八年级一次函数与四边形综合
- 格式:doc
- 大小:341.91 KB
- 文档页数:8
《一次函数与几何图形综合》专题总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。
一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。
1.代数(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)(2)显现怎样的图形(自身、与坐轴、与其他图形)(3)既是一个方程,也是一个坐标4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据2.几何(1)基本图象有几个(2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据3.代数与几何(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据(2)几何(代数)通过什么方式为几何(代数)提供关系式(3)怎样设数据(坐标或线段长)函数与几何综合题的解题思想方法:“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:1.综合使用分析法和综合法。
一次函数与四边形面积问题例题摘要:一、一次函数与四边形面积问题简介1.一次函数的定义和性质2.四边形面积问题的常见类型二、一次函数与四边形面积问题的解题方法1.利用一次函数性质解四边形面积问题2.利用四边形面积公式解一次函数问题3.一次函数与四边形面积问题的综合解法三、一次函数与四边形面积问题的例题解析1.例题一:利用一次函数性质解四边形面积问题2.例题二:利用四边形面积公式解一次函数问题3.例题三:一次函数与四边形面积问题的综合解法四、总结与展望1.一次函数与四边形面积问题的解题技巧总结2.提高解题能力的建议和展望正文:一次函数与四边形面积问题是数学中常见的题目类型,涉及到函数、几何等多个知识点,具有一定的难度。
本文将对一次函数与四边形面积问题进行详细的解析,并提供解题方法和例题解析。
一、一次函数与四边形面积问题简介一次函数是数学中一种基本的函数类型,通常表示为y = kx + b 的形式,其中k 和b 是常数。
四边形面积问题是几何中的常见问题,涉及到四边形的面积计算。
一次函数与四边形面积问题就是将这两者结合起来,需要运用一次函数的性质和四边形面积公式进行求解。
二、一次函数与四边形面积问题的解题方法1.利用一次函数性质解四边形面积问题在解决一次函数与四边形面积问题时,可以先根据题目条件求出一次函数的解析式,然后利用一次函数的性质,如函数图像的斜率、截距等,推导出四边形的面积。
2.利用四边形面积公式解一次函数问题在解决一次函数与四边形面积问题时,也可以先根据题目条件求出四边形的面积,然后利用四边形面积公式,结合一次函数的性质,求解一次函数问题。
3.一次函数与四边形面积问题的综合解法在解决一次函数与四边形面积问题时,还可以综合运用以上两种方法,相互验证,提高解题的准确性和效率。
三、一次函数与四边形面积问题的例题解析1.例题一:利用一次函数性质解四边形面积问题已知一次函数y = 2x + 3 与四边形ABCD 的边分别相交于点A、B、C、D,其中AB = 4,BC = 5,求四边形ABCD 的面积。
一次函数与四边形综合运用鹏程中学周天应教学目标:1、掌握求点的坐标和构造全等三角形的方法2、在解题的过程中提高学生分析问题、解决问题的能力。
3、在解决问题的过程中培养学生克服困难的勇气。
教学重点:求点的坐标教学难点:作辅助线构造全等三角形1、已知直线y=x+2与x轴、y轴交于A、B两点,点P在第一象限的直线AB上,S△ABC=1,点C与点B关于X轴对称。
(1)如图1,求点P的坐标。
(2)如图2,N(6,0),NQ⊥NP交AC的延长线于点Q ,求证:NP=NQ。
(3)在(2)的条件下求NQ的解析式。
2、如图(1),直线y=﹣x+3分别与y轴、x轴交于A、C两点,以OA、OC为边作正方形OABC,E是边OC上一点,将直线AE绕A点逆时针旋转45°与过E点垂直于AE的直线交于点D.(1)求A、C两点的坐标;(2)若直线AD的解析式为y=﹣x+3,求直线DE的解析式;(3)在x轴、y轴上分别找点M、N,使四边形BDMN的周长最小,求点M、N的坐标。
如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.。
一次函数与四边形教学目标:知识与技能:1.利用一次函数比例系数k 值特征证明直线位置关系与四边形的形状;2.利用平行四边形的性质,求一次函数解析式.过程与方法:通过一次函数与四边形的想和转换,感受数形结合的思想方法. 情感态度与价值观:通过思考,让学生体会学习数学方法对于学习数学的重要性.教学重难点:教学重点:一次函数比例系数k 值与平行四边形的性质与判定的相互转换. 教学难点:利用数形结合思想解决函数与几何问题.教学过程:课前一练:1.若一次函数的图像经过点),(01A 和点),(22-B ,则这个一次函数的解析式为 .2.已知直线b kx y l +=11:与直线x y l 2:22=相互平行,且经过点)(1,2,则直线1l 的函数解析式为 .知识回顾:问题1:平面直角坐标系中求一次函数解析式的方法? 问题2:待定系数法求一次函数解析式的两种常见类型?一、利用一次函数证明四边形的形状例1:如图,直线b kx y +=经过),(3203-A 、),(45-B 两点,过点A 作x AD ⊥轴点D ,过点B 作y BC ⊥轴于点C ,AB 与x 轴相交于点E .(1)求点E 坐标;(2)证明:AB CD ∥;(3)判断四边形BCDE 的形状.二、利用特殊四边形的性质求一次函数解析式例2:如图,一次函数4y的图象与x、y轴=x2+分别相交于点A、B,以AB为边在直线AB右侧作正方形四边形ABCD.(1)求点A、B、D的坐标;(2)求直线BD的函数解析式;(3)求直线AC的函数解析式.例3:如图所示,矩形ABCD中,5AD,==AB,3点A的坐标为)=:.l+(1,2,作直线bykx(1)当3k时,若直线l与矩形ABCD相交,求-=b的取值范围;(2)在(1)的条件下,若直线l平分矩形ABCD 面积,求直线l的解析式;(3)当2b时,若直线l平分矩形ABCD面积,=-求直线l的解析式;(4)在(3)的条件下,若直线l与矩形ABCD相交,求k的取值范围.。
一次函数与四边形综合题——轻舟数学一.选择题(共1小题)1.(2011•杭州自主招生)如图,直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=﹣2x+m(m>n)的图象.若PA与y轴交于点Q,且S四边形PQOB=,AB=2,则m,n的值分别是()A.3,2 B.2,1 C.D.1,二.解答题(共16小题)2.(2009春•静安区期末)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.(1)求点A、B、D的坐标;(2)求直线BD的表达式.3.(2010秋•常州期末)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),并且与x轴以及y=x+1的图象分别交于点C、D.(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数y=kx+b的图象与函数y=x+1的图象的交点D始终在第一象限,则系数k的取值范围是.4.(2012•绥化)如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.5.(2014•温州)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP 延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC 于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2011•牡丹江)如图,将矩形OABC放置在平面直角坐标系中,点D在边0C上,点E 在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点F处,且tan∠BFD=.若线段OA的长是一元二次方程x2﹣7x﹣8=0的一个根,又2AB=30A.请解答下列问题:(1)求点B、F的坐标;(2)求直线ED的解析式:(3)在直线ED、FD上是否存在点M、N,使以点C、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.8.如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①BC的长为;②DE的长为;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y 轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式.9.(2013•会泽县校级模拟)如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.10.(2013•大连二模)如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°.(1)请直接写出线段PG与PC的位置关系及的值.(2)若将图1中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图2.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.(3)在图1中,若∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请直接写出的值(用含α的式子表示).11.(2013•重庆模拟)如图,以矩形OABC的顶点O为原点,OA所在直线为x轴,OC 所在直线为y轴,建立平面直角坐标系,已知OA=4厘米,OC=3厘米,线段OA上一动点D,以1厘米/s的速度从O点出发向终点A运动,线段AB上一动点E也以1厘米/s的速度从A点出发向终点B运动.当E点到达终点B后,D点继续运动直至到达终点A.(1)试写出多边形ODEBC的面积S(平方厘米)与运动时间t(s)之间的函数关系式.(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)在某一时刻将△BED沿着BD翻折,使点E恰好落在BC边的点F上.求出此时时间t 的值.若此时在x轴上存在一点M,在y轴上存在一点N,使四边形MNFE的周长最小,试求出此时点M、N的坐标.12.(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E 是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.13.(2012•葫芦岛一模)在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.14.(2010•乐山)在△ABC中,D为BC的中点,O为AD的中点,直线l过点O.过A、B、C三点分别做直线l的垂线,垂足分别是G、E、F,设AG=h1,BE=h2,CF=h3.(1)如图1所示,当直线l⊥AD时(此时点G与点O重合).求证:h2+h3=2h1;(2)将直线l绕点O旋转,使得l与AD不垂直.①如图2所示,当点B、C在直线l的同侧时,猜想(1)中的结论是否成立,请说明你的理由;②如图3所示,当点B、C在直线l的异侧时,猜想h1、h2、h3满足什么关系.(只需写出关系,不要求说明理由)15.(2009•哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.16.(2014春•武汉月考)在平面直角坐标系中,矩形OABC的边OC、OA分别在x轴、y 轴上,点A(0,m),点C(n,0),且m、n满足+(n﹣2)2=0.(1)求点A、C的坐标;(2)如图1,点D为第一象限内一动点,连CD、BD、OD,∠ODB=90°,试探究线段CD、OD、BD之间的数量关系,并证明你的结论;(3)如图2,点F在线段OA上,连BF,作OM⊥BF于M,AN⊥BF于N,当F在线段OA上运动时(不与O、A重合),的值是否变化?若变化,求出变化的范围;若不变,求出其值.17.(2014春•青山区期末)如图(1),直线y=﹣x+3分别与y轴、x轴交于A、C两点,以OA、OC为边作正方形OABC,E是边OC上一点,将直线AE绕A点逆时针旋转45°与过E点垂直于AE的直线交于点D.(1)求A、C两点的坐标;(2)若直线AD的解析式为y=﹣x+3,求直线DE的解析式;(3)如图(2),若∠OAE=30°,过点E作EF⊥AC于点H,交AD于点F,求的值.。
一次函数知识总结一、 准确掌握有关概念:1.一次函数和正比例函数的概念:若两个变量,x y 之间的关系式可以表示成(,y kx b k b =+为常数,0k ≠)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量);特别地,当0b =时,称y 是x 的正比例函数。
掌握一次函数和正比例函数的概念:应注意以下几点:(1)由定义可知:函数是一次函数⇔其表达式为(,y kx b k b =+为常数,0k ≠)的形式。
函数是正比例函数⇔其表达式为(y kx k =为常数,0k ≠)的形式。
(2)一次函数y kx b =+(0k ≠)的结构特征是:①0k ≠;②x =1;③常数项b 可以是任意实数。
正比例函数(0)y kx k =≠的结构特征是:①0k ≠;②x =1;③常数项b=0。
说明: 0k =时,y b =(b 为常数)这样的函数不是一次函数。
(3)自变量x 的取值范围:一般情况下,一次函数和正比例函数自变量的取值范围是全体实数。
2.一次函数和正比例函数的关系:正比例函数是一次函数的特例,一次函数包含正比例函数。
可以用右图表示。
也可以用下图表示:二、 会作函数的图象:把一个函数的自变量x 与对应的应变量y 分别作为点的横坐标和纵坐标,在平面直角坐标系中描出它的对应点,所有这些点所组成的图形即是该函数的图象。
三、 熟练作出一次函数的图象:由于一次函数y kx b =+(0k ≠)的图象是一条直线,所以由于一次函数y kx b =+的图象也可称为直线y kx b =+。
由于两点确定一条直线,因此在作一次函数图象时,只要描出两个点即可。
如画一次函数y kx b =+的图象时,只要描出点(0,b )和(b k-,0)即可;画正比例函数(0)y kx k =≠的图象只要描出点(0,0)和(1,k )即可。
四、 掌握一次函数的图象和性质:k 、b 的符号的不同直线的位置也不同如下图:(2)正比例函数y kx =的性质:(3)坐标平面内有点00(,)P x y 与直线y kx b =+的图象的关系:① 若00(,)P x y 在直线y kx b =+上,则00,x y 的值必满足表达式y kx b =+。
一次函数、平行四边形综合提高学生姓名年级学科授课教师日期时段核心内容一次函数、平行四边形知识的综合运用课型一对一/一对N教学目标1.能解决一次函数中平行四边形的存在问题2.能解决一次函数中的面积问题3.能解决一次函数中的长度问题重、难点对条件综合分析,有函数参数思想,结合平行四边形与一次函数相关知识进行综合解题课首沟通1.了解学生在校学习情况和进度2.检查作业知识导图课首小测1.[单选题] (2012年从化市一模)已知正比例函数y=kx(k≠0)函数值随x的增大而增大,则一次函数y=-kx+k的图象大致是()A. B. C. D.2.(2012 番禺期末)如图,直线:与直线:相交于点P(,2),则关于的不等式的解集为.3.[单选题] (2015番禺区一模)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.cm B.2cm C.3cm D.4cm4.[单选题] (2015 青岛中考)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF= ,BD=4,则菱形ABCD的周长为()A.4B.C.D.285.[单选题] (2015天河区期末)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()。
A. B.2 C. D.导学一:一次函数中的一般平行四边形存在问题知识点讲解 1:一次函数中一般平行四边形的存在问题——三定一动型例 1. (2014校级期末)如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2 交于点C.(1)求直线l2的函数关系式;(2)求△ADC的面积;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由。
专题10 一次函数中的四边形问题知识对接考点一、怎样解一次函数中的四边形问题1、四边形面积常转化为若干个三角形面积之和(或差).2、画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。
3、规则图形(公式法); 不规则图形(切割法)不含参数问题 ;含参数问题(用参数表示点坐标,转化成线段)注意:坐标的正负、线段的非负性。
求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。
专项训练一、单选题1.如图在平面直角坐标系中,直线y kx k =+与x 轴,y 轴分别交于点B 、A ,将线段AB 沿某个方向平移,点A 、B 对应的点M 、N 恰好在直线22y x =-和直线2x =上,则当四边形AMNB 为菱形时N 点坐标为( )A .()2,1B .()2,2C .()2,3D .()2,4【答案】A 【分析】求出A (0,k )和B (-1,0),B 的对应点N 的横坐标为2,由此知道往右平移了3个单位,得到A 的对应点M 的横坐标为3,将M 点横坐标代入22y x =-中即可求出M 坐标,进而求解. 【详解】解:令y kx k =+中y =0,得到B (-1,0),令x =0,得到A (0,k ), ∵B 的对应点N 在2x =上,∵N 点横坐标为2,故AB 往右平移了3个单位, ∵M 点横坐标为3,将x =3代入22y x =-中, 解得y =4,故M 点的坐标为(3,4), 又四边形AMNB 为菱形, ∵AB ²=AM ²,∵1+k ²=3²+(4-k )²,解得k =3, ∵A (0,3),即AB 往右平移3个单位,往上平移了1个单位, 故N 坐标为(2,1), 故选:A . 【点睛】本题考查了一次函数的平移、菱形的性质等知识点,属于基础题,计算过程中细心即可. 2.如图,在平面直角坐标系中,四边形ABCD 是菱形,//AB x 轴,点B 的坐标为()4,1,60BAD ∠=︒,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形ABCD 的两边分别交于点M ,N (点N 在点M 的上方),连接OM ,ON ,若OMN 的面积为S ,直线l 的运动时间为t 秒(06t ≤≤),则S 与t 的函数图象大致是( )A .B .C .D .【答案】C 【分析】当直线l 从A 开始运动,MN 逐渐增大,到经过点MN 达到最大值,此时AM =2,故运动时间为2,此时02t ≤≤; 当直线l 从D 开始运动,MN 保持不变,到经过点B ,此时AB =4,故运动时间为2,此时2<4t ≤;当直线l 从经过B 的位置向右开始运动,MN 开始减小,到经过点C ,MN 为0,此时BG =2,故运动时间为2,此时4<6t ≤三种情形,确定面积S 与t 的函数关系式,根据关系式确定图像即可. 【详解】解:由题意知AB =AD =CD =BC =4, ∵∵BAD =60°,∵当直线l 经过点D 时,运动时间为2, ∵C 的横坐标为6, 如图1,当02t ≤≤时,//l y 轴,AMN OMN S S S ∆∆∴== ,60,AM t BAD ︒=∠=,MN ∴=21;2S t ∴=⨯=图像是经过原点,开口向_上的- -段抛物线; 如图2,当2<4t ≤时,MN 是定长,4,60,AD BAD ︒=∠=MN ∴=1;2S t =⨯⨯∴图像是经过原点,正比例函数上的一段;2y x =的比例系数2 ∵面积线段的倾斜度要比2y x =的陡; 如图3,当4<6t ≤时,4,60,BC CBG ︒=∠=2,C G G B ∴==(4,1),(6,1),C B ∴41,61k b k b +=⎧⎪∴⎨+=⎪⎩解得1k b ⎧=⎪⎨=-⎪⎩∵直线的解析式为1y =+-∵N 坐标为(,1),t M 坐标为(1t +-11MN ∴=-+-=+1(2S t ∴=⨯⨯+;=图像是开口向下的一段抛物线; 故选:C . 【点睛】本题主要考查对动点问题的函数图象,勾股定理,三角形的面积,二次函数的图象,正比例函数的图象,含30度角的直角三角形的性质,菱形的性质等知识点的理解和掌握,能根据这些性质进行计算是解此题的关键,用的数学思想是分类讨论思想.3.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线y x =11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+【答案】A 【分析】分别过点123,,,...C C C 作x 轴的垂线,交于123,,,...D D D ,再连接112233,,,...C D C D C D,利用勾股定理及根据菱形的边长求得1A 、2A 、3A ⋯的坐标然后分别表示出1C 、2C 、3C ⋯的坐标找出规律进而求得n C 的坐标. 【详解】。
一次函数与四边形面积问题例题摘要:I.引言- 介绍一次函数和四边形面积问题- 提出本文的目标和结构II.一次函数的基本概念- 定义一次函数- 一次函数的图像和性质III.四边形面积问题的背景- 四边形面积问题的提出- 四边形面积问题的解决方法IV.一次函数与四边形面积问题的联系- 一次函数与四边形面积问题的关系- 一次函数在解决四边形面积问题中的应用V.例题解析- 例题1:使用一次函数解决四边形面积问题- 例题2:一次函数与四边形面积问题的综合应用VI.结论- 总结一次函数和四边形面积问题的关系- 提出未来研究方向和展望正文:I.引言一次函数是数学中的基础概念之一,它广泛应用于各种实际问题中。
四边形面积问题是几何中的常见问题,它涉及到四边形的面积计算。
本文将介绍一次函数和四边形面积问题的基本概念,探讨它们之间的联系,并通过例题解析来阐述一次函数在解决四边形面积问题中的应用。
II.一次函数的基本概念一次函数是形如y = kx + b 的函数,其中k 和b 是常数,x 是自变量。
一次函数的图像是一条直线,它具有以下性质:1.一次函数的图像是一条直线,其斜率等于k,截距等于b。
2.一次函数的值随着自变量x 的增大而增大或减小,具体取决于k 的正负性。
3.一次函数的图像可以通过平移来改变,平移量等于b 的绝对值。
III.四边形面积问题的背景在几何中,四边形面积问题是常见的问题之一。
给定一个四边形,如何计算它的面积?解决这个问题需要先确定四边形的边界,然后计算其面积。
四边形面积问题的解决方法有多种,如分割成三角形、使用向量等。
IV.一次函数与四边形面积问题的联系一次函数与四边形面积问题之间存在密切的联系。
在解决四边形面积问题时,我们可以通过一次函数来计算四边形的面积。
具体来说,我们可以将四边形分割成多个小三角形,然后计算这些小三角形的面积。
由于一次函数的性质,我们可以通过计算一次函数与四边形边界的交点来确定这些小三角形的面积。
一次函数与四边形面积问题例题在日常的数学学习中,一次函数与四边形面积问题时常出现在各类试题中。
那么,这两者之间究竟存在怎样的联系呢?接下来,我们将揭示这一奥秘。
首先,我们需要了解一次函数与四边形面积的关系。
一次函数一般形式为y=kx+b,其中k为斜率,b为截距。
而四边形面积可以表示为两个相邻边的长度之积与夹角的正弦值的乘积的一半。
由此可见,一次函数与四边形面积之间并无直接关系。
但是,在特定条件下,一次函数可以用来求解四边形面积问题。
接下来,我们来探讨一次函数图像的性质。
一次函数的图像是一条直线,其斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
了解了这些性质,我们可以更好地解决四边形面积问题。
那么,如何求解一次函数与四边形面积问题呢?以下是一般步骤:1.根据题意,确定一次函数的表达式。
2.求出四边形的两个相邻边的长度。
3.计算夹角的正弦值。
4.使用一次函数求解四边形面积。
为了让大家更直观地了解求解过程,我们来看一个实例。
题目:已知一次函数y=2x+1,求解与x轴、y轴围成的矩形的面积。
解:1.根据题意,已知一次函数表达式为y=2x+1。
2.求出与x轴、y轴的交点坐标:当y=0时,x=-1/2;当x=0时,y=1。
3.计算两个相邻边的长度:|-1/2|=1/2,|1|=1。
4.计算夹角的正弦值:sinθ=1/2。
5.计算矩形面积:面积=1/2 × 1 × 1/2 = 1/4。
通过以上步骤,我们成功地求解了一次函数与四边形面积问题。
总之,掌握一次函数与四边形面积的关系及求解方法,能够帮助我们更好地解决实际问题。
x
y
O
A
B
C
P
H
M
1
2、四边形OABC 是等腰梯形,OA ∥BC ,在建立如图的平面直角坐标系中,A (10,0),
B (8,6),直线x =4与直线A
C 交于P 点,与x 轴交于H 点; (1)直接写出C 点的坐标,并求出直线AC 的解析式;
(2)求出线段PH 的长度,并在直线AC 上找到Q 点,使得△PHQ 的面积为△AOC 面积
的
5
1
,求出Q 点坐标; (3)M 点是直线AC 上除P 点以外的一个动点,问:在x 轴上是否存在N 点,使得
△MHN 为等腰直角三角形?若有,请求出M 点及对应的N 点的坐标,若没有, 请说明理由.
3、如图,直线L :22
1
+-
=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点 C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。
4、如图,在平面直角坐标系中,直线L2:y=-1/2x+6与L1:y=1/2x 交于点A ,分别与x 轴、y 轴交于点B 、C 。
(1)分别求出点A 、B 、C 的坐标;
(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的函数表达式;
(3)在(2)的条件下,设P 是射线DC 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由。
5、如图,四边形OABC 与四边形ODEF 都是正方形。
(1)当正方形ODEF 绕点O 在平面内旋转时,AD 与CF 有怎样的数量和位置关系?并证明你的结论;
(2)若
ODEF 绕点O 旋转,当点D 转到直线OA 上时,DCO ∠恰好是30°,试问:当点D 转到直线OA 或直线OC 上时,求AD 的长。
(本小题只写出结论,不必写出过程)
F
E
D
C
B
A
O
6、 如图,一次函数24y x =+的图像与x y 、轴分别相交于点A 、B ,以AB 为边作正方形ABCD 。
(1)求点A 、B 、D 的坐标;
(2)设点M 在x 轴上,如果△ABM 为等腰三角形,求点M 的坐标。
7、如图,在正方形ABCD 中,点P 是射线BC 上的任意一点(点B 与点C 除外),连接DP ,分别过点C 、A 作直线DP 的垂线,垂足为点E 、F 。
(1)当点P 在BC 的延长线上时,那么线段AF 、CE 、EF 之间有怎样的数量关系?请证明
你的结论;
(2)当点P 在BC 边上时,正方形的边长为2,设,CE x AF y ==。
求y 与x 的函数关系式,并写出函数的定义域;
(3)在(2)的条件下,当1x =时,求EF 的长。
P F
E
D
C
A
D
C
B
A
8、直线3
64
y x =-
+与坐标轴分别交与点A 、B 两点,点P 、Q 同时从O 点出发,同时到达A 点,运动停止。
点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿A
B O →→运动。
(1)直接写出A 、B 两点的坐标;
(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式。
(3)当5
48
=
S 时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标。
9、如图,矩形ABCD 中,AB=1,AD=2,M 是CD 的中点,点P 在矩形的边上沿
M C B A →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,
写出定义域,并画出函数图像。
M
P
D
C
B
A
10、菱形ABCD 中,点E 、F 分别在BC 、CD 边上,且B EAF ∠=∠。
(1)如果B ∠=60°,求证:AE=AF; (2)如果)(︒<<︒=∠900ααB ,(1)中的结论:AE=AF 是否依然成立,请说明理由。
(3)如果AB 长为5,菱形ABCD 面积为20,设y AE x BE ==,,求y 关于x 的函数解析式,并写出定义域。
F
E
D C
B
A
11、如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合)。
在点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G 。
(1)由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论。
(2)连接DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域。
(3)如果正方形的边长为2,FG 的长为
2
5
,求点C 到直线DE 的距离。
G
F
E
D C
B
A
12、已知,在矩形ABCD 中,AB=10,BC=12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE=2。
1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积。
2)如图2,当四边形EFGH 为菱形,且BF=a 时,求△GFC 的面积。
(用含a 的代数式表示) 3)在(2)的条件下,△GFC 的面积能否等于2?请说明理由.
H
G
F
E
D
C
B
A
E D
C
13、如图,已知在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(2,0),经过原点的直线交线段AB 于点C ,过点C 作OC 的垂线与直线2=x 相交于点P ,设BC=t ,点P 的坐标为()y ,2
(1)求点C 的坐标(用含t 的表达式表示);
(2)求y 关于t 的函数解析式,并写出t 的取值范围; (3)当△PBC 为等腰三角形时,求点P 的坐标。
Y X
P C
B
A
O
14、如图,长方形ABCD 中,AB=3,BC=4,E 是边AD 上的动点,F 是射线BC 上的一点,BF=EF ,且交射线DC 于点G ,设AE=x ,BF=y 。
(1)当△BEF 是等边三角形时,求BF 的长;
(2)求y 与x 之间的函数解析式,并写出它的定义域;
(3)把△ABE 沿着直线BE 翻折,点A 落在点'
A 处,试探索:△BF A '
能否为等腰三角形?如果能,请写出AE 的长;如果不能,请说明理由。
C
图1
C
图2G
F
E
D
C B
A
15、如图,在等腰梯形ABCD 中,AD BC ∥, 5075135A B D C
A D
B
C ====,,,点P 从点B 出发沿折线段BA A
D DC --以每秒5个单位长度的速度向点C 匀速运动,点Q 从点C 出发沿线段CB 方向以每秒3个单位长度的速度匀速运动,过点Q 向上作射线QK BC ⊥,交折线段CD DA AB --于点
E ,点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止,设点P 、Q 运动的时间是t 秒()0t > ⑴ 当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;
⑵ 当点P 运动到AD 上时,t 为何值能使PQ DC ∥? ⑶ 设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD DA ,上时,S 与t 的函数关系式;(不必写出t 的取值范围)
⑷△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由。