Altera公司FPGA的配置
- 格式:ppt
- 大小:5.75 MB
- 文档页数:80
2011年5月Altera 公司订阅版权© 2011 Altera 公司。
保留所有权利。
ALTERA 、ARRIA 、CYCLONE 、HARDCOPY 、MAX 、MEGACORE 、NIOS 、QUARTUS 以及STRATIX 均在美国专利和商标事务所进行了注册,是Altera 公司在美国和其他国家的商标。
所有其他商标或者服务标记的所有权属于其各自持有人,/common/legal.html 对此进行了解释。
Altera 保证当前规范下的半导体产品性能与Altera 标准质保一致,但是保留对产品和服务在没有事先通知时的升级变更权利。
除非与Altera 公司的书面条款完全一致,否则Altera 不承担由此处所述信息、产品或者服务导致的责任。
Altera 建议客户在决定购买产品或者服务,以及确信任何公开信息之前,阅读Altera 最新版的器件规范说明。
101 Innovation DriveSan Jose, CA 95134反馈FPGA 协议实现配置Altera 新的器件配置模式——协议实现配置(CvP),通过结合PCI Express ®来配置Altera 28-nm Arria ® V、Cyclone ® V 和Stratix ® V FPGA 的内核架构。
CvP 能够降低产品成本,减小电路板面积,同时简化了软件应用模型,具备可靠的现场系统更新功能。
此外,嵌入式自治PCIe IP 内核有助于确保设计满足PCIe 上电时序要求,FPGA 内核架构配置时间对其没有影响,保证了各种基于PCIe 计算机平台上广泛的互操作性。
引言PCIe 技术替代了PCI 成为处理器和被监控设备之间的标准控制平面接口。
自从2005年推出以来,FPGA 设计人员在FPGA 和处理器之间已经广泛使用了PCIe 接口。
现在的FPGA 包括嵌入式PCIe 内核,它用作端点或者根端口。
FPGA配置模式时间:2011-09-12 23:15:16 来源:作者:FPGA有多种配置模式:并行主模式为一片FPGA加一片EPROM的方式;主从模式可以支持一片PROM编程多片FPGA;串行模式可以采用串行PROM编程FPGA;外设模式可以将FPGA作为微处理器的外设,由微处理器对其编程。
如何实现快速的时序收敛、降低功耗和成本、优化时钟管理并降低FPGA与PCB并行设计的复杂性等问题,一直是采用FPGA的系统设计工程师需要考虑的关键问题。
如今,随着FPGA向更高密度、更大容量、更低功耗和集成更多IP的方向发展,系统设计工程师在从这些优异性能获益的同时,不得不面对由于FPGA前所未有的性能和能力水平而带来的新的设计挑战。
在很多项目设计中采用Altera 公司基于SRAM架构Cyclone系列器件。
Cyclone器件与其他FPGA器件一样是基于门阵列方式为用户提供可编程资源的,其内部逻辑结构的形成是由配置数据决定的。
这些配置数据可通过多种模式加载到FPGA内部的SRAM中,由于SRAM的易失性,每次上电时,都必须对FPGA进行重新配置。
1 Cyclone FPGA 配置模式Cyclone系列FPGA器件配置方案主要有三种,包括使用低成本配置芯片的主动串行(AS)配置、被动串行(PS)配置以及基于JTAG配置,实际应用时可以使用其中的一种方案配置Cyclone系列FPGA器件,来实现用户编程所要实现的功能。
Cyclone系列FPGA器件是用SRAM单元配置数据的。
由于SRAM掉电后容易丢失数据,配置数据必须即时地下载到上电的Cyclone器件中。
不同的配置模式可采用不同的专用配置芯片或数据源这三种配置模式是由Cyclone器件的模式选择引脚MSEL1和MSEL0的高低电平来决定的,如果你的实际应用只要求单一的配置模式,可以把模式选择引脚连接到VCC端或接地端在切换引脚的过程中,器件的运行状态不会被影响。
alterafpga配置配置是连接FPGA软件设计到硬件功能实现的桥梁,配置电路部分有误,配置文件无法下载到配置器件中,对FPGA编程,则再好的设计都是浮云。
上电后,配置数据保存在配置RAM中,将配置数据载入配置RAM即是对FPGA编程。
配置方式有很多种,主要区别为FPGA所处的地位和打入数据的方式不同,其基本时序基本相同。
基本时序波形如下:配置过程主要由nCONFIG、nSTATUS、CONF_DONE以及可选的INIT_DONE四个状态信号控制。
一个器件完整的配置过程包括上电复位、配置、初始化三个阶段。
正常上电后,nCONFIG管脚被拉低,器件复位,此时配置RAM的所有内容被清空,所有I/O处于高阻态,其余三个状态信号亦均被拉低,复位结束后,FPGA释放nCONFIG管脚,使其被外部上拉电阻拉高,FPGA在nCONFIG检测到由低到高的跳变沿,配置开始,同时FPGA 采样MSEL的信号状态,决定接受何种配置模式。
随后,FPGA释放nSTATUS管脚,外不上拉电阻将其拉高,FPGA在nSTATUS管脚检测到由低到高的跳变沿,表示FPGA开始接受数据。
配置数据由DATA管脚打入,配置时钟经DCLK管脚送入(被动方式下,主动方式DCLK 由FPGA提供),配置数据在上升沿锁存至FPGA中,配置数据全部打入到FPGA后,FPGA释放CONF_DONE管脚,使其由外部上拉电阻拉高,说明配置结束,进入初始化过程。
INIT_DONE是一个可选的指示初始化完成的信号(Device-Pin&Options-general),INIT_DONE在nCONFIG信号为低或配置的初期时为高电平,而当使能INIT_DONE的比特位(在配置数据的第一帧中)被配置进FPGA后,INIT_DONE信号变低,因此INIT_DONE信号由高到低的跳变表示FPGA配置真正开始,开始接收配置数据,如果INIT_DONE一直保持为高,说明FPGA没有接收到正确配置数据的文件头。
FPGA EP3C5型号及参数
商品名称:Altera便携式FPGA开发板商品编号:130953 商品规格:EP3C5经济版
所属品牌:Altera/阿尔特拉上架时间:2013-11-15 16:51:45
[套件特点]:
1、板上带AD和DA。
A、配合采样程序可做数字万用表;
B、配合信号驱动模块可做信号发生器。
2、套件采用Altera CycloneIII系列65nmFPGA,高密度设计和贴装。
3、体积小(5*8cm),携带方便。
4、容易扩展。
5、多功能,可当作USB Blaster II下载线使用。
[主要技术指标]:
1、FPGA:CycloneIII的EP3C5
2、配置:EPCS4
3、SRAM: 512K高速SRAM。
4、常用电压型DA :1 路10Bit,1.25 MHz maximum update rate
5、AD :1 路10Bit,1.25 MSPS
6、1个LED指示
7、1个复位按钮
8、24M有源晶振
9、2个24针扩展座,支持20个扩展IO,4个CLK输入。
10、四层板,通过全板EMC/EMI和SI仿真。
11、高速电流型DA:可选1 路14Bit 165MSPS(完全版才有此项)。
Altera FPGA配置方式及升级方式(针对cyclone II器件)1、配置cyclone II FPGA对于altera fpga,主要配置方式为AS,PS,JTAG三种配置方式。
这几种配置方式在于电路上对器件配置方式引脚选择不同:如图1.1所示:图1.1注意1:对于快速AS模式,只支持配置芯片EPCS16,EPCS64;2:对于JTAG配置模式,只应用JTAG,该引脚连接到地;2、配置器件(图2.1):图2.13、FPGA配置方式具体分体3.1AS(Active Serial)配置:3.1.1原理AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EPCS4配置器件专供AS模式,目前只支持Cyclone系列。
使用Altera串行配置器件来完成。
Cyclone器件处于主动地位,配置器件处于从属地位。
AS配置器件采用四引脚接口处理:DCLK、DATA、ASDI、nCS;配置数据通过DATA0引脚送入FPGA。
配置数据被同步在DCLK输入上,1个时钟周期传送1位数据。
3.1.2电路连接方式(图3.1)图3.13.1.3配置时序(图3.2)图3.2在配置完成后到初始化完成所需要299个时钟周期(100M)3.1.4配置文件.pof .jic .rbf3.2PS(Passive Serial)配置方式3.2.1配置原理主动串行配置方式可以通过altera配置器件,一个下载电缆,或者通过一个主控制器,诸如MAX II器件、MCU等来配置FPGA。
配置数据通过DATA0在每个DCLK的上升沿送入器件。
FPGA配置方式选择引脚配置如图3.3所示图3.33.2.2电路连接:配置器件配置(图3.4)图3.4MAX II配置,图3.5图3.5MCU配置,图3.6图图3.63.2.3配置时序图3.73.2.4配置文件格式.rbf .hex .ttf3.3JTAG配置方式3.3.1原理对于cyclone II器件来说,JTAG配置方式优先于其他器件配置方式。
目录1 设计准则 (1)2 模块功能摘要 (1)3 参考资料 (1)4 基本原理 (1)4.1 硬件连接 (2)4.2 操作过程 (3)4.3 数据转换 (4)4.4 在线升级 (5)4.4.1 硬件要求 (6)4.4.2 软件要求 (6)4.4.3具体过程 (6)5 技术指标 (7)6 电原理图 (7)7 PCB图.................................................................................................... 错误!未定义书签。
8 结构图..................................................................................................... 错误!未定义书签。
9 输入、输出接口及性能参数................................................................. 错误!未定义书签。
10 软件 (7)11 元器件说明..................................................................................... 错误!未定义书签。
12 可编程器件说明............................................................................. 错误!未定义书签。
13 可信性设计说明............................................................................. 错误!未定义书签。
14 电源和接地..................................................................................... 错误!未定义书签。