竖向荷载作用下的内力计算
- 格式:doc
- 大小:1019.50 KB
- 文档页数:19
第五章.竖向荷载作⽤下的框架内⼒计算5.1 计算单元的确定取6号轴线⼀榀框架进⾏计算,计算宽度为(6.6+6.6)/2=6.6m 。
如图下图所⽰横向框架荷载传递图5.2 荷载计算5.2.1 恒荷载的计算 1、五层、(1)q 、q 0、q 0′、q 0″分别为⼥⼉墙、边跨横梁(⾛道纵梁)、⾛道横梁、次梁⾃重(扣除板⾃重),为均布荷载形式;β为考虑梁粉刷⾃重时的放⼤系数,取β=1.05。
⼥⼉墙:q=3.47×0.9=3.12 kN/m 边跨横梁(⾛道纵梁):q 0=1.05×0.3×(0.6-0.1)×25=3.94kN/m ⾛道横梁:q 0′=1.05×0.3×(0.4-0.1)×25=2.36kN/m 次梁:q 0″=1.05×0.2×(0.5-0.1)×25=2.1kN/m(2)q 1、q 1′分别为屋⾯板⾃重传给横梁的梯形和三⾓形荷载等效为均布荷载值 q 1=[1-2×(3.3/6.6×2) 2+(3.3/6.6×2)3]×4.38×3.3/2=6.44kN/mq 1′=85×4.38×3.0/2=4.11kN/m(3)q 2、q 2′分别为屋⾯板⾃重传给纵梁上的梯形和三⾓形荷载等效为均布荷载值梯形:q 2=[1-2×(3.0/6.6×2) 2+(3.0/6.6×2)3]×4.38×3.0/2=5.96kN/m三⾓形:q 2′=85×4.38×3.3/2=4.52kN/mP 1为由板传给次梁及次梁⾃重传给纵梁的集中⼒ P 1= q 1×6.6+ q 0″×6.6/2=49.43kNP 2为由板传给外纵梁及外纵梁、⼥⼉墙⾃重传给柱⼦的集中⼒ P 2=( q 2′+ q 0+q )×3.3×2=76.42 kNP 3为由板传给内纵梁及内纵梁⾃重传给柱⼦的集中⼒。
框架结构在竖向荷载作用下的内力计算
框架结构在竖向荷载作用下的内力计算可近似地采用分层法.
在进行竖向荷载作用下的内力分析时,可假定:(1)作用在某一层框架梁上的竖向荷载对其他楼层的框架梁的影响不计,而仅在本楼层的框架梁以及与本层框架梁相连的框架柱产生弯矩和剪力.(2)在竖向荷载作用下,不考虑框架的侧移.
计算过程可如下:
(1)分层:分层框架柱子的上下端均假定为固定端支承,
(2)计算各个独立刚架单元:用弯矩分配法或迭代法进行计算各个独立刚架单元.而分层计算所得的各层梁的内力,即为原框架结构中相应层次的梁的内力.
(3)叠加:在求得各独立刚架中的结构内力以后,则可将相邻两个独立刚架中同层同柱号的柱内力叠加,作为原框架结构中柱的内力.
叠加后为原框架的近似弯距图,由于框架柱节点处的弯矩为柱上下两层之和因此叠加后的弯距图,在框架节点处常常不平衡.这是由于分层计算单元与实际结构不符所带来的误差.若欲提高精度,可对节点,特别是边节点不平衡弯矩再作一次分配,予以修正.。
在竖向荷载作用下框架结构内力计算的独立
柱法
独立柱法(Independent column method)是一种用于计算框架结
构内力的方法。
该方法假定每个柱子自行承担着水平力和垂直力,而
不会在柱与梁交接处转移或者共同承担力。
这种假设是为了简化计算、降低复杂度,以及实现直观清晰的用图。
在竖向荷载作用下,独立柱法的基本流程如下:
1. 选择独立柱:首先,需要找到框架结构中具有独立性的柱子。
这些柱子不会受到其他柱子影响,而是自行承担全部荷载。
一般而言,独立柱一般位于框架结构的边缘或角落处。
2. 画高度分块图:将框架结构按水平方向分成若干段,并在每段
上标注高度分块图。
高度分块图指的是每段内荷载分别作用的高度分
布情况。
3. 分别计算每段内的内力:对于每个高度分块,需要按照作用在
该块上的荷载大小和作用位置,结合高度分块的边界条件计算出该段
内的各个柱子和梁的内力。
4. 检查结构的均衡性:根据计算结果,检查整个框架结构是否处
于静态均衡状态,即荷载是否平衡、荷载反力大小是否与荷载大小等
比例,以及结构中每个柱子和梁是否都满足受力平衡。
5. 进行调整和修正:如有必要,可通过对独立柱、高度分块等参
数进行调整和修正,重新计算内力直到满足均衡条件。
总之,独立柱法是一种通过分析框架结构内各部分的受力情况,
来计算出结构整体受力状态的方法。
虽然存在简化和理论假设的缺陷,但该方法依然具有较高的实用价值。
4_竖向荷载作用下框架内力计算在结构设计过程中,框架结构是一种常见的结构形式。
在实际工程中,框架结构会受到各种荷载的作用。
竖向荷载是一种重要的荷载形式,常见的竖向荷载包括自重、活荷载和附加荷载等。
在框架结构内力计算中,需要首先确定结构的几何特征,包括框架的截面形状、材料参数和受力情况等。
然后根据几何特征和力学原理,分析结构的受力平衡和变形情况,最终得到内力的计算结果。
下面将以一个简单的框架结构为例,介绍竖向荷载作用下框架内力计算的基本步骤。
1.框架结构的受力分析首先,需要绘制框架的受力图。
在竖向荷载作用下,框架的受力主要包括竖向荷载的作用力、支座反力和框架内部的轴力、剪力和弯矩等。
通过受力分析,可以将框架结构简化为若干个矩形梁和柱,以便进行进一步的计算。
2.框架结构的力学模型化将框架结构进行力学模型化,即将结构划分为若干个杆件和节点,并确定节点的受力情况。
杆件的长度、截面形状和材料参数等需要根据实际情况进行设定,以便计算杆件的受力。
3.杆件的受力计算根据竖向荷载作用下杆件的受力平衡和变形情况,可以得到杆件的轴力、剪力和弯矩等。
对于轴力,可以利用静力平衡原理进行计算。
对于剪力和弯矩,可以根据杆件的受力分布和形状进行计算,常用的方法包括截面法和弯矩传递法等。
4.框架结构的内力计算根据杆件的受力计算结果,可以得到框架结构内各个节点的内力情况。
根据节点的受力平衡条件,可以计算出节点上的轴力、剪力和弯矩等。
此外,还需要考虑支座反力的作用,以及与其他荷载(如横向荷载)的叠加效应。
5.内力的承载能力和设计校核根据内力计算结果,可以对框架结构的承载能力进行评估和校核。
根据设计规范和材料参数,结合强度和稳定性要求,进行构件的截面尺寸校核。
如果结构的承载能力满足要求,则结构设计合理;否则,需要进行后续的调整和优化。
总的来说,竖向荷载作用下框架内力计算是结构设计中的重要环节。
通过合理的受力分析和计算,能够得到准确的内力计算结果,从而为结构设计和施工提供科学的依据。
框架结构竖向荷载作用下的内力计算框架结构是由梁柱等构件组成的,在受到竖向荷载作用下,会引起构件内力的产生。
了解框架结构竖向荷载作用下的内力计算对于结构的设计和分析非常重要。
下面将详细介绍框架结构竖向荷载作用下的内力计算方法。
首先,通过建立结构模型来描述框架结构。
结构模型中包括构件、节点和连接关系。
构件可以是梁或柱,节点是构件之间的连接点,连接关系表示构件之间的刚性约束。
在竖向荷载作用下,框架结构的内力主要有两种情况:梁内力和柱内力。
1.梁内力计算:在竖向荷载作用下,梁会产生弯矩和剪力。
根据梁的基本理论,可以得出计算弯矩和剪力的公式。
-弯矩计算:弯矩是由竖向荷载作用在梁上引起的。
根据弯矩的定义,弯矩M等于施加在梁上的力乘以力臂。
当梁需要承受重力荷载时,弯矩的计算公式为M=w*l^2/8,其中w为荷载大小,l为梁的跨度。
-剪力计算:剪力是由竖向荷载作用在梁上引起的。
根据剪力的定义,剪力V等于施加在梁上的力。
当梁需要承受重力荷载时,剪力的计算公式为V=w*l/2,其中w为荷载大小,l为梁的跨度。
2.柱内力计算:在竖向荷载作用下,柱会产生压力和拉力。
根据柱的基本理论,可以得出计算压力和拉力的公式。
-压力计算:压力是由竖向荷载作用在柱上引起的。
根据力学平衡原理,压力P等于施加在柱上的荷载之和。
当柱需要承受多个重力荷载时,压力的计算公式为P=∑w,其中w为荷载大小。
-拉力计算:拉力是由竖向荷载作用在柱上引起的。
和压力类似,拉力T等于施加在柱上的荷载之和。
在实际计算过程中,需要考虑梁和柱的截面形状和材料性质,以及节点和连接部位的刚性约束等因素。
同时,还需要考虑结构的整体平衡条件和节点处的力的平衡条件。
在计算过程中,可以使用静力平衡原理和弹性力学理论来进行分析。
通过平衡方程和应变-位移关系等基本原理,可以建立结构方程组,并通过求解方程组得到内力的值。
总结起来,框架结构竖向荷载作用下的内力计算是一个复杂的过程,需要考虑多个因素和使用多种方法。
第六章竖向荷载作用下横向框架结构的内力计算6.1 计算单元取H轴线横向框架进行计算,计算单元宽度为6m,荷载传递方式如图中阴影部分所示。
“荷载时以构件的刚度来分配的”,刚度大的分配的多些,因此板上的竖向荷载总是以最短距离传递到支撑上的。
于是就可理解到当双向板承受竖向荷载是,直角相交的相邻支撑梁总是按45°线来划分负荷范围的,故沿短跨方向的支撑承受梁承受板面传来的三角形分布荷载;沿长跨方向的支撑梁承受板传来的梯形分布荷载,见图5.1:精品文档精品文档6.2 荷载计算6.2.1 恒载计算图5.2 各层梁上作用的荷载在图5,2中,1q 、1q '代表横梁自重,为均布荷载形式,1、对于第五层,m kN q 0764.41= m kN q 2.2'1=2q 为梯形荷载,2q '为三角形荷载。
由图示几何关系可得, m kN q 18.30603.52=⨯=m kN q 07.124.203.5'2=⨯=节点集中荷载1P :边纵梁传来:(a) 屋面自重: 5.03⨯6⨯3=90.54kN (b) 边纵梁自重: 4.0764⨯6=24.45kN女儿墙自重: 4.320⨯6=25.93kN 次梁传递重量: 2.2⨯6=13.2kN 上半柱重: 6.794⨯1.5=10.191kN 墙重以及窗户:0.24⨯6⨯2.4⨯18-1.5⨯1.8⨯18⨯2⨯0.24+0.4⨯1.5⨯ 1.8⨯0.24⨯2)⨯0.5=25.53kN 合计: 1P =189.84kN 节点集中荷载2P :精品文档屋面自重: 5.03⨯6⨯(3+1.2)=126.76kN 中纵梁自重: 24.45kN次梁传递重量: 2.2⨯(3+1.2)⨯2=18.48kN 上半柱重: 10.19kN 墙重以及门重:(0.24⨯6⨯2.4⨯11.8-0.9⨯2.1⨯11.8⨯2⨯0.24+ 0.2⨯0.9⨯2.1⨯0.24⨯2)⨯0.5=15.13kN合计: 2P = 195.01kN 2、对于1~4层,计算的方法基本与第五层相同,计算过程如下:m kN q 0764.41= m kN q 2.2'1=m kN q 98.22683.32=⨯= m kN q 192.94.283.3'2=⨯= 节点集中荷载1P :屋面自重: 68.94kN 纵梁自重: 24.45kN 墙重以及窗户: 25.53kN次梁传递重量: 13.2kN 下半柱重: 10.19kN 合计: kN P 31.1421= 节点集中荷载2P :纵梁自重: 24.45kN 内墙以及门自重: 15.13kN 楼面自重: 96.52kN次梁传递重量: 18.48kN精品文档合计: kN P 58.1542=6.2.2 活荷载计算活荷载作用下各层框架梁上的荷载分布如图5.3:图5.3各层梁上作用的活载1、对于第五层,m kN q 365.02=⨯= m kN q 2.14.25.0,2=⨯= 节点集中荷载1P :屋面活载: 95.063=⨯⨯kN合计: kN P 91=节点集中荷载2P :屋面活载:0.5⨯(3+1.2)⨯6=12.6kN合计: kN P 6.122=2、对于1~4层,m kN q 1260.22=⨯= m kN q 0.64.25.2'2=⨯= 节点集中荷载1P :楼面活载: 36263=⨯⨯kN精品文档合计: kN P 361= 中节点集中荷载2P :楼面以及走道活载: 2⨯6⨯3+1.2⨯6⨯2.5=54kN合计: kN P 542=6.2.3 屋面雪荷载计算同理,在屋面雪荷载作用下m kN q 7.2645.02=⨯= m kN q 08.14.245.0'2=⨯= 节点集中荷载1P :屋面雪载: 0.45⨯(3⨯6)=8.1kN合计: kN P 1.81= 中节点集中荷载2P :屋面雪载: 0.45⨯(3+1.2)⨯6=11.34kN合计: kN P 34.112=6.3 内力计算6.3.1 计算分配系数按照弹性理论设计计算梁的支座弯矩时,可按支座弯矩等效的原则。
第6章 竖向荷载作用下内力计算§6.1 框架结构的荷载计算§6.1.1.板传荷载计算计算单元见下图所示:因为楼板为整体现浇,本板选用双向板,可沿四角点沿45°线将区格分为小块,每个板上的荷载传给与之相邻的梁,板传至梁上的三角形或梯形荷载可等效为均布荷载。
一.A ~B, (C ~E)轴间框架梁:屋面板传荷载:恒载:()()[]++⨯-⨯⨯3226.6/25.26.6/25.22125.2KN/m 06.7 ()()[]m KN /44.226.6/5.16.6/5.1215.106.732=+⨯-⨯⨯ 活载:()()[]++⨯-⨯⨯3226.6/25.26.6/25.22125.2KN/m 2 ()()[]m KN /36.66.6/5.16.6/5.1215.1232=+⨯-⨯⨯ 楼面板传荷载:恒载:()()[]++⨯-⨯⨯3226.6/25.26.6/25.22125.2.1KN/m 4 ()()[]m KN /03.136.6/5.16.6/5.1215.11.432=+⨯-⨯⨯活载:()()[]++⨯-⨯⨯3226.6/25.26.6/25.22125.2.5KN/m 2 ()()[]m KN /95.76.6/5.16.6/5.1215.15.232=+⨯-⨯⨯ 梁自重:3.34KN/mA ~B, (C ~E)轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载=3.34 KN/m+22.44 KN/m=25.78 KN/m活载=板传荷载=6.36 KN/m楼面板传荷载:恒载=梁自重+板传荷载=3.34 KN/m+13.03 KN/m=116.37 KN/m活载=板传荷载=7.95 KN/m二. B ~C 轴间框架梁:屋面板传荷载:恒载:()()[]++⨯-⨯⨯3222.7/25.22.7/25.22125.2.06KN/m 7 ()[]m KN .10.142.7/5.12.7/5.1215.1.6KN/m 0322=+⨯-⨯⨯ 活载:()()[]++⨯-⨯⨯322.7/25.22.7/25.22125.22()[]m KN .17.42.7/5.12.7/5.1215.1.3KN/m 0322=+⨯-⨯⨯ 楼面板传荷载:恒载:()()[]++⨯-⨯⨯3222.7/25.22.7/25.22125.2.1KN/m 4 ()[]m KN .38.132.7/5.12.7/5.1215.1.1KN/m 4322=+⨯-⨯⨯ 活载:()()[]++⨯-⨯⨯3222.7/25.22.7/25.22125.2.5KN/m 2 ()[]m KN .16.82.7/5.12.7/5.1215.1.5KN/m 2322=+⨯-⨯⨯ 梁自重:3.34KN/mB ~C 轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载=3.34 KN/m+14.10 KN/m=17.44 KN/m活载=板传荷载=4.17 KN/m楼面板传荷载:恒载=梁自重+板传荷载=3.34 KN/m+13.38KN/m=16.72KN/m活载=板传荷载=8.16 KN/m三.A 轴柱纵向集中荷载计算:顶层柱:顶层柱恒载=女儿墙+梁自重+板传荷载=KN 5.1475.328/525.206.72.334.235.4.6726=⨯⨯⨯⨯+⨯+⨯顶层柱活载=板传荷载=KN 28.18)5.15.125.225.22(28/52=⨯+⨯⨯⨯标准层柱恒载=墙自重+梁自重+板荷载 =KN 01.72)5.125.2(28/51.42.334.3)5.075.3(76.522=+⨯⨯⨯+⨯+-⨯准层柱活载=板传荷载=KN m m KN 8.288.428/54.2/2=⨯⨯⨯⨯○a 基础顶面荷载=底层外纵墙自重+基础自重=KN 85.22)55.075.3(75.3)55.075.3(11.14=-⨯+-⨯四.C 柱纵向集中力计算:顶层柱荷载=梁自重+板传荷载=3.13×(3.75-0.5)+++⨯⨯⨯)225.125.2(28/506.70.6×1.5×5/8×2×1.5=120.91KN顶层柱活载=板传荷载==KN 78.315.128/55.13.0)5.1225.2(28/5222=⨯⨯⨯⨯+⨯+⨯⨯⨯标准柱恒载=墙+梁自重+板传荷载=m KN /32.114)5.1225.2(28/51.4)5.075.4(113.319.2922=⨯+⨯⨯⨯+-⨯+标准层活载=板传荷载=KN 70.45328/55.15.25.428/525.25.2=⨯⨯⨯⨯+⨯⨯⨯⨯基础顶面恒载=底层内纵墙自重+基础自重=KN 95.58)55.075.3(75.395.46=-⨯+(3).框架柱自重:柱自重: 底层:边柱1.2×0.55m ×0.55m ×253/KN m ×5.4m=49.01KN中柱1.2×0.55m ×0.55m ×253/KN m ×5.4m=49.01KN标准层: 边柱1.2×0.5m ×0.5m ×253/KN m ×3.6m=27KN中柱1.2×0.5m ×0.5m ×253/KN m ×3.6m=27KN顶层: 边柱1.2×0.55m ×0.55m ×253/KN m ×3.9m=35.39KN中柱1.2×0.55m ×0.55m ×253/KN m ×3.9m=35.39KN§6.2恒荷载作用下框架的内力§6.2.1.恒荷载作用下框架的弯矩计算恒荷载作用下框架的受荷简图如图6-3所示,由于A E 二轴的纵梁外边线分别与该柱的外边线齐平,故此二轴上的竖向荷载与柱轴线偏心,且偏心距离为75mm。
则均布恒载和集中荷载偏心引起的固端弯矩构成框架节点不平衡弯矩。
一.恒荷载作用下框架可按下面公式求得:均载M 1: 21/12ab M ql =- (61)-21/12ba M ql =集中荷载M e :M e =-Fe (62)-故:m KN M B A .58.936.678.2512/1266-=⨯⨯-= m KN M A B .58.9366=m KN M C B .34.752.744.1712/1266-=⨯⨯-= m KN M B C .34.7566=m KN M B A .42.596.642.5912/1255-=⨯⨯-= m KN M A B .24.5955=m KN M C B .23.722.772.1612/1255-=⨯⨯-= m KN M B C .23.7255-= m KN M e .06.18125.05.1146=⨯=m KN M e .11.9125.085.725=⨯=m KN M e .01.9125.001.724=⨯=所以梁固端弯矩为1M M M e n F +=恒荷载作用下框架的受荷简图如图6-3所示:图6-3竖向受荷总图:注:1.图中各值的单位为KN, 2.图中数值均为标准值3.图中括号数值为活荷载图6-4:恒载作用下的受荷简图(2).根据梁,柱相对线刚度,算出各节点的弯矩分配系数ij μ:/()ij c b i i i μ=∑+∑ (63)-分配系数如图6-5 , 图6-6所示:A 柱:底层 335.0)977.00.1942.0/(977.00=++=下柱i342.0)977.00.1942.0/(0.1=++=上柱i323.0)977.00.1942.0/(942.0=++=左梁i标准层:340.0)0.10.1942.0/(0.1=++=上柱i340.0)0.10.1942.0/(0.1=++=下柱i32.0)0.10.1942.0/(942.0=++=左梁i五层: 410.0)0.1942.035.1/(35.1=++=上柱i304.0)0.1942.035.1/(0.1=++=下柱i286.0)0.1942.035.1/(9420=++=。
i 左梁顶层: 590.0)35.1942.0/(35.1=+=下柱i41.0)942.035.1/(942.0=+=左梁iB 柱:底层: 250.0)0.1977.0864.0942.0/(942.0=+++=右梁i264.0)0.1977.0864.0942.0/(0.1=+++=上柱i 258.0)0.1977.0864.0942.0/(977.0=+++=下柱i 228.0)0.1977.0864.0942.0/(864.0=+++=左梁i标准层:63.0)864.00.10.1942.0/(0.1=+++=下柱i63.0)864.00.10.1942.0/(0.1=+++=上柱i247.0)864.00.10.1942.0/(942.0=+++=右梁i227.0)864.00.10.1942.0/(864.0=+++=左梁i顶层:241.0)942.0864.035.10.1/(0.1=+++=下柱i325.0)942.0864.035.10.1/(35.1=+++=上柱i227.0)942.0864.035.10.1/(942.0=+++=右梁i207.0)942.0864.035.10.1/(864.0=+++=左梁i顶层: 428.0)942.0864.035.1/(35.1=++=下柱i274.0)942.0864.035.10.1/(864.0=+++=左梁i294.0)942.0864.035.10.1/(942.0=+++=右梁i三.恒荷载作用下的弯矩剪力计算,根据简图(6-4)梁:A M 0∑= 21/2.0A B B M M ql Q l ---=/1/2B A B Q M M l ql =--B M 0∑= 21/2.0A B A M M ql Q l -+-=/1/2A A B Q M M l ql =-+(6-4) 柱:C M 0∑= .0C D D M M Q h ---=()/D C D Q M M h =-+D M 0∑= .0C D C M M Q h ---=()/C C D Q M M h =-+(6-5)四.恒荷载作用下的边跨框架的轴力计算,包括连梁传来的荷载及柱自重.N6=114.5+25.78×6.6/2=199.574KNN5= N6+72.81+16.37×7.2/2+35.39=361.795KNN4= N5+72.01+16.37×6.6/2+27=514.826KNN3= N4+72.01+16.37×6.6/2+27=667.857KNN2= N3+72.01+16.37×6.6/2+27=820.888KNN1= N2+72.01+16.37×6.6/2+27=973.92KN恒荷载作用下的中跨框架的轴力计算:N6=120.91+17.44×7.2/2+25.78×6.6/2=268.77KNN5= N6+114.32+16.37×6.6/2+16.72×7.2/2+35.39=532.69KNN4= N5+114.32+16.37×6.6/2+16.72×7.2/2+27=788.24KNN3= N4+114.32+16.37×6.6/2+16.72×7.2/2+27=1043.75KNN2= N3+114.32+16.37×6.6/2+16.72×7.2/2+27=1299.29KNN1= N2+114.32+16.37×6.6/2+16.72×7.2/2+27=1554.82KN图6-7 恒荷载作用下的计算简图五.弯矩分配及传递弯矩二次分配法比分层法作了更进一步的简化。