边界层分离ppt课件
- 格式:ppt
- 大小:1.93 MB
- 文档页数:15
边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。
但对于工程流动问题,绝大多数的Re很大。
这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。
突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。
”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。
2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。
(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。
所以可忽略粘性力(即忽略法向动量传递)。
可按理想流体处理,Euler方程适用。
这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。
Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。
(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。
通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts -t0) ≈ ts-t0,δt为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。
探究边界层的分离现象强(交通大学化工学院化工21, 710019)摘要:边界层分离理论化工流体输送和流体力学的研究应用方面具有非常重要的作用。
对边界层,边界层分离现象,边界层分喜的机理,条件,以及如何控制边界层的分离进行一系列的介绍。
最后通过若干实例介绍了人类如果对边界层分离的一些控制方法。
关镀词:边界层;分吏点;边界层分离;机理:条件:边界层分离的控制:应用0引言当流体流经曲面物体,或者在化工输送过程中流体流经管件,阀门,管路突然扩大和缩小以及管路进出口等局部地方,都会出现边界层的分离现象。
目前对于因边界层分离的有关计算主要是依靠经验方法,理论知识比较匮乏。
1边界层分离的机理1・1边界层的概念边界层学说是Ludwig Prandtl于1904 年提出的,其理论要点为:当实际流体沿固体壁面流动时,紧贴壁面的一层流体由于粘性的作用将粘附在壁面上而不"滑脱”,即在壁面上的流速为零;而由于流动的Re数很大,流体的流速将由壁面处的零值沿着与流动相垂直的方向迅速增大,并在很短的时间趋于一定值。
换言之,在壁面附近区域存在着一薄的流体层。
在该层流体中与流体相垂直的方向上的速度梯度很大。
这样的一层流体称为边界层。
⑴在边界层,流体的速度从固壁处的零(无滑移)逐渐增加到相应的无摩擦外流原有的值。
⑵现以一黏性流体沿平板壁面的流动说明边界层的形成过程。
如下图1所示,一流体以均匀的来流速度5流近壁面,当他流到平板前缘时,紧贴壁面的流体将停滞不动,流速为零,从而在垂直流动的方向上建立起一个速度梯度。
与此速度梯度相应的剪应力将促使靠近壁面的一层流体的流速减慢,开始形成边界层。
由于剪应力对其外的流体持续作用,促使更多的流层速度减慢,从而使边界层的厚度增加,靠近壁面的流体的流速分布如图1所示。
由图可以看出,速度梯度大的薄层流体即构成了边界层。
随着流体沿平板的向前运动,边界层在壁面上逐渐加厚在平板前部的一段距离,边界层厚度较小,流体维持层流流动,相应的边界称为层流边界层。