行分类讨论.解:∵b 、c 是方程x 2+mx+2-12m=0的两个根, ∴b+c=-m ,b ·c=2-12m . (1)若a 为腰,则b=a=3. c=-m -b ,即3(-m -3)=2-12m . 解得m=-225,∴b+c=225. ∴周长Q=b+c+a=225+3=375. (2)若a 为底,则b=c .∴△=m 2-4(2-2m )=0. m 1=-4,m 2=2,∴b+c=4或b+c=-2(舍去).∴周长Q=b+c+a=4+3=7.答:△ABC 的周长为375或7. 点拨:了解形与数结合分类讨论的思想.9.分析:通过引元,把不满意的总分用相关的字母的代数式表示,然后对代数式进行恰当的配方,进而求出代数式的最小值.解:由题意易知,这32个人恰好是第2层至第33层各住1人,对于每个乘电梯上、•下楼的人,他所住的层数一定不小于直接上楼的人所住的层数.事实上,设住s 层的人乘电梯,而住在t 层的人直接上楼,s<t ,交换两人的上楼方式,其余的人不变,•则不满意的总分减少.设电梯停在第x 层,在第1层有y 人没有乘电梯即直接上楼,那么不满意的总分为: s=3[1+2+3+…+(33-x )]+3(1+2+…+y )+[1+2+…+(x -y -2)]=3(33)(34)3(1)(2)(1)222x x y y x y x y ⨯--+----++ =2x 2-(y+102)x+2y 2+3y+1 684=2(x -1024y +)2+18(15y 2-180y+3 068) =2(x -1024y +)2+158(y -6)2+316≥316. 又当x=27,y=6时,s=316,故当电梯停在第27层时,不满意的总分最小,最小值为316.四、10.分析:模拟例子,求出a+b ,ab 的值,然后再求值.解:∵21a +1a--1=0, ∴(1a )2+1a -1=0. 又∵b 4+b 2-1=0,∴(b 2)2+b 2-1=0.∴1a、b 2是方程x 2+x -1=0的两个根. ∴1a +b 2=-1,1a ×b 2=-1. ∴21ab a +=b 2+1a=-1. 点拨:把1a 、b 2看成是方程x 2+x -1=0的两个根是解本题的关键所在. 五、11.20% 分析:设月平均增长率为x ,由400(1+10%)(1+x )2=633.6,解得x=0.2=20%.点拨:基数×(1+平均增长率)n =n 次增长后到达的数.12.应设y=211x x ++ 分析:设y=211x x ++,∴原方程为2y +6y=7,∴6y 2-7y+2=0. 点拨:利用换元法达到降次的目的,体现了转化的数学思想.13.2 设一个根为x ,则另一根为2x ,由题意,得2x ·x=m ,2x+x=3,x=1.∴m=2.点拨:由两根之和为-b a ,两根之积为c a可得方程. 14.证明:(1)设方程①两个负实根分别为x 1,x 2.则1212(4)42(4)0,0,40,0,20,40,2m m m x x x x m ⎧⎪+-⨯->∆>⎧⎪+⎪⎪+<-<⎨⎨⎪⎪>⎩-⎪>⎪⎩即 解得m>4.由方程②有两个实数根知m ≠0,当m>4时,3m m->0,即方程②的两根之积为正,• 故方程②的两根符号相同. (2)20,2,23,32,m n m m m βααβααβα≠⎧⎪=⎪⎪-⎨+==-⎪⎪-==⎪⎩得 22(2)392n m m m --=⇒(n -2)2=92m (m -3). 经讨论,m=6时,(n -2)2=92×6×3=81.附加题分析:方程有两个不相等的实根,∴△=4(m-2)2-4(m2-3m+3)=-4m+4>0,∴-1≤m<1.∵x1+x2=-2(m-2),x1x2=m2-3m+3.∴(1)x12+x22=(x1+x2)2-2x1x2=4(m-2)2-2(m2-3m+3)=2m2-10m+10,∴m2-5m+5=0.解得m=5172±.∵-1≤m<1,∴m=5172-.(2)22121211mx mxx x+--=22221221121212211212[(1)(1)][()](1)(1)1m x x x x m x x x x x xx x x x x x-+-+-+=----+.∵x1+x2=-2(m-2),x1x2=m2-3m+3.∴上式可化为22121211mx mxx x+--=2(m2-3m+1)=2(m-32)2-52.∵-1≤m<1,当m=-1时,最大值为10.点拨:本题是一道综合性较强的综合题,考查了根的情况、根与系数的关系以及以配方法求最值的问题.。