高中数学必修一集合中的映射
- 格式:doc
- 大小:200.50 KB
- 文档页数:3
2.3 映射两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素x,B中总有唯一的一个元素y与它对应,就称这种对应为从A到B的映射,记作f:A→B.A中的元素x称为原像,B中的对应元素y称为x的像,记作f:x→y.谈重点映射定义的理解(1)映射中的集合A和B是非空集合,它们可以是数集、点集或由图形组成的集合以及其他元素的集合.(2)映射是一种特殊的对应,其特殊性在于:集合A中的每一个元素,在集合B中都有唯一的元素与之对应,这种集合A中元素的任意性和集合B中对应的元素的唯一性构成了映射的核心.对应关系常用图示或文字描述的方式来表达.(3)对应有“方向性”,即“从A到B的对应”与“从B到A的对应”一般是不同的,因此,从A到B的映射与从B到A的映射是不同的.(4)映射允许集合A中不同的元素在集合B中有相同的像,即映射可以是“多对一”或“一对一”,但不能是“一对多”.(5)映射允许集合B中的某些元素在集合A中没有原像,也就是由像组成的集合C⊆B.【例1-1】给出下列四个对应,其中构成映射的是( ).A.(1)(2) BC.(1)(3)(4) D.(3)(4)解析:判断一个对应是否为映射,必须严格根据定义,观察A中每一个元素是否在B中都有唯一的元素与之对应.说明一种对应关系不是映射,只需找到一个反例即可.在(2)中,集合A中的元素3在集合B中没有元素与它对应;在(3)中,集合A中的元素2在集合B中有两个元素4和5与它对应,因此(2)和(3)不是映射,故选B.答案:B解技巧判断映射的技巧映射应满足存在性(即A中每一个元素在B中都有像)和唯一性(即像唯一).所以,判断一个对应是否为映射,关键是看是否具备:①“一对一”或“多对一”;②A中元素都有像.【例1-2】下列对应是不是从A到B的映射?(1)A=B=N+,f:x→|x-3|;(2)A={x|x≥2,x∈N},B={y|y≥1,y∈Z},f:x→y=x2-2x+2;(3)A=R,B={0,1},f:x→y=10 00xx≥⎧⎨<⎩,,,;(4)A={x|x>0},B={y|y∈R},f:x→y=(5)设A={矩形},B={实数},对应关系f为矩形到它的面积的对应;(6)设A={实数},B={正实数},对应关系f为x→1||x.解:(1)当x=3∈A时,|x-3|=0∉B,即A中的元素3按对应关系f,在B中没有元素和它对应,故(1)不是映射.(2)∵y=x2-2x+2=(x-1)2+1,对任意的x,总有y≥1.又当x∈N时,x2-2x+2必为整数,即y∈Z.∴当x ∈A 时,x 2-2x +2∈B .∴对A 中每一个元素x ,在B 中都有唯一的y 与之对应,故(2)是映射.(3)按照对应关系f ,在A 中任意一个非负数,在B 中都有唯一的数1与之对应;在A 中任意一个负数,在B 中都有唯一的数0与之对应,故(3)是映射.(4)对任意的x ∈A ={x |x >0},按对应法则f :x →y=,存在两个y ∈B ={y |y ∈R },即y =y =与之对应,故(4)不是映射.(5)∵对每一个矩形,它的面积是唯一确定的,∴对于集合A 中的每一个矩形,B 中都有唯一的实数与之对应,故(5)是映射.(6)∵实数0的绝对值还是0,其没有倒数,∴对于A 中的实数0,B 中没有元素与之对应,故(6)不是映射.2.一一映射的概念若从A 到B 的映射满足下列条件:①A 中每一个元素在B 中都有唯一的像与之对应;②A 中的不同元素的像也不同;③B 中的每一个元素都有原像.就称此映射为一一映射.有时,我们把集合A ,B 之间的一一映射也叫作一一对应.映射造出多少个映射?其中有多少个一一映射?分析:可根据映射的定义,构造从集合A 到集合B 的映射,即让A 中的每一个元素在B 中都有唯一的元素与之对应.从集合A 到集合B 的映射,若对应关系不同,则所得到的映射不同.最后依据一一映射的概念从中数出一一映射的个数.解:从集合A 到集合B 可构造如下映射(其中的对应关系用箭头表示):(3),A 到集合B 能构造出4个映射,其中有2个一一映射.【例2-2】若M ={x |0≤x ≤2},N ={y |0≤y ≤1},下列对应关系f :x →y 是从M 到N 的一一映射的是( ).A .12y x =B .13y x = C .212y x = D .y =(x -1)2 解析:一一映射首先是映射,其次是A 中的不同元素在B 中的像不同,且B 中的每一个元素在A 中都有原像,只有满足这三个条件的对应关系,才是从A 到B 的一一映射.在选项A 中,当0≤x ≤2时,0≤y ≤1,对于集合M 中的每一个元素在N 中都有唯一的像与之对应,且M 中的不同元素的像也不同,N 中的每个元素都有原像,符合一一映射的三个条件;在选项B 中,当0≤x ≤2时,0≤y ≤23,所以集合N 中的元素y ∈213y y ⎧⎫<≤⎨⎬⎩⎭在M 中没有原像;在选项C 中,当0≤x ≤2时,0≤y ≤2,所以集合M 中的元素x ∈{x x ≤2}在N 中没有像;在选项D 中,当x =0和2时,都有y =1,所以集合M 中的不同元素的像可能相同,故选A.(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素:非空集合A 、非空集合B 以及A ,B 之间的对应关系.(2)函数定义中的两个集合为非空数集;映射中两个非空集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个数x ,在值域中都有唯一确定的函数值和它对应,在映射中,对集合A 中的任意元素a 在集合B 中都有唯一确定的像b 和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的值和它对应;在映射中,对于集合B 中的任一元素b ,在集合A 中不一定有原像.(5)函数是一种特殊的映射,是从非空数集到非空数集的映射.函数概念可以叙述为:设A ,B 是两个非空数集,f 是A 到B 的一个映射,那么映射f :A →B 就叫作A 到B 的函数.在函数中,原像的集合称为定义域,像的集合称为值域.(1)A =R ,B =R ,f :x →y =11x +;(2)A ={三角形},B ={圆},f :三角形的内切圆; (3)A =R ,B ={1},f :x →y =1;(4)A =[-1,1],B =[-1,1],f :x →x 2+y 2=1.分析:映射是一种特殊的对应,函数是一种特殊的映射,判断两个集合间的对应关系是否为函数时,只需把握两点:一、两个集合是否都是非空数集;二、对应关系是否为映射.解:(1)当x =-1时,y 的值不存在,所以不是映射,更不是函数.(2)由于A ,B 不是数集,所以(2)不是函数,但每个三角形都有唯一的内切圆,所以(2)是A 到B 的映射.(3)A 中的每一个数都与B 中的数1对应,因此,(3)是A 到B 的函数,也是A 到B 的映射.(4)取x =0,则由x 2+y 2=1,得y =±1,即A 中的一个元素0与B 中的两个元素±1对应,因此(4)不是A 到B 的映射,也不是从A 到B 的函数.警误区 关系式x =1是函数吗?有的同学问:关系式y =1是y 关于x 的函数,那么关系式x =1是y 关于x 的函数吗?函数是一种特殊的映射,是非空数集间的一种映射.对于关系式x=1,显然有x∈{1},y∈R,则1与全体实数建立对应关系,不符合函数的定义,因此,“x=1”不是y关于x的函数.4.像与原像的求解问题(1)对于一个从集合A到集合B的映射f而言,A中的每个元素x,在f的作用下,在B 中都对应着唯一的元素y,则y称为像,而x叫原像.(2)对于给出原像求像的问题,只需将原像代入对应关系式中,即可求出像.对于给出像求原像的问题,可先设出原像,再代入对应关系式中得到像,而它与已知的像是同一个元素,从而求出原像;也可根据对应关系式,由像逆推出原像.解答此类问题,关键是:①分清原像和像;②搞清楚由原像到像的对应关系.例如:已知M={自然数},P={正奇数},映射f:a(a∈M)→b=2a-1(b∈P).则在映射f下,M中的元素11对应着P中的元素________;P中的元素11对应着M中的元素________.∵2×11-1=21,∴M中的元素11对应着P中的元素21.由2a-1=11,得a=6,∴P中的元素11对应着M中的元素6.【例4-1】已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原像分别对应6和9,则19在f作用下的像为( ).A.18 B.30 C.272D.28解析:由题意,可知64,910,a ba b+=⎧⎨+=⎩解得a=2,b=-8,∴对应关系为y=2x-8.故19在f作用下的像是y=2×19-8=30.答案:B【例4-2】已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y +1,4x+3y-1).(1)求A中元素(1,2)的像;(2)求B中元素(1,2)的原像.分析:解答(1)可利用x=1,y=2代入对应关系求出3x-2y+1与4x+3y-1的值便可,解答(2)可利用方程的观点解方程组321=1431=2x yx y-+⎧⎨+-⎩,,求出x,y的值便可.解:(1)当x=1,y=2时,3x-2y+1=0,4x+3y-1=9,故A中元素(1,2)的像为(0,9).(2)令32114312x yx y-+=⎧⎨+-=⎩,,得6,179.17xy⎧=⎪⎪⎨⎪=⎪⎩故B中元素(1,2)的原像是69, 1717⎛⎫ ⎪.(1)一般地,若集合A中含有m个元素,集合B中含有n个元素,则从A到B的映射有n m 个,从B到A的映射有m n个.例如:求集合A={a,b,c}到集合B={-1,1}的映射的个数.按照映射的定义,A中元素可都对应B中同一个元素,即a→-1,b→-1,c→-1或a→1,b→1,c→1,共有2个不同的映射;A中元素也可对应B中两个元素,即a→-1,b→-1,c→1或a→-1,b→1,c→-1或a→1,b→-1,c→-1或a→1,b→1,c→-1或a→1,b→-1,c→1或a→-1,b→1,c→1,共有6个不同的映射,综上可知,从A到B的映射共有2+6=8=23个.以后可以根据两个集合中元素的个数直接计算映射的个数.(2)计算满足某些特定要求的映射的个数时,关键是将映射具体化、形象化(如用列表法、图像法、数形结合等).例如,设M={a,b,c},N={-1,0,1},若从M到N的映射f满足f(a)+f(b)=f(c),求这样的映射f的个数.要确定映射f,则只需要确定M中的每个元素对应的像即可,即确定f(a),f(b),f(c)的值.而f(a),f(b),f(c)∈{-1,0,1},还满足f(a)+f(b)=f(c),因此要确定这样的映射f的个数,则只需要确定由-1,0,1能组成多少个等式( )+( )=( ).注意到映射不要求N f(c)的取值情况表示出来.【例5-1】集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.解析:由于f(3)=3,因此只需考虑剩下的两个元素1和2的像的问题,总共有如图所示的4种可能(也可直接利用公式得到这样的映射共有22=4个).答案:4【例5-2】已知集合A={a,b,c},B={1,2},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有________个.解析:要确定映射f,则只需确定A中的每个元素对应的像即可,即确定f(a), f(b),f(c)的值,而f(a),f(b),f(c)∈{1,2},还满足f(a)+f(b)+f(c)=4,所以f(a),f(b),f(c)中有一个是2,另两个是3个.答案:3【例5-3】设集合A={1,2,3},集合B={a,b,c},那么从集合A到集合B的映射的个数为________,从集合A到集合B的一一映射的个数为________.解析:因为集合A中有3个元素,集合B中有3个元素,所以从集合A到集合B的映射有33=27个.其中A到B的一一映射有下面6种情形.答案:27 6。
必修一第一章 集合与函数概念二、函数知识点8:函数的概念以及区间 1》函数概念设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2》区间和无穷大①设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; ②{x|a<x<b}=(a,b) 叫开区间;③{x|a ≤x<b}=[,)a b , {x|a<x ≤b}=(,]a b ,都叫半开半闭区间.④符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.典例分析题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( )A 、x y x f 21)(=→ B 、x y x f 31)(=→ C 、x y x f 32)(=→ D 、x y x f =→)(例2:下列对应关系是否是从A 到B 的函数:①}{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方;③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。
经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
映射的概念1、映射的概念:设A,B 是两个非空集合,如果按照某种对应法则f ,使对于-______________________,在B 中都有 ______________________,那么,这样的单值对应叫做集合A 到集合B 的 _______,记作_______2、对应与映射,映射与函数的关系_______ 二、例题分析:例1、如图所示的对应中,哪些是A 到B 的映射?例2、在下列集合A 到集合B 的对应中是映射的是( )A:*N B A ==,对应法则:|3|:-→x x fB:}1,0{,==B R A ,对应法则:⎩⎨⎧<≥→)0(0)0(1:x x x f C:R B A ==,对应法则:x x f ±→: D:Q B Z A ==,,对应法则::f 取倒数例3、已知映射},|),{(,:R y R x y x B A B A f ∈∈==→,:f A 中的元素),(y x 对应B 中的元素为)134,123(-++-y x y xa 1a 2 a 3 a 4b 1 b 2 b 3 b 4 a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 a 2 a 1 a 3 a 4 b 1 b 2 b 3 b 4a 2a 1b 1 b 2 b 3 b 4 a 2a 1b 1 b 2a 2 a 1 a 3 a 4b 1 b 2(1) (2)(3)(4)(5) (6)求A 中元素(1,2)与B 中的哪个元素对应? A 中哪些元素与B 中元素(1,2)对应?例4、①集合{1,2,3,4},{5,6}A B ==,则A 到B 的不同映射有_______个。
②集合}1,0,1{},,,{-==N c b a M ,映射NM f →:满足0)()()(=++c f b f a f ,那么映射N M f →:的个数是_______个。
练习若B={-1,3,5},试找出一个集合A ,使得:21f x x →-是A 到B 的映射。
高中数学映射的教案教学目标:1. 理解数学映射的概念和基本性质。
2. 掌握如何判断一个给定关系是否为映射。
3. 能够在实际问题中应用映射的概念解决问题。
教学重点:1. 映射的定义和基本性质。
2. 判断一个给定关系是否为映射。
3. 应用映射解决实际问题。
教学难点:1. 理解映射和函数的区别。
2. 能够准确地判断一个关系是否为映射。
教学准备:1. 教师备好教材、教具和课件。
2. 学生预先学习相关知识。
3. 教师准备案例题目和练习题。
教学过程:一、导入(5分钟)教师引导学生回顾函数的概念,并告诉学生今天将学习数学映射的内容。
二、讲解映射的概念和基本性质(15分钟)1. 教师讲解映射的定义和基本性质,引导学生理解映射的概念。
2. 教师通过示例说明映射的性质,让学生加深对映射的理解。
三、判断关系是否为映射(15分钟)1. 教师讲解判断一个给定关系是否为映射的方法。
2. 教师通过案例指导学生如何判断一个关系是否为映射。
四、应用映射解决实际问题(10分钟)1. 教师给出一个实际问题,引导学生运用映射的概念解决问题。
2. 学生尝试独立解决问题,教师及时给予指导和反馈。
五、课堂练习(10分钟)学生完成几道与映射相关的练习题,巩固所学知识。
六、总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生对映射的概念进行复习。
七、作业布置(5分钟)布置相关习题作业,督促学生加强练习。
教学反思:本节课主要是对数学映射的基本概念和性质进行讲解,通过案例和练习引导学生深入理解映射的概念。
教学中应注意引导学生掌握映射的判定方法和应用技巧,激发学生对数学的兴趣和学习的动力。
第十三课时 映射的概念[学习导航]知识网络映射⎪⎩⎪⎨⎧映射与函数的关系映射的概念对应的概念学习要求1、了解映射的概念,能够判定一些简单的对应是不是映射。
2、通过对映射特殊化的分析,揭示出映射与函数之间的内在联系。
自学评价1、对应是两个集合元素之间的一种关系,对应关系可用图示或文字描述来表示。
2、一般地设A 、B 两个集合,如果按某种对应法那么f ,对于A 中的每一个元素,在B 中都有唯一的元素与之对应,那么,这样的单值对应叫做集合A 到集合B 的映射,记作:f:A →B3、由映射的概念可以看出,映射是函数概念的推广,特殊在函数概念中,A 、B 为两个非空数集。
[精典X 例]一、判断对应是否为映射例1、以下集合M 到P 的对应f 是映射的是( )A.M={-2,0,2},P={-1,0,4},f :M 中数的平方B.M={0,1},P={-1,0,1},f:M 中数的平方根C.M=Z ,P=Q ,f:M 中数的倒数。
D.M=R ,P=R +,f:M 中数的平方二、映射概念的应用例2、集合A=R ,B={(x,y)|x,y ∈R},f:A →B 是从A 到B 的映射,f:x →(x+1,x 2+1),求A 中的元素2在B 中的象和B 中元素(23,45)在A 中的原象。
思维分析:将x=2代入对应关系,可求出其在B 中对应元素,(23,45)在A 中对应的元素可通过列方程组解出。
三、映射与函数的关系例3、给出以下四个对应的关系①A=N*,B=Z,f:x→y=2x-3;②A={1,2,3,4,5,6},B={y|y∈N*,y ≤5},f:x→y=|x-1|;③A={x|x≥2},B={y|y=x2-4x+3},f:x →y=x-3;④A=N,B={y∈N*|y=2x-1,x∈N*},f:x →y=2x-1。
上述四个对应中是函数的有( )A.①B.①③C.②③ D.③④思维分析:判断两个集合之间的对应是否构成函数,首先应判断能否构成映射,且构成映射的两个集合之间对应必须是非空数集之间的对应。
1.2函数的概念和性质1.2.1对应、映射和函数第一课时映射请思考并分析下面给出的对应关系,它们有什么共同特点?(1)集合A={全班同学},集合B={全班同学的姓},对应关系是:集合A中的每一个同学在集合B中都有一个属于自己的姓.(2)设集合A={0,-3,2,3,-1,-2,1},集合B={9,0,4,1,5},对应关系是:集合A中的每一个数,在集合B中都有其对应的平方数(如图所示).1.映射的定义设A,B是两个非空的集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一元素和它对应,这样的对应叫作从集合A到集合B的映射,记作f:A→B.2.像与原像在映射f:A→B中,集合A叫做映射的定义域,与A中元素x对应的B中的元素y叫x 的像,记作y=f(x),x叫作y的原像.已知集合A={a,b},B={0,1},则下列对应不是从A到B的映射的是()[提示]A、B、D都是映射,对于C,元素a对应两个元素0,1.不满足唯一性,不是映射.故选C.[例1] (1)A =N ,B =N +,f :x →|x -1|;(2)A ={x |0≤x ≤6},B ={y |0≤y ≤2},f :x →y =12x ;(3)A ={x ||x |≥3,x ∈N},B ={a |a ≥0,a ∈Z}, f :x →a =x 2-2x +4.[思路点拨] 首先明确对应关系,然后从映射的定义出发,考查A 中任意一个元素在B 中是否都有唯一的元素与之对应.[解] (1)集合A =N 中元素1在对应关系f :x →|x -1|下为0,而0∉N +,即A 中元素1在对应关系f 下,B 中没有元素与之对应,故不是映射.(2)A 中元素6在对应关系f :x →y =12x 下为3.而3∉B ,故不是映射.(3)对A ={x ||x |≥3,x ∈N}中的任意元素,总有整数x 2-2x +4=(x -1)2+3∈B 与之对应.故是从A 到B 的映射.1.已知A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →x2x +1. (1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么?解:(1)A 中元素1,即x =1,代入对应关系得x 2x +1=12×1+1=13,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即x 2x +1=49,解得x =4,因此与B 中元素49相对应的A 中的元素是4.[例2] 设f :A →B 是从A 到B 的一个映射,其中A =B ={(x ,y )|x ,y ∈R},f :(x ,y )→(x -y ,x +y ),那么A 中元素(-1,2)的像是________,B 中元素(-1,2)的原像是________.[思路点拨] 首先要理解映射、像、原像的概念,然后从像与原像的概念出发进行思考.[解] 当x =-1,y =2时,有x -y =-3,x +y =1, 因此(-1,2)的像是(-3,1),解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =2.得⎩⎨⎧x =12,y =32.∴(-1,2)的原像是⎝⎛⎭⎫12,32.2.f :A →B 是集合A 到集合B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R},f :(x ,y )→(kx ,y +b ),若B 中的元素(6,2)在此映射下与集合A 中的元素(3,1)对应,求k 与b 的值.解:当⎩⎪⎨⎪⎧ x =3y =1时,⎩⎪⎨⎪⎧ kx =3k =6y +b =b +1=2⇒⎩⎪⎨⎪⎧k =2,b =1.故k =2,b =1.1.已知集合A ={1,2,3,4},B ={5,6,7},在下列A 到B 的四种对应法则中,其中A 到B 的映射是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)解析:选A ∵(1)(2)中,A 中任意一个元素在B 中都有唯一一个元素与之对应,∴(1)(2)是映射.而(3)集合A 中元素4没有元素与之对应,(4)中元素3在B 中有两个元素与之对应. 2.设集合A ={1,2,3,4,5},B ={1,9,25,49,81,100},下面的对应关系f 能构成A 到B 的映射的是( )A .f :x →(2x +1)2B .f :x →(2x -3)2C .f :x →-2x -1D .f :x →(2x +1)3解析:选B ∵A 选项中A 中元素5→(2×5+1)2=112∉B , C 选项中A 中元素1→-2×1-1=-3∉B , D 选项中A 中元素1→(2×1+1)3=27∉B , ∴B 选项正确.3.给定映射f :(x ,y )→(x +2y,2x -y ),在映射f 下(3,1)的原像为( ) A .(1,3) B .(1,1) C .(3,1)D.⎝⎛⎭⎫12,12解析:选B 依题意得:⎩⎪⎨⎪⎧ x +2y =3,2x -y =1,∴⎩⎪⎨⎪⎧x =1,y =1.4.已知集合A ={a ,b },B ={c ,d },则A 到B 的一一映射有________个. 解析:A →B 的映射有2个,如图.答案:25.已知映射f :A →B ,其中A ={-2,-1,1,2,3},集合B 中的元素都是A 中元素在f 下的像,且对任意a ∈A ,f (a )=|a |a ,则集合B 中的元素有________个,若1∈B ,则1的原像是________.解析:依题意有:-2→|-2|-2=-1,-1→|-1|-1=-1,1→|1|1=1,2→|2|2=1,3→|3|3=1,∴B 中的元素有2个,若1∈B ,则1的原像有3个,且是1,2,3.答案:2 1,2,36.已知集合A 到集合B ={0,1,2,3}的映射f :x →1|x |-1,试问集合A 中的元素最多有几个?写出元素最多时的集合A .解:∵f :x →1|x |-1是集合A 到集合B 的映射, ∴A 中每一个元素在集合B 中都应该有像. 令1|x |-1=0,该方程无解,所以0没有原像. 分别令1|x |-1=1,2,3.解得x =±2,±32,±43.故集合A 中的元素最多有6个 即A =⎩⎨⎧⎭⎬⎫2,-2,32,-32,43,-43 .通过对映射的学习,你觉得映射有哪些特性?映射是一种特殊的对应,它满足“存在性(即集合A中的每一个元素在集合B中都有对应元素)”和“唯一性(集合A中的每一个元素在集合B中都有唯一元素与之对应)”;但集合B中的元素未必有原象,即使有也未必唯一.映射中的两个集合A,B可以是数集、点集或由图形组成的集合等.封闭性:A中元素的对应元素必在集合B中,如集合A={1,2,3,4},B={1,2,3,4,5},对应法则f:x→x-1,这组对应不是映射.有序性:“A到B”的映射是有方向的,A到B的映射与B到A的映射一般不是同一个映射.整体性:映射不是只有集合A或者集合B,而是集合A、B以及对应法则f的整体,是一个系统,记作f:A→B.有时,当映射为f:A→B时,集合A中的元素a对应集合B中的元素b,也可表示为f:a→b=f(a)或者直接写成b=f(a).一、选择题1.已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A 中元素映射f下的像,且对任意的a∈A,在B中都有和它对应的元素|a|,则集合B中的元素的个数有()A.4B.5C.6 D.7解析:选A由对应法则可知,B中的元素有1、2、3、4,∴B中的元素有4个.2.已知集合A=N+,B={正奇数},映射f:A→B使A中任一元素a和B中元素2a-1相对应,则与B中元素17对应的A的元素为()A.3 B.5C.17 D.9解析:选D由对应法则有:17=2a-1,∴a=9.3.给出下列两个集合之间的对应法则,回答问题:①A ={你们班的同学},B ={体重},f :每个同学对应自己的体重; ②M ={1,2,3,4},N ={2,4,6,8},f :n =2m ,n ∈N ,m ∈M ; ③M =R ,N ={x |x ≥0},f :y =x 4;④A ={中国,日本,美国,英国},B ={北京,东京,华盛顿,伦敦},f :对于集合A 中的每一个国家,在集合B 中都有一个首都与它对应.上述四个对应中是映射的有________,是函数的有________,是一一映射的有________.( )A .3个,2个,1个B .3个,3个,2个C .4个,2个,2个D .2个,2个,1个解析:选C 由映射、函数、一一映射的定义可知:①②③④是映射,②③是函数,②④是一一映射.4.设f :x →x 2是集合A 到集合B 的映射,如果B ={1,2},则A ∩B 可能是( ) A .∅ B .∅或{1} C .{1}D .∅或{2}解析:选B 依题设知:A 可能为:{1,2},{1,-2},{-1,2},{-1,-2},{1,2,-1},{1,-1,-2},{1,2,-2},{-1,2,-2},{-1,1,2,-2},{1},{-1},{2},{-2}.∴A ∩B 可能为∅,可能为{1}. 二、填空题5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别为3和10,则5在f 下的像是________.解析:由题知⎩⎪⎨⎪⎧ 3a +b =1,10a +b =8,∴a =1,b =-2,∴f :x →y =x -2,则5-2=3. 答案:36.已知映射f :A →B ,其中A =R =B ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在原像,则k 的取值范围是________.解析:∵y =-x 2+2x =-x 2+2x -1+1=-(x -1)2+1, ∴y ≤1.则B =(-∞,1],∵k ∈R ,且在集合A 中不存在原像,∴k >1. 答案:k >1 三、解答题7.设A ={(x ,y )|x +y <3,且|x |<2,x ∈Z ,y ∈N +},B ={0,1,2},f :(x ,y )→x +y ,判断f 是否为A 到B 的映射.解:列举法写出集合A .A ={(0,1),(0,2),(1,1),(-1,1),(-1,2),(-1,3)},B ={0,1,2},f 为A 到B 的映射.8.已知映射f :A →B 中,A =B ={(x ,y )|x ∈R ,y ∈R},f :A 中的元素(x ,y )对应到B 中的元素(3x +y -1,x -2y +1).(1)是否存在这样的元素(a ,b )使它的像仍是自己?若存在,求出这个元素;若不存在,说明理由;(2)判断这个映射是不是一一映射? 解:(1)以自己为像的元素(a ,b )满足方程组⎩⎪⎨⎪⎧3a +b -1=a ,a -2b +1=b ,解得⎩⎨⎧a =27,b =37.∴存在元素⎝⎛⎭⎫27,37使它的像仍是自己. (2)设B 中的元素(a ,b )在A 中原像是(x ,y ),则⎩⎪⎨⎪⎧3x +y -1=a ,x -2y +1=b ,解得⎩⎨⎧x =2a +b +17,y =a -3b +47.说明方程组有唯一解. 即(a ,b )在A 中的原像唯一. 所以该映射是一一映射.。
高一数学必修一人教b版知识点高中数学是学生学习的重点科目之一,而数学必修一则是高中数学课程中的基础部分。
本文将简要介绍高一数学必修一人教B版的知识点,以帮助学生更好地学习和理解这些概念。
一、集合与函数在数学必修一中,首先介绍了集合与函数的基本概念。
集合是由若干个元素构成的整体,通过花括号{}来表示。
而函数则是一种特殊的关系,它将一个集合的每个元素映射到另一个集合的元素上。
二、二次函数二次函数是高中数学中的重要概念之一。
它的函数表达式为y=ax²+bx+c。
其中,a、b、c为常数,a≠0。
二次函数的图像是一个抛物线,其开口方向由a的正负号决定。
学生需要掌握二次函数图像的性质,如顶点坐标、对称轴等。
三、函数的图像与性质在高一数学必修一中,还介绍了其他函数的图像与性质。
例如,一次函数的图像是一条直线,其函数表达式为y=kx+b。
学生需要理解直线的斜率和截距对图像的影响。
另外,指数函数、对数函数以及三角函数等都是高中数学中常见的函数类型,学生需要学习它们的特点和性质。
四、立体几何数学必修一中的几何部分主要涉及到平面几何和立体几何。
其中,立体几何是较为复杂的部分之一。
学生需要掌握立体图形的名称、性质以及相关的计算方法。
例如,正方体、球体和圆锥等都是常见的立体图形,学生需要了解它们的表面积和体积计算公式。
五、统计与概率统计与概率是高中数学中的重要内容之一。
在必修一中,学生将学习有关数据的收集和整理方法,以及对数据进行分析和解读的技巧。
此外,概率部分也是必修一的重点之一。
学生需要掌握事件概率的计算方法,如样本空间、事件等的概念。
总结起来,高一数学必修一人教B版的知识点主要涵盖集合与函数、二次函数、函数的图像与性质、立体几何以及统计与概率等内容。
这些知识点是高中数学学习的基础,也是学生进一步学习数学的前提。
通过系统地学习和理解这些概念,学生能够建立起扎实的数学基础,为高中数学的深入学习打下坚实的基础。
高中数学必修一集合中的映射
1.映射f : A →B 的概念。
在理解映射概念时要注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
如(1)设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合(答:A );
(2)点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________(答:(2,-1));
(3)若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个(答:81,64,81);
(4)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个(答:12);.
2.函数f : A →B 是特殊的映射。
特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。
如(1)已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈=I 中所含元素的个数有 个(答: 0或1);
(2)若函数422
12+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)
映射练习题
1已知集合{}40≤≤=x x A ,{}20≤≤=y y B ,下列从A 到B 的对应关系f 不是映射的是( )
A x y x f 21:=→
B x y x f 3
2:=→ C x y x f 31:=→ D 28
1:x y x f =→ 2.给定映射:(,)(2,2)f a b a b a b →+-,则在映射f 下,(3,1)的原象是( )
A .(5,5)
B .(1,1)
C .(3,1)
D .11(,)22 3已知映射B A f →:,期中{}4,3,2,1,1,2,3---=A ,集合B 中的元素都是A 中元素在f 下的象且对于任意的A a ∈,a a f =)(,则集合B 中元素的个数是( )
A 4
B 5
C 6
D 7
4.设M=R ,从M 到P 的映射112+=
→x y x f ∶,则象集P 为( ) A .{y|y ∈R} B .{y|y ∈R +}
C .{y|0≤y ≤2}
D .{y|0<y ≤1} 5.已知P ={0,1},Q ={-1,0,1},f 是从P 到Q 的映射,则满足f (0)>f (1)的映射有( )个
A .2
B .3
C .4
D .5
6从集合{}b a A ,=到集合{}2,1=B 的映射有多少个( )
A 2
B 3
C 4
D 5
变式1:集合{}c b a A ,,=到集合{}2,1=B 的映射有多少个
变式2:集合{},,b a A =到集合{}3,2,1=B 的映射有多少个
变式3:已知映射B A f
→:,集合{}c b a A ,,=到集合{}3,2,1=B ,如果2)(=b f 则从A 到B 的映射有多少个?
8设{}c b a A ,,=,{}1,0,1--=B ,从A 到B 的映射满足)
()()(b f c f a f -=试问这样的映射的个数是( )
A 27
B 9
C 6
D 7
9、已知集合=A {}m ,3,2,1,集合{}a a a B 3,,7,424+=,其中
.,,,**B y A x N a N m ∈∈∈∈13:+=→x y x f 是从集合A 到集合B 的函数,求B A a m ,,,
10、已知映射B A f →:,其中A =B =R ,对应法则为
32:2++=→x x y x f 若对实数B k ∈,在集合中
A 不存在原象,则k 的取值范围是______________。