(整理)幂级数的应用
- 格式:doc
- 大小:144.50 KB
- 文档页数:5
泰勒级数和幂级数的定义和应用泰勒级数和幂级数是微积分中经常使用的级数形式,它们可以用于各种函数的逼近和计算。
本文将介绍泰勒级数和幂级数的定义和应用,并且讨论两者的区别和联系。
一、泰勒级数的定义及应用(一)泰勒级数的定义泰勒级数是一类特殊的幂级数,它的一般形式可以写为:$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$其中 $f^{(n)}(a)$ 表示 $f(x)$ 在 $x=a$ 处的 $n$ 阶导数。
泰勒级数是把一个函数在某一点处展开成无穷项的幂级数,从而能够方便地计算、逼近该函数。
对于某些简单的函数而言,它们的泰勒级数是已知的,因此可以把任意复杂的函数展开成这些简单函数的线性组合,从而方便计算。
(二)泰勒级数的应用泰勒级数可以应用于各种不同类型的函数,例如三角函数、指数函数、对数函数、多项式函数等等,下面列举几个例子:(1)正弦函数的泰勒级数为:$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$可以看出,这个泰勒级数是无穷个奇数指数幂的和,因此可以用来计算任意一个正弦函数。
(2)自然对数函数的泰勒级数为:$\ln (1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$可以看出,这个泰勒级数是无穷个奇数次幂上符号不同的和,因此可以用来计算自然对数函数。
(3)多项式函数可以展开为幂级数的形式,例如:$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$该多项式函数可以表示为其泰勒级数的有限项之和,从而可以用于函数的逼近。
二、幂级数的定义及应用(一)幂级数的定义幂级数是一类形式简单的级数,其一般形式可以写为:$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$其中 $c_n$ 是常数,$a$ 是幂级数的中心,它表示在 $a$ 点展开。
幂级数展开在微积分中的应用微积分是数学中的一门重要学科,它研究的是变化和连续的性质,并广泛应用于科学、工程、经济学等领域。
在微积分中,幂级数展开是一种重要的工具,可以用于计算复杂函数的近似值,解决微积分问题,近似解方程等。
本文将介绍幂级数展开在微积分中的应用。
一、幂级数展开的基本概念在微积分中,幂级数展开是一种用无限项级数来逼近函数的近似方法。
幂级数展开可以将任意的函数表示为一系列多项式的和,其一般形式为:$$f(x)=\sum\limits_{n=0}^\infty a_n(x-x_0)^n$$其中 $a_n$ 是常数项,$x_0$ 是幂级数展开的中心点,$n$ 取遍整数。
当 $x=x_0$ 时,级数的和是 $a_0$;当 $x$ 离 $x_0$ 越远时,高次项的权重越小,这种逼近方法的精度也会越高。
二、1.计算函数的近似值幂级数展开可以将复杂函数表示为一系列简单的多项式的和,由此可以得到函数的近似值。
例如,对于 $\sin x$ 函数,可以将其幂级数展开为:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots $$当 $x$ 很小的时候,可以截去高次项的部分,得到近似的表达式 $\sin x \approx x$。
这种方法在计算科学和工程中经常被使用,可以大大减少计算量。
2.解决微积分问题幂级数展开还可以用于解决微积分问题,如求导、积分等。
例如,对于 $\ln(1+x)$ 函数,可以将其幂级数展开为:$$\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots$$对其求导得:$$(\ln(1+x))'=\frac{1}{1+x}=1-x+x^2-x^3+\cdots $$这种方法可以用于求解高阶导数、不定积分等问题。
同时,幂级数展开还可以用于计算曲线的弧长、面积等。
幂级数运算幂级数是一种非常重要的数学工具,它在数学、物理、工程等领域都有广泛的应用。
幂级数的运算是幂级数理论的核心,下面我们来详细了解一下幂级数的运算。
我们需要了解什么是幂级数。
幂级数是指形如∑an(x-a)n的无穷级数,其中a和an是常数,x是变量。
幂级数的收敛半径R是一个非负实数,它表示幂级数在哪些点上收敛,而在哪些点上发散。
当x-a的绝对值小于R时,幂级数收敛;当x-a的绝对值大于R时,幂级数发散;当x-a的绝对值等于R时,幂级数可能收敛也可能发散。
接下来,我们来看看幂级数的加法运算。
设有两个幂级数∑an(x-a)n 和∑bn(x-a)n,它们的收敛半径分别为R1和R2。
如果R1=R2,则它们可以直接相加,即∑(an+bn)(x-a)n。
如果R1≠R2,则它们只能在它们的交集上相加,即在|x-a|<min{R1,R2}的范围内相加。
接下来,我们来看看幂级数的减法运算。
设有两个幂级数∑an(x-a)n 和∑bn(x-a)n,它们的收敛半径分别为R1和R2。
如果R1=R2,则它们可以直接相减,即∑(an-bn)(x-a)n。
如果R1≠R2,则它们只能在它们的交集上相减,即在|x-a|<min{R1,R2}的范围内相减。
接下来,我们来看看幂级数的乘法运算。
设有两个幂级数∑an(x-a)n 和∑bn(x-a)n,它们的收敛半径分别为R1和R2。
它们的乘积为∑cn(x-a)n,其中cn=∑an-kbk,k从0到n。
幂级数的乘法运算比较复杂,需要注意的是,幂级数的乘积的收敛半径不一定等于两个幂级数的收敛半径之积。
我们来看看幂级数的除法运算。
设有两个幂级数∑an(x-a)n和∑bn(x-a)n,它们的收敛半径分别为R1和R2。
如果R1=R2,则它们可以直接相除,即∑an/bn(x-a)n。
如果R1≠R2,则它们只能在它们的交集上相除,即在|x-a|<min{R1,R2}的范围内相除。
需要注意的是,幂级数的除法运算只有在bn≠0时才有意义。
幂级数及其应用教案一、引言幂级数是数学中的重要概念,广泛应用于各个领域。
本教案旨在介绍幂级数的基本定义和性质,并展示其在实际问题中的应用。
二、幂级数的概念和性质1. 幂级数的定义幂级数是形如∑(n=0)^(∞) a_n x^n 的无穷级数,其中 a_n 是常数系数,x 是变量。
幂级数也可以写作∑(n=0)^(∞) a_n (x-a)^n,其中 a 是常数。
2. 幂级数的收敛性幂级数的收敛性取决于变量 x 取值范围以及常数系数 a_n 的取值。
当幂级数在某个范围内收敛时,可以使用幂级数表示函数。
3. 幂级数的收敛半径幂级数的收敛范围可以用收敛半径来表示。
收敛半径 R 可以通过求解极限lim(n→∞) |a_(n+1)/a_n| 来得到。
4. 幂级数的和函数幂级数的和函数是通过幂级数各项求和得到的函数。
在幂级数的收敛范围内,和函数与原函数是等价的。
5. 幂级数的运算幂级数可以进行常见的加法、减法、乘法和除法运算。
这些运算可以通过对应幂级数的各项进行逐项运算得到。
三、幂级数的应用1. 函数逼近幂级数可以用来逼近复杂函数,通过截取幂级数的有限项进行近似计算。
这在数值计算和信号处理中都有广泛应用。
2. 微分方程的求解一些微分方程的解可以表示为幂级数的形式。
这样的形式可以简化微分方程的求解过程,常用于常微分方程和偏微分方程的求解。
3. 物理问题的建模幂级数在物理问题的建模中也有应用。
例如,波动方程、热传导方程等可以通过幂级数得到其解析解,从而更好地理解这些物理现象。
四、实例演示以函数逼近为例,假设需要逼近函数 f(x)=sin(x)。
我们可以通过幂级数展开sin(x),截取其中的有限项来逼近函数 f(x),并与实际函数进行比较。
五、教学反思通过本教案,学生可以了解幂级数的概念、性质和应用,并掌握幂级数的运算和收敛范围的求解方法。
同时,通过实例演示,学生能够将幂级数应用于具体问题的求解中,提升综合应用能力。
六、总结幂级数是一种重要的数学工具,具有广泛的应用领域。
第六节 幂级数的应用内容分布图示★ 函数值的近似计算★ 例1 ★ 例2 ★ 计算定积分★ 例3 ★ 例4 ★ 求常数项级数的和★ 例5 ★ 例6★ 欧拉公式★ 内容小结★ 课堂练习 ★ 习题11-6★ 返回内容要点:一、函数值的近似计算:级数的主要应用之一是利用它来进行数值计算. 在函数的幂级数展开式中,取前面有限项,就可得到函数的近似公式,这对于计算复杂函数的函数值是非常方便的,可以把函数近似表为x 的多项式,而多项式的计算只需用到四则运算,非常简便.二、 计算定积分:许多函数, 如xx x e x ln 1,sin ,2-等,其原函数不能用初等函数表示,但若被积函数在积分区间上能展开成幂级数,则可通过幂级数展开式的逐项积分,用积分后的级数近似计算所给定积分.三、求常数项级数的和:在本章的前三节中,我们已经熟悉了常数项级数的求和的几种常用方法,包括利用定义和已知公式直接求和、对所给数拆项重新组合后再求和、利用推导得到的递推公式求和等方法. 这里,我们再介绍一种借助幂级数的和函数来求常数项级数的和的方法,即所谓的阿贝尔方法,其基本步骤如下: (1)对所给数项级数,0∑∞=n n a 构造幂级数∑∞=0n n n x a ;(2)利用幂级数的运算性质,求出∑∞=0n n n x a 的和函数)(x s ;(3)所求数项级数).(lim 10x s a x n n -→∞==∑ 三、 欧拉公式例题选讲:函数值的近似计算例1(讲义例1)利用!3sin 3x x x -≈求ο9sin 的近似值,并估计误差. 例2(讲义例2)计算5240的近似值, 要求误差不超过0.0001.例3 计算dx x x⎰10sin 的近似值,精确到104-.例4(讲义例4)计算定积分⎰-2/1022dx e x π的近似值,要求误差不超过0.0001(取56419.0/1≈π). 求常数项级数的和例5(讲义例5)求级数∑∞=-1212n n n 的和. 例6(讲义例6)求级数∑∞=122!n n n n 的和.计算定积分例3(讲义例3)求不定积分⎰dx x x sin .课堂练习1.计算e 的近似值, 使其误差不超过.105-2.利用幂级数展开式, 求极限 .sin arcsin lim 30xx x x -→ 3.求常数项级数Λ+-+-7151311的和.欧拉(Euler ,1707~1783)欧拉,瑞士数学家及自然科学家。
幂级数和函数的两种应用(一)幂级数的定义及性质•幂级数的定义•幂级数的收敛与发散•幂级数求和的两个方法幂级数的应用一:泰勒级数•泰勒级数的定义及性质•应用实例:泰勒展开式求导幂级数的应用二:傅里叶级数•傅里叶级数的定义及性质•应用实例:傅里叶级数在信号处理中的应用函数的收敛性及连续性•数列极限与函数极限的关系•函数的连续性及导数与连续性的关系函数的应用一:最大最小值定理•最大值定理的定义及定理证明•应用实例:极值问题的解决函数的应用二:牛顿迭代法•牛顿迭代法的定义及原理•应用实例:解决非线性方程组的问题总结本文阐述了幂级数和函数的基本概念、性质和应用,介绍了泰勒级数和傅里叶级数的应用,探讨了函数的收敛性及连续性、最大最小值定理和牛顿迭代法等应用。
通过本文的阐述,读者可以了解到这些概念和应用在数学、工程和自然科学中的基础作用和实际应用,更好地扩展数学应用领域。
幂级数的定义及性质幂级数的定义幂级数是指一类形如f (x )=∑a n ∞n=0x n 的函数,其中x 为自变量,a n 为实数系数。
幂级数的收敛与发散当自变量x 取不同的值时,幂级数f (x )可能会收敛或发散。
幂级数收敛的条件是当x 取某一范围内的值时,无论n 取何值,级数a n x n 都是收敛的。
反之,如果当x 取某一范围内的值时,级数a n x n 都是发散的,那么f (x )就是发散的。
幂级数求和的两个方法对于幂级数,我们可以采用两种方法进行求和:逐项求和法和求导法。
• 逐项求和法:将级数展开后,逐一计算每一项的和。
这种方法的优点是简单易行,但当级数收敛速度较慢时,这种方法消耗的时间较多。
• 求导法:对幂级数进行求导,得到一个新的幂级数,再对新的幂级数求导,重复此过程直至求得幂级数的积分。
这种方法的优点是计算速度快,但对幂级数的求导需要一定的技巧和熟悉度。
幂级数的应用一:泰勒级数泰勒级数的定义及性质泰勒级数是一种幂级数,与幂级数的区别在于其系数a n 具有一定的规律性。
幂级数的系数幂级数是数学中重要的概念,它描述了一种无穷级数的形式。
幂级数的系数是指无穷级数中每一项的系数。
在本文中,我们将探讨幂级数的系数和其在数学和应用中的重要性。
幂级数是一种形式为anxn的无穷级数,其中an是每一项的系数,x是变量。
幂级数可以表达为:f(x) = a0 + a1x + a2x^2 + a3x^3 + ...当x取某个特定的值时,幂级数可能收敛或发散。
如果幂级数收敛于某个特定的值,我们可以将该值视为幂级数在该点的和。
幂级数的系数具有重要的数学性质。
通过研究幂级数的系数,我们可以了解幂级数的性质和特征。
例如,系数的正负号和绝对值大小可以告诉我们幂级数在不同点的收敛性和收敛半径。
如果幂级数的系数随着n的增大而趋于零,那么幂级数往往在更多的点上收敛。
幂级数的系数在微积分中扮演重要的角色。
以泰勒级数为例,泰勒级数是一种特殊的幂级数,它可以表示许多函数在某点附近的近似值。
通过求解函数各阶导数在该点的取值,我们可以确定泰勒级数的系数。
这个过程被称为函数的泰勒展开。
幂级数的系数还在数值分析和近似计算中扮演关键的角色。
许多数学问题可以通过幂级数展开来近似求解。
通过计算出幂级数的系数,我们可以得到问题的近似解。
例如,通过计算正弦函数的幂级数展开的系数,我们可以计算任意给定角度的正弦值。
在物理学和工程学中,幂级数的系数也起着重要作用。
许多物理和工程问题可以通过幂级数展开来描述和解决。
例如,在电路分析中,我们可以使用幂级数展开来近似计算电流和电压。
幂级数的系数还在概率论和统计学中得到广泛应用。
概率生成函数和特征函数是两个常见的幂级数展开形式,它们在概率论和统计学的各种问题中起到重要的作用。
通过计算幂级数的系数,我们可以获得与概率和统计相关的有用信息。
综上所述,幂级数的系数是数学中重要的概念,它们描述了幂级数的性质和特征。
通过研究幂级数的系数,我们可以了解幂级数的收敛性和近似值计算等重要信息。
幂级数的系数在数学、物理和工程学、概率论和统计学等领域中都有广泛的应用。
数列与级数的函数项级数与幂级数数列与级数是数学中重要的概念和研究对象,它们在各个领域都有广泛的应用。
而函数项级数和幂级数则是数列与级数的两种特殊形式,它们在解析学、微积分以及物理学等领域都有重要的作用。
本文将介绍函数项级数和幂级数的定义、性质以及应用。
一、函数项级数函数项级数是指数列的通项是一个函数,而不是常数。
函数项级数的一般形式可以表示为∑(n=1到∞) an(x)。
其中,an(x)是一个关于自变量x的函数,并且随着n的增大而变化。
函数项级数可以看作是由一系列函数组成的序列。
函数项级数的收敛性是指当x取某个值时,级数的部分和不断逼近于某个有限值。
如果函数项级数的部分和收敛于有限值,那么我们称该函数项级数在该点收敛。
函数项级数的收敛性可以通过一系列的测试方法进行判断,比如比较判别法、积分判别法以及魏尔斯特拉斯判别法等。
函数项级数在分析学、微积分和物理学等领域都有广泛的应用。
例如,泰勒级数是一种特殊的函数项级数,它可以将任意函数近似为一系列幂函数的和。
这在微积分的应用中非常重要。
此外,函数项级数还有在物理学中解决波动方程、热传导方程和扩散方程等问题中的应用。
二、幂级数幂级数是函数项级数的一种特殊形式,它的通项是幂函数。
幂级数的一般形式可以表示为∑(n=0到∞) cn(x-a)^n。
其中,cn是常数系数,x 是自变量,a是常数。
幂级数可以看作是由一系列幂函数组成的序列。
幂级数的收敛性同样可以通过一系列的测试方法进行判断,比如比值判别法、根值判别法和柯西-阿达玛公式等。
与函数项级数类似,幂级数在分析学、微积分和物理学等领域都有重要的应用。
在解析学中,我们可以使用幂级数来表示一些常见函数,比如指数函数、三角函数和对数函数等。
幂级数在数值计算和近似计算中也有广泛的应用。
此外,幂级数还可以用来解决差分方程、微分方程和边值问题等。
总结:数列与级数是数学中重要的概念,在函数项级数和幂级数的框架下有着广泛的应用。
幂级数的应用
幂级数在许多领域中具有广泛的应用,以下列举几个常见的应用:
1. 函数逼近:幂级数可以用来逼近许多函数,从而简化函数的计算和分析。
例如,泰勒级数可以逼近任意光滑函数,因此可以用于求解微积分和微分方程。
2. 数值计算:幂级数可以用于计算各种复杂函数的数值解,如三角函数、指数函数、自然对数等等。
这些函数的计算可以通过幂级数展开进行近似计算,从而减少计算的复杂度。
3. 物理应用:幂级数在物理学中也有诸多应用,例如量子力学中描述物质波动的薛定谔方程等均可以转化为幂级数的形式进行计算。
4. 建模:幂级数也可以用来建立数学模型,并对模型的参数进行优化。
例如,广泛应用于机器学习和深度学习中的神经网络模型就可以使用幂级数作为关键数学工具。
5. 统计学:幂级数还可以用于建立的概率模型,如泊松分布、正态分布等。
这些模型可以拟合真实世界中的数据,并用于预测和决策。
例谈幂级数的应用 DISCUSSION ON APPLICATION OF POWER SERIES BY EXAMPLES摘要幂级数是一类形式简单却应用广泛的函数项级数, 由于其本身具有很多便于运算的性质, 因此是一个解决函数方面诸多问题的利器。
利用幂级数的分析性质, 通常可以使形式进行转化, 使复杂问题得以化简。
本文通过归纳和举例, 从幂级数的定义出发, 对幂级数的重要性质进行总结性证明, 举例分析幂级数在各种计算中的应用,包括利用幂级数求极限、求导数、求积分、求解微分方程、证明不等式, 结合实例阐述幂级数在应用中的方法与技巧。
本文还举例介绍了如何应用复数范围内的双边幂级数求解复积分和某些实积分。
进一步地, 本文对于代数学中的形式幂级数进行了初步说明。
关键词 :幂级数; 函数; 应用ABSTRACTPower series is a kind of series of functions with simple form and extensive application, which can be used to solve many problems powerfully in terms of the function because of its calculated properties. By the analysis properties of power series, many problems usually can be transformed their form such that the complex problem can be simplified. With the beginning of the definition of power series , this paper summarizes the proofs of important properties of power series. Furthermore, all sorts of computing applications with power series are illustrated, including calculating limit, seeking derivative, computing integration, solving differential equations, and inequalities proving, which are elaborated with examples of power series methods and techniques in the application. This paper also describes an example of how to compute complex integration and some real integration by means of bilateral power series within the scope of complex. At last, a preliminary description of formal power series is given in algebra.Key word:Power Series; function; application目录1 前言 ................................................... 1 1.1 背景和意义 (1)1.2 本文研究的主要内容 (2)2 幂级数相关的基本知识 ...................................3 2.1 幂级数的定义 ..................................................................................... 3 2.2 幂级数相关定理及推论 (3)2.3 留数的基础知识 (10)3 幂级数在近似计算与级数求和中的应用 .................... 13 3.1 计算常数 e 的问题 . (13)3.2 幂级数在计算级数和中的应用 (14)4 幂级数在求极限、求导、积分运算中的应用 ................ 16 4.1 幂级数在求极限中的应用 ............................................................... 16 4.2 幂级数在求导中的应用 (17)4.3 幂级数在积分运算中的应用 (17)5 幂级数在求解微分方程中的应用 .......................... 20 5.1 求解常微分方程 ............................................................................... 20 5.2 求解偏微分方程 ............................................................................... 20 5.3 实际问题中的微分方程的解 .. (21)6 幂级数在证明不等式中的应用 (24)7 代数学中的形式幂级数 .................................. 25 7.1 斜幂指数诣 Armendariz环 .............................................................. 25 7.2 多项式环 ............................................................................................ 26结论 .................................................... 28参考文献 ................................................ 29致谢 (30)1 前言1.1 背景和意义说到幂级数的来历, 肯定要提到最基础的级数的来源。
幂级数的应用
将函数展开成幂级数,从形式上看,好像把问题复杂化了,但是由于幂级数的前n 项部分和是x 的多项式,而多项式是最简单的函数之一,因此用幂级数代替某个函数,实际上为函数的多项式逼近创造了条件。
正是由于这个原因,函数的幂级数展开式有着应泛的应用。
一、 函数值的近似计算
利用函数的幂级数展开式可以近似计算函数值,即在展开式的收敛敬意上,函数值可以近似地利用这个级数按精确度要求计算出来.
例1 计算常数e ,精确到小数第四位.
解 利用∑∞
==0
!n n
x
n x e ,令1=x ,有
++++==∑
∞
=!31
!2111!
10n n e .
为达到这个精确度,可观察余项
)!1)(1(1111!1
111!1)2)(1(1
111!1)!1(1!12--=
-⋅=⎪⎭⎫ ⎝⎛+++<⎪⎪⎭⎫ ⎝⎛++++++=+++=
n n n
n n n n n n n n n n r n . 若取8=n ,则4810
1
!771<⋅=
r ,故计算出 7183.2!
81
!31!2111≈+++++= e .
例2 计算5245精确到小数第四位. 解 因为
5
1
5555555
32133213232243245⎪⎭
⎫ ⎝⎛+=+
=+=+=. 令5
3
2=
x ,51
=α,得出 ⎪⎭
⎫
⎝⎛+⨯-⨯+= 10255
345!24325113245
由于这是一个交错级数,故其误差可利用1||+<n n u r 确定.取2=n ,这时,
4
102321021
3523||⨯<⨯⨯<r ,
故得出
0049.332511324555
≈⎪⎭
⎫
⎝⎛⨯+≈.
例3 计算2ln 的值,精确到小数第四位. 解 如果利用)1ln(x +的展开式:
+-+-
=+=4
1
31211)11ln(2ln , 理论上可计算2ln ,但这是一种“内耗”很大的交错级数,其误差不超过第1
+n 项的值
1
1
+n .欲使410111||=+<
n r n ,n 至少要取9999项,这太麻烦了,需要去掉带负号的项,故寻找收敛速度较快的级数来代替.
用 +-+-=+432)1ln(4
32x x x x x 减去 -----=-4
32)1ln(4
32x x x x x 其差是
⎪⎪⎭
⎫ ⎝⎛+++=-+ 53211ln 5
3x x x x x . 令
211=+-x x ,解出3
1
=x 代入上式,得 ⎪⎭
⎫
⎝⎛+⨯-++⨯+⨯+=- 125331121315131313122ln n n ,
其误差
122
1242
1232123)12(4131113)12(2313113)12(231321311212)(-+++-+=
⎪⎪⎪⎪
⎭
⎫
⎝⎛-+=
⎪⎭
⎫
⎝⎛++++<⎪⎭⎫ ⎝⎛++++=n n n n n n n n n n n x r .
取4=n ,这时
4
74101
7873213941||<=⨯⨯<
r
故得出
6931.0317131513
1313122ln 753≈⎪⎭⎫
⎝⎛⨯+⨯+⨯+=.
二、定积分的近似计算
利用幂级数不仅可以计算一些函数的近似值,而且还可以计算一些定积分的近似值,具体地说,如果被积函数在积分区间上能展开成幂级数,那么把这个幂级数逐项积分,用积分后的级数就可计算出定积分的近似值.
例4 计算dx x x
⎰
1
sin ,精确到小数第四位. 解 由于1sin lim
0=→x x x ,因此所给积分不是广义积分,如果定义
x
x
sin 在0=x 处的值为1,那么它在积分区间]1,0[上连续.由于x
x
sin 的原函数不能用初等函数
表示,因此需要通过幂级数展开式来计算.
利用正弦函数的展开式 -+-=!
53sin 5
3x x x x !,两边同除以x ,得到 -+-=!
531sin 4
2x x x x ! 再逐项积分
+⋅-⋅+⋅-=-+-=⎰⎰⎰⎰!771
!551!3311!5!3sin 1
41031010dx x dx x dx dx x x 这是收敛的交错级数,其误差1||+<n n u r ,取3=n ,有4310
1
!771<⋅<
r ,故 9461.0!551
!3311sin 1
≈⋅+⋅-≈⎰dx x x . 例5 计算
dx e
x ⎰-
1
2
221π
,精确到小数第三位.
解 易见2
2
x e -
的原函数不能用初等函数表示,因此考虑用幂级数展开式计算.利用展开式
∑∞
==0!n n x
n x e ,得∑∞=--=0
222!)1(2
n n
n n x n x e 故有
+⋅⋅-⋅⋅+⋅-=⎪⎪⎭⎫ ⎝⎛+-+-=⎰⎰-
7
2!3152!2132112!32!2213
21
036
2421
2
2
dx x x x dx e
x
取前四项的和作为近似值,误差为
3
410
1
92!4121
||<⋅⋅≤
πn r 故得出
3412.0336140161121211
2
2≈⎪⎭
⎫
⎝⎛-+-≈
⎰-
ππ
dx e
x .
以上例题说明,幂级数在函数值及定积分的近似计算中有着广泛应用.对于用幂级数近似计算函数值,其思路和以前学过的用微分近似公式或泰勒公式近似求值的思路相似.对于用幂级数近似计算定积分,特别是在某些被积函数的原函数不能用初等函数表示时,便显示出幂级数方法的优越性.
利用幂级数进行近似计算的重要一步是根据精确度要求确定展开式的项数
n .这可通过估计余项n r 的误差得到:一种方法是将余项式子的各项放大,使之
成为几何级数,从而利用几何级数的和来确定n 值(如例1,例3),另一种方法是利用收敛的交错级数的特点:1||+<n n u r ,由此来确定n 值(如例2,例4,例5).
三、欧拉公式
最后应用复变量的指数函数的幂级数展开式,说明数学中重要的欧拉公式的形成与推导过程.
在复变量的理论中,我们定义指数函数z e (z 为复变量)为
++++++=!
!3!2!1132n z z z z e n
z
(+∞<||z ,即z 属于整个复平面)
当xi z =时,上式成为
++++++=!
)(!3)(!2)(!1132n xi xi xi xi e n
xi
注意到 ,,1,,15432i i i i i i ==-=-=,从而
x
i x x x x x i x x x e xi
sin cos !7!5!3!6!4!217
53642+=⎪⎪⎭
⎫ ⎝⎛+-+-+⎪⎪⎭⎫ ⎝⎛+-+-= 即有 x i x e xi sin cos +=. (1)
把上式x 换成x -,又有
x i x e xi sin cos -=-. (2)
将(1)(2)两式两边相加且同除以2,得
2
cos xi
xi e e x -+= (3)
将(1)(2)两式两边相减且同除以i 2,得
i
e e x xi
xi 2sin --= (4)
上述的(1)—(4)都称为欧拉公式,它们建立了实三角函数和复指函数之间的联系.
在(1)中,取π=x ,可得
01=+πi e (5)
克莱茵(Klein,1849-1925,德国)认为,这是数学中最漂亮的公式之一.有人把(5)列为10个最优美的数学定理之首,它把数学中最重要的5个数
0,1,i ,π,e
用一个等式联系起来,显示了数学中的统一美,(5)显示了数学各领域之间很强的联系且通过等式联结起来,它可以从几种得到解释,如:
0:正负数的分界;
1:任一自然数与它的后继数之差;
i :012=+x 的根,属于代数; π:圆周长与直径之比,属于几何;
e :n
n ⎪⎭⎫
⎝⎛+11 )(∞→n 时的极限,属于分析.
等等.。