完整版二极管7种应用电路详解
- 格式:docx
- 大小:290.68 KB
- 文档页数:16
二极管整流电路二极管整流电路是一种常见的电子电路,用于将交流信号转换为直流信号。
这种电路具有简单、可靠和效率高的特点,被广泛应用于各种电子设备中。
一、原理二极管整流电路的原理基于二极管的非线性特性和单向导电性。
二极管在正向偏置时具有低电阻,可以通过电流。
而在反向偏置时,二极管则具有高电阻,电流无法通过。
利用这种特性,可以实现对交流信号的单向导通,从而将其转换为直流信号。
二、半波整流电路半波整流电路是简单且常见的一种二极管整流电路。
它由一个二极管和负载电阻组成。
其工作原理如下:1. 正半周期:当输入信号的正半周期时,二极管正向偏置,导通电流。
此时,输出信号等于输入信号的幅值。
换言之,正半周期的信号被完整地传递到输出端。
2. 负半周期:当输入信号的负半周期时,二极管反向偏置,截止电流。
此时,输出信号为零。
因此,负半周期的信号被屏蔽掉,不传递到输出端。
通过这种方式,半波整流电路实现了将交流信号的负半周期去除,只保留了正半周期,从而获得了一个单向的直流输出信号。
三、全波整流电路全波整流电路可以更有效地利用输入信号,将其完全转换成直流信号。
它由两个二极管和负载电阻组成。
其工作原理如下:1. 正半周期:当输入信号的正半周期时,二极管D1正向偏置,导通电流。
此时,输出信号的电压等于输入信号的幅值。
2. 负半周期:当输入信号的负半周期时,二极管D2反向偏置,导通电流。
此时,输出信号的电压等于负半周期信号的绝对值。
通过将正负半周期的信号叠加,全波整流电路实现了将交流信号转换为只包含正半周期的直流信号。
四、滤波电路在二极管整流电路中,由于转换后的信号仍然存在纹波,因此需要添加滤波电路来减小纹波的幅度,使输出信号更稳定。
常见的滤波电路包括电容滤波器和电感滤波器。
1. 电容滤波器:电容滤波器通过在负载电阻前并联一个电容器,利用电容器对高频信号具有较低阻抗的特点,来减小纹波。
电容滤波器能够滤除纹波的高频成分,将输出信号变得更加平滑。
电路中的二极管有哪些常见应用二极管是一种常见的电子元件,具有方向性导电特性。
由于其特殊的性质,二极管在电路设计中有着广泛的应用。
本文将介绍一些常见的二极管应用。
1. 整流器应用:二极管最常见的应用之一是作为整流器。
在交流电源中,二极管可将交流电信号转换为直流电信号。
当正向偏置时,电流可以流过二极管,而在反向偏置时,则可以阻止电流通过。
这种性质使得二极管非常适合用于整流电路,例如用于变压器和电源中。
2. 电压稳定器应用:二极管还可以用于构建电压稳定器电路。
通过合适地连接二极管,可以实现稳定输出电压。
常见的二极管电压稳定器包括Zener二极管稳压器和肖特基二极管稳压器。
这些电压稳定器可用于保护负载免受电压波动的影响。
3. 信号调制应用:二极管可以用来调制信号。
例如,调频调制器中的二极管可以根据调制信号的不同变化量来改变射频信号的振荡频率。
通过改变二极管的偏置,可以实现信号调制的目的。
4. 瞬变保护应用:二极管可以用于电路中的瞬变保护。
当电路中出现过电压、过流等瞬态事件时,二极管可以通过快速响应来保护其他电子元件。
常见的应用包括电路中的反向极限保护二极管、静电保护二极管等。
5. 光电二极管应用:光电二极管(Photodiode)是一种可以将光信号转化为电信号的二极管。
它广泛应用于光电传感器和光通信系统中。
光电二极管可以测量光强度、光功率等参数,在光通信中起到非常重要的作用。
6. 温度测量应用:温度传感器是许多电子设备中常见的部件。
二极管的反向偏置电流与温度之间存在着一定的关系。
通过利用二极管的这一性质,可以设计出简单而有效的温度测量电路。
7. 非线性电路应用:二极管的非线性特性使其成为构建非线性电路的有力工具。
例如,二极管的伏安特性曲线可以用于设计音频处理电路、频率倍增电路和斜波发生电路等。
除了以上列举的应用,二极管在电子技术中还有许多其他的应用,如振荡器、开关、反馈控制等。
二极管的特殊性质使其在电子领域中扮演着重要的角色,为各种电路的设计和实现提供了技术支持。
二极管的四种典型应用电路
二极管是一种常见的电子元件,具有单向导电性质,因此在电路中有着广泛的应用。
本文将介绍二极管的四种典型应用电路。
一、整流电路
整流电路是二极管最常见的应用之一。
在交流电源中,二极管可以将电流限制在一个方向上,从而实现将交流电转换为直流电的功能。
整流电路通常由一个二极管和一个负载组成,二极管将正半周的电流导通,而负半周的电流则被截止。
这样,负载就能够得到一个单向的电流,从而实现了直流电的输出。
二、稳压电路
稳压电路是另一个常见的二极管应用。
在电路中,二极管可以通过改变其正向电压降来实现稳压的功能。
稳压电路通常由一个二极管和一个电阻组成,当电压超过一定值时,二极管开始导通,从而将多余的电流导向地面,从而实现了稳压的功能。
三、开关电路
二极管还可以用于开关电路中。
在开关电路中,二极管可以通过改变其正向电压降来控制电路的开关状态。
当二极管导通时,电路处于开启状态,而当二极管截止时,电路处于关闭状态。
开关电路通常由一个二极管和一个负载组成,通过改变二极管的导通状态来控
制负载的开关。
四、信号检测电路
信号检测电路是另一个常见的二极管应用。
在电路中,二极管可以通过改变其正向电压降来实现信号检测的功能。
信号检测电路通常由一个二极管和一个电容组成,当信号的幅度超过一定值时,二极管开始导通,从而将信号导向负载。
这样,就可以实现对信号的检测和处理。
二极管是一种非常重要的电子元件,具有广泛的应用。
通过上述四种典型应用电路的介绍,我们可以更好地理解二极管的工作原理和应用场景,从而更好地应用二极管。
二极管的七种应用电路及详解杨江凯2019年10月2日许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。
二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。
一、二极管简易直流稳压电路及故障处理二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。
二极管简易稳压电路中主要利用二极管的管压降基本不变特性。
二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是0.2V左右。
如图9-40所示是由普通3只二极管构成的简易直流稳压电路。
电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。
图9-40 3只普通二极管构成的简易直流稳压电路1.电路分析思路说明分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。
关于这一电路的分析思路主要说明如下。
(1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。
(2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。
从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。
二极管其他7中应用电路详解许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。
二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。
1 二极管简易直流稳压电路及故障处理二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。
二极管简易稳压电路中主要利用二极管的管压降基本不变特性。
二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是0.2V左右。
如图1.1所示是由普通3只二极管构成的简易直流稳压电路。
电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。
图1.1 3只普通二极管构成的简易直流稳压电路1.1电路分析思路说明分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。
关于这一电路的分析思路主要说明如下。
(1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。
(2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。
从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。
二极管7种应用电路详解
许多初学者对二极管很熟悉,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。
二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。
二极管简易直流稳压电路及故障处理
二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。
二极管简易稳压电路中主要利用二极管的管压降基本不变特性。
二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是0.2V左右。
二极管工作原理及应用一、工作原理二极管是一种最简单的电子元件,由P型半导体和N型半导体组成。
P型半导体中的电子数量比空穴多,N型半导体中的空穴数量比电子多。
当P型半导体和N 型半导体相接触时,电子和空穴会发生扩散现象,形成一个耗尽区。
在耗尽区中,P型半导体的正电荷和N型半导体的负电荷形成了一个电场,这个电场会阻止电子和空穴继续扩散。
当二极管处于正向偏置时,即P型半导体连接正极,N型半导体连接负极,电场会进一步阻止电子和空穴的扩散。
此时,二极管的耗尽区变窄,电流可以流过二极管,二极管处于导通状态。
正向偏置时,二极管的正向电压降较低,电流流过二极管时,会有一定的压降。
当二极管处于反向偏置时,即P型半导体连接负极,N型半导体连接正极,电场会增强阻止电子和空穴的扩散。
此时,二极管的耗尽区变宽,电流几乎无法流过二极管,二极管处于截止状态。
反向偏置时,二极管的反向电压降非常高,电流几乎为零。
二、应用领域1. 整流器:二极管的一个重要应用是作为整流器,将交流电转换为直流电。
当交流电施加在二极管上时,正半周的电压大于二极管的正向电压降,二极管处于导通状态,电流正常通过;而负半周的电压小于二极管的正向电压降,二极管处于截止状态,电流无法通过。
通过这种方式,二极管可以将交流电转换为单向的直流电。
2. 信号检测器:二极管可以用作信号检测器,用于检测无线电频率中的信号。
当无线电信号施加在二极管上时,如果信号的振幅足够大,超过二极管的正向电压降,二极管会导通,电流流过。
通过测量流过二极管的电流,可以检测到信号的存在和强度。
3. 发光二极管(LED):发光二极管是一种能够发出光的二极管。
当电流通过发光二极管时,电子和空穴在P-N结合处重新结合,释放出能量,产生光。
发光二极管在照明、指示灯、显示屏等领域有广泛的应用。
4. 太阳能电池:太阳能电池是利用光照产生电能的装置,也是一种特殊的二极管。
太阳能电池的P-N结构可以将光能转化为电能。
二极管工作原理及应用一、工作原理二极管是一种电子元件,由两个不同材料的半导体材料构成,通常是P型半导体和N型半导体。
P型半导体中的杂质含有三价元素,如硼,而N型半导体中的杂质含有五价元素,如磷。
当P型和N型半导体通过特定方式连接在一起时,形成为了一个PN结。
PN结的形成使得二极管具有了特殊的电学特性。
当PN结两端施加电压时,如果正极连接在P区,负极连接在N区,称为正向偏置。
在正向偏置下,由于P区的多数载流子(空穴)和N区的少数载流子(电子)的扩散,形成为了电流通过的通道。
此时,二极管处于导通状态,电流可以流过。
相反,当正极连接在N区,负极连接在P区,称为反向偏置。
在反向偏置下,由于PN结的特殊结构,电流几乎无法通过。
此时,二极管处于截止状态,电流无法流过。
二、应用领域1. 整流器:二极管在电子电路中最常见的应用是作为整流器。
整流器用于将交流电转换为直流电。
当交流电施加在二极管上时,惟独正半周或者负半周的电流能够通过,另一半周的电流被截止。
这样,交流电就被转换为了单向的直流电。
2. 信号检测器:由于二极管在正向偏置下具有导通特性,在电子电路中可以用作信号检测器。
当输入信号的幅值大于二极管的正向压降时,二极管导通,输出信号可以被检测到。
而当输入信号的幅值小于正向压降时,二极管截止,输出信号无法通过。
3. 发光二极管(LED):发光二极管是一种能够发出光的二极管。
它在正向偏置下工作,当电流通过时,电子和空穴在PN结中重新结合,释放出能量,产生光。
LED广泛应用于照明、显示、指示灯等领域。
4. 太阳能电池:太阳能电池也是一种利用二极管工作原理的应用。
太阳能电池由多个PN结组成,当光照射到太阳能电池上时,光子的能量被吸收,激发了电子和空穴的产生,并在PN结中形成电流。
这样,太阳能就被转换为了电能。
5. 温度传感器:二极管的正向压降与温度呈负相关关系。
利用这一特性,可以将二极管作为温度传感器使用。
通过测量二极管的正向压降,可以推算出环境的温度。
二极管的种类和用途图二极管是一种电子器件,又称晶体二极管或电子二极管。
它由半导体材料制成,具有两个电极:一个是P型半导体和一个是N型半导体。
二极管是电子电路中最简单和最重要的器件之一,它具有许多不同的种类和用途。
在接下来的1200字里,我将详细介绍几种常见的二极管种类及其用途。
1. 通用二极管(General Purpose Diode)通用二极管是最常见的二极管类型之一,也称为整流二极管或信号二极管。
它的主要功能是将交流信号转换为直流信号,在电子设备中广泛应用于整流、开关、保护和调整电源电压等方面。
通用二极管一般采用硅材料制成,具有较高的导电性和耐压能力。
2. 效应二极管(Tunnel Diode)效应二极管是一种具有负差电阻特性的特殊二极管。
由于量子力学效应产生的特殊电子输运机制,效应二极管在特定电压范围内体现出反常的导电行为。
它主要用于高频振荡器、微波发射器、高速计数器和超低噪声放大器等应用领域。
3. 快恢复二极管(Fast Recovery Diode)快恢复二极管是一种具有较短恢复时间的二极管。
在高频、大功率开关电路中,由于一个二极管关闭时需要一定的恢复时间来驱散载流子,这个时间间隔会导致电压波形的畸变。
而快恢复二极管能够更快地恢复至开态,减小电压波形的畸变,提高电路的开关速度和效率。
因此,快恢复二极管广泛应用于开关电源、逆变器、电机驱动和电源传输等领域。
4. 功率二极管(Power Diode)功率二极管是一种可以承受较大电流和电压的二极管。
它通常用于电流大、电压高的电路中,如整流器、逆变器、电源开关、电机驱动和高频电源传输等应用场合。
功率二极管一般采用硅材料制成,有较低的导通电阻,能够耐受较大的功率损耗。
5. 发光二极管(Light Emitting Diode,LED)发光二极管是一种能够将电能转换为可见光能量的二极管。
LED具有耐用、高亮度、低功耗、寿命长等优点,因此被广泛应用于照明、显示、指示和通信等领域。
二极管7种应用电路详解之一许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。
二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。
9.4.1 二极管简易直流稳压电路及故障处理二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。
二极管简易稳压电路中主要利用二极管的管压降基本不变特性。
二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。
如图9-40所示是由普通3只二极管构成的简易直流稳压电路。
电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。
图9-40 3只普通二极管构成的简易直流稳压电路1.电路分析思路说明分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。
关于这一电路的分析思路主要说明如下。
(1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。
(2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。
从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。
稳压二极管常用功能应用电路解析一、稳压二极管稳压二极管,又名齐纳二极管,其工作原理一种用于稳定电压的单结二极管。
此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。
在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。
其伏安特性见图1,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。
“”二、稳压二极管稳压电路图分析D1为稳压二极管,与负载R2并联,R1为限流电阻。
“”若电网电压升高,即电路的输入电压Vin也随之升高,引起负载电压Vout升高。
由于稳压管D1与负载R2并联,Vin只要有一点增长,就会使流过稳压管的电流急剧增加,使得I也增大,限流电阻R1上的电压降增大,从而抵消了Vout的升高,保持负载电压Vout基本不变。
反之,若电网电压降低,引起Vin下降,造成Vout 也下降,则稳压管中的电流急剧减小,使得I减小,R1上的压降也减小,从而抵消了Vin的下降,保持负载电压Vout基本不变。
若Vin不变而负载电流增加,则R1上的压降增加,造成负载电压Vout下降。
Vout只要下降一点点,稳压管中的电流就迅速减小,使R1上的压降再减小下来,从而保持R1上的压降基本不变,使负载电压Vout得以稳定。
综上所述可以看出,稳压管起着电流的自动调节作用,而限流电阻起着电压调整作用。
稳压管的动态电阻越小,限流电阻越大,输出电压的稳定性越好。
稳压二极管串联使用:“”三、稳压二极管的性能稳压管稳压性能的好坏,可以用它的动态电阻r来表示:r = (电压的变化量△U)/(电流的变化量△I)显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU 越小,动态电阻越小,稳压管性能就越好。
二极管的原理与作用的详解一、二极管的原理1.1 二极管的结构和材料二极管是由P型半导体和N型半导体通过P-N结焊接而成的。
P型半导体中的空穴是载流子,N型半导体中的自由电子是载流子。
在P-N结区域,由于P型半导体与N型半导体之间的电子互相扩散,产生了内建电场。
当二极管处于正向偏置时,外加电场与内建电场相反,减弱内建电场,使电子和空穴互相推动,形成电流。
当二极管处于反向偏置时,外加电场与内建电场相同,增强内建电场,阻止电子和空穴互相推动,电流几乎为零。
1.2 二极管的I-V特性在二极管的工作过程中,通过正向偏置和反向偏置测试电压和电流的关系,得到了二极管的I-V特性曲线。
对于正向偏置,当初始时电压较小时,电流增加较快,此时二极管呈现出导通状态。
当电压较大时,电流增加的速度迅速放缓,呈现出近似于垂直的I-V特性曲线。
对于反向偏置,随着电压增加,电流一直保持在很小的数量级上,此时二极管处于截止状态。
从I-V特性曲线可以看出,二极管在正向偏置下具有导通特性,在反向偏置下具有截止特性。
1.3 二极管的载流子运动和电压分布在正向偏置下,P-N结区域的载流子受到外加电场的作用,不断地向结区域移动,形成电流。
P型半导体中的空穴向N型半导体区域移动,N型半导体中的自由电子向P型半导体区域移动,二者在P-N结区域重组,产生光子辐射。
在反向偏置下,P-N结区域的载流子受到内建电场的作用,难以移动,形成电流非常小的状态。
此时,二极管的内部电压分布非常重要,它会影响二极管的导通和截止状态。
1.4 二极管的能带图和禁带宽度能带图是根据半导体的能带结构绘制的图像,它反映了半导体的导电性和光电性。
对于二极管而言,能带图反映了P-N结区域的特性。
在P型半导体中,价带较高,导带较低,禁带宽度较小;在N型半导体中,价带较高,导带较低,禁带宽度较小。
在P-N结区域,由于电子的扩散和重组,形成了内建电场,使得P-N结处的禁带宽度增加。
禁带宽度的变化影响了二极管的导通和截止状态。
二极管工作原理及应用二极管是一种由半导体材料制成的电子元件,是最简单的半导体器件之一、它由N型半导体和P型半导体组成,中间有一个PN结。
二极管的工作原理是基于PN结的正向导通与反向截止的特性。
当二极管的正向电压大于峰值正向电压(一般为0.6-0.7V),PN结处形成导电通道,电流可以顺利通过;当反向电压大于二极管的击穿电压时,PN 结会被击穿,电流无法通过。
二极管具有单向导电的特性,只允许电流从P端流向N端,反之则会截止导电。
这使得二极管在电子电路中具有非常重要的作用,以下是它常见的应用:1.整流器:二极管可以将交流信号转换为直流信号,因为当信号为正半周时,二极管可以导通,允许电流通过;当信号为负半周时,二极管会截止,电流无法通过。
这样,只有正半周部分的电流可以通过,实现了对信号的整流。
2.检波器:通过利用二极管的整流作用,可以将射频信号中的音频信号分离出来。
例如在收音机中,二极管可以将射频信号转换为音频信号,使得我们能够收听到广播节目。
3.波形修整器:波形修整器是将不规则的波形变为规则的方波或方波脉冲的电路。
二极管可以作为波形修整器的重要组成部分,通过将波形的负半周切除,使得输出信号更加规则。
4.稳压器:二极管可以通过利用PN结的特性来实现稳压功能。
在Zener二极管中,当反向电压大于击穿电压时,二极管会稳定地工作在参考电压下,使得电压输出可以保持稳定。
5.温度传感器:二极管的温度特性使得它可以用作温度传感器。
根据温度的变化,二极管的导电特性会发生改变,通过检测其导通电流的变化可以得到温度的信号。
6.光电二极管:光电二极管是一种将光信号转换为电信号的器件。
当光照射在PN结上时,会产生电流。
这使得光电二极管可以用作光敏元件,例如在摄像机、光电传感器等设备中广泛应用。
总结起来,二极管是一种具有单向导通特性的电子元件,常见的应用包括整流器、检波器、波形修整器、稳压器、温度传感器和光电二极管等。
它在电子电路中起着非常重要的作用。
二极管的四种典型应用电路二极管是一种重要的电子元件。
它只有两个引脚,其中一个被标记为阳极(Anode),另一个引脚被标记为阴极(Cathode)。
二极管的主要作用是,将电流限制在一个方向上,因此也被称为单向导电器件。
二极管中的不同材料和设计都可以被用于不同的应用,以下是其中四个典型的应用电路:1. 整流电路最常见的二极管应用是电源电路的电压整流部分。
通常使用半波整流、全波整流和桥式整流电路。
在半波整流电路中,一般使用一颗二极管将输入电压变换为单向电流。
在全波整流电路中,使用两个二极管将输入电压变为单向电流。
在桥式整流电路中,则使用4个二极管,并以交错的形式连接,以使电流的流向始终是单向的。
2. 美国街头灯美国街头灯最为经典的特点是它的“拱形灯罩”,而如何让美国街头灯永远光亮的重要之处也在二极管。
美国街头灯中的电路含5颗二极管,同时含有容量非常大的电容,和多颗电阻。
电源电压通过电容充充放电,持续光亮!3. 光控开关在光敏元件中,可以使用二极管来制作光控开关。
在这种电路中,光电二极管用于检测环境中的光线强弱。
根据光线的强度,二极管将打开或关闭电路。
光控开关可以被用于灯光控制系统以及电视遥控器中。
4. 调谐电路二极管可以被用于制作调谐电路,因为在从正偏向反偏方向时,二极管的电容态度会发生变化,在电容变化时,其信号阻抗也会随之变化。
这些特性,使二极管成为制作无线电和其他通讯设备调谐电路的理想元件。
总结:二极管在电子技术中有着重要的应用,通常它被用于电源电路的电压整流部分,光控开关、调谐电路等领域,因为二极管有着单向导电的特性,可以有效地限制电流的流向。
同时,不同材料和制作方法的二极管可以支持不同的应用。
二极管的应用已深入各行各业,在电子产业中有着重要的地位。
二极管7种应用电路详解之一许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。
二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。
9.4.1 二极管简易直流稳压电路及故障处理二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。
二极管简易稳压电路中主要利用二极管的管压降基本不变特性。
二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。
如图9-40所示是由普通3只二极管构成的简易直流稳压电路。
电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。
图9-40 3只普通二极管构成的简易直流稳压电路1.电路分析思路说明分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。
关于这一电路的分析思路主要说明如下。
(1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。
(2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。
从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。
二极管工作原理及应用一、工作原理二极管是一种半导体器件,由P型和N型半导体材料组成。
P型半导体中的杂质掺入使其具有正电荷,称为P区;N型半导体中的杂质掺入使其具有负电荷,称为N区。
当P区和N区接触时,形成PN结。
在PN结上形成的电场称为内建电场。
二极管的工作原理主要涉及PN结的正向偏置和反向偏置两种情况。
1. 正向偏置:当二极管的正极连接到P区,负极连接到N区时,形成正向偏置。
此时,P区的正电荷和N区的负电荷被内建电场抵消,形成导电通道,电流可以流过二极管。
这种情况下,二极管处于导通状态,被称为正向工作。
2. 反向偏置:当二极管的正极连接到N区,负极连接到P区时,形成反向偏置。
此时,内建电场会阻碍电流的流动,二极管处于截止状态,被称为反向工作。
在反向偏置下,只有当施加的反向电压超过二极管的击穿电压时,才会出现反向电流。
二、应用领域二极管由于其独特的工作原理和特性,在电子技术领域有广泛的应用。
1. 整流器:二极管的正向导通特性使其成为整流器的重要组成部分。
在交流电源中,二极管可以将交流电信号转换为直流电信号,实现电能的有效利用。
2. 信号调理:二极管可以用于信号调理电路中,例如限幅器和削波器。
限幅器可以限制信号的幅度,削波器可以去除信号的负半周或正半周。
3. 光电器件:二极管的PN结可以将光能转换为电能,形成光电二极管。
光电二极管广泛应用于光电测量、光通信、光电传感等领域。
4. 温度测量:二极管的温度特性使其可以用于温度测量。
通过测量二极管的电压变化,可以间接得到环境温度。
5. 逻辑门:二极管可以用于构建逻辑门电路,例如与门、或门、非门等。
逻辑门电路在数字电路中起到逻辑运算的作用。
6. 光伏发电:光伏二极管是太阳能电池的基本组成部分。
通过光照射,光伏二极管可以将光能转化为电能,实现太阳能的利用。
7. 电压稳定器:二极管可以用于构建电压稳定器电路,用于稳定电源电压,保护其他电子器件。
总结:二极管是一种半导体器件,通过PN结的正向偏置和反向偏置实现不同的工作状态。
极管7种应用电路详解之一许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它 在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的 单向导电特性,就能分析二极管参与的各种电路, 实际上这样的想法是错误的, 而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。
二极管除单向导电特性外, 还有许多特性,很多的电路中并不是利用单向导电特性就能分析二 极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。
941二极管简易直流稳压电路及故障处理二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。
二极管简易稳压电路中主要利用二极管的管压降基本不变特性。
二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是 0.2V 左右。
如图9-40所示是由普通3只二极管构成的简易直流稳压电路。
电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。
图9-40 3只普通二极管构成的简易直流稳压电路1 •电路分析思路说明分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。
关于这一电路的分析思路主要说明如下。
(1)从电路中可以看出 3只二极管串联,根据串联电路特性可知, 这3只二极管如果导通会同时导通, 如果截止会同时截止。
(2) 根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还 是交流的电压,此时二极管均处于导通状态。
从电路中可以看出,在 VD1正极通过电阻 R1接电路中的直流工作电压+V , VD3的负极接地,这样在 3只串联二极管上加有足够大的正向直流电压。
由此分 析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V 作用下导通的。
(3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的 A 点与 地之间接有大容量电容 C1,将A 点的任何交流电压旁路到地端。
2 •二极管能够稳定直流电压原理说明电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A 点的直流电压。
众所周知,二极管内部是一个PN 结的结构,PN 结除单向导电特性之外还有许多特性,其中!£ mime i-yAn^Of之一是二极管导通后其管压降基本不变,对于常用的硅二极管而言导通后正极与负极之间的电压降为0.6V。
根据二极管的这一特性,可以很方便地分析由普通二极管构成的简易直流稳压电路工作原理。
3只二极管导通之后,每只二极管的管压降是0.6V,那么3只串联之后的直流电压降是0.6 X 3=1.8V。
3.故障检测方法检测这一电路中的3只二极管最为有效的方法是测量二极管上的直流电压,如图9-41所示是测量时接线示意图。
如果测量直流电压结果是 1.8V左右,说明3只二极管工作正常;如果测量直流电压结果是0V,要测量直流工作电压+V是否正常和电阻R1是否开路,与3只二极管无关,因为3只二极管同时击穿的可能性较小;如果测量直流电压结果大于 1.8V,检查3只二极管中有一只开路故障。
图9-41测量二极管上直流电压接线示意图4•电路故障分析5.电路分析细节说明关于上述二极管简易直流电压稳压电路分析细节说明如下。
(1)在电路分析中,利用二极管的单向导电性可以知道二极管处于导通状态,但是并不能说明这几只二极管导通后对电路有什么具体作用,所以只利用单向导电特性还不能够正确分析电路工作原理。
(2)二极管众多的特性中只有导通后管压降基本不变这一特性能够最为合理地解释这一电路的作用,所以依据这一点可以确定这一电路是为了稳定电路中A点的直流工作电压。
(3)电路中有多只元器件时,一定要设法搞清楚实现电路功能的主要元器件,然后围绕它进行展开分析。
分析中运用该元器件主要特性,进行合理解释。
二极管7种应用电路详解之二942二极管温度补偿电路及故障处理众所周知,PN结导通后有一个约为0.6V (指硅材料PN结)的压降,同时PN结还有一个与温度相关的特性:PN结导通后的压降基本不变,但不是不变,PN结两端的压降随温度升高而略有下降,温度愈高其下降的量愈多,当然PN结两端电压下降量的绝对值对于0.6V而言相当小,利用这一特性可以构成温度补偿电路。
如图9-42所示是利用二极管温度特性构成的温度补偿电路。
图9-42二极管温度补偿电路对于初学者来讲,看不懂电路中VT1等元器件构成的是一种放大器,这对分析这一电路工作原理不利。
在电路分析中,熟悉VT1等元器件所构成的单元电路功能,对分析VD1工作原理有着积极意义。
了解了单元电路的功能,一切电路分析就可以围绕它进行展开,做到有的放矢、事半功倍。
1 •需要了解的深层次电路工作原理分析这一电路工作原理需要了解下列两个深层次的电路原理。
(1)VT1等构成一种放大器电路,对于放大器而言要求它的工作稳定性好,其中有一条就是温度高低变化时三极管的静态电流不能改变,即VT1基极电流不能随温度变化而改变,否则就是工作稳定性不好。
了解放大器的这一温度特性,对理解VD1构成的温度补偿电路工作原理非常重要。
(2)三极管VT1有一个与温度相关的不良特性,即温度升高时,三极管VT1基极电流会增大,温度愈高基极电流愈大,反之则小,显然三极管VT1的温度稳定性能不好。
由此可知,放大器的温度稳定性能不良是由于三极管温度特性造成的。
2. 三极管偏置电路分析电路中,三极管VT1工作在放大状态时要给它一定的直流偏置电压,这由偏置电路来完成。
电路中的R1、VD1和R2构成分压式偏置电路,为三极管VT1基极提供直流工作电压,基极电压的大小决定了VT1基极电流的大小。
如果不考虑温度的影响,而且直流工作电压+V的大小不变,那么VT1 基极直流电压是稳定的,则三极管VT1的基极直流电流是不变的,三极管可以稳定工作。
在分析二极管VD1工作原理时还要搞清楚一点:VT1是NPN型三极管,其基极直流电压高,则基极电流大;反之则小。
3. 二极管VD1温度补偿电路分析根据二极管VD1在电路中的位置,对它的工作原理分析思路主要说明下列几点:(1)VD1的正极通过R1与直流工作电压+V相连,而它的负极通过R2与地线相连,这样VD1在直流工作电压+V的作用下处于导通状态。
理解二极管导通的要点是:正极上电压高于负极上电压。
(2)禾U用二极管导通后有一个0.6V管压降来解释电路中VD1的作用是行不通的,因为通过调整R1 和R2的阻值大小可以达到VT1基极所需要的直流工作电压,根本没有必要通过串入二极管VD1来调整VT1基极电压大小。
(3)利用二极管的管压降温度特性可以正确解释VD1在电路中的作用。
假设温度升高,根据三极管特性可知,VT1的基极电流会增大一些。
当温度升高时,二极管VD1的管压降会下降一些,VD1管压降的下降导致VT1基极电压下降一些,结果使VT1基极电流下降。
由上述分析可知,加入二极管VD1 后,原来温度升高使VT1 基极电流增大的,现在通过VD1 电路可以使VT1 基极电流减小一些,这样起到稳定三极管VT1 基极电流的作用,所以VD1 可以起温度补偿的作用。
(4)三极管的温度稳定性能不良还表现为温度下降的过程中。
在温度降低时,三极管VT1 基极电流要减小,这也是温度稳定性能不好的表现。
接入二极管VD1 后,温度下降时,它的管压降稍有升高,使VT1 基极直流工作电压升高,结果VT1 基极电流增大,这样也能补偿三极管VT1 温度下降时的不稳定。
4.电路分析细节说明电路分析的细节说明如下。
(1)在电路分析中,若能运用元器件的某一特性去合理地解释它在电路中的作用,说明电路分析很可能是正确的。
例如,在上述电路分析中,只能用二极管的温度特性才能合理解释电路中VD1 的作用。
(2)温度补偿电路的温度补偿是双向的,即能够补偿由于温度升高或降低而引起的电路工作的不稳定性。
(3)分析温度补偿电路工作原理时,要假设温度的升高或降低变化,然后分析电路中的反应过程,得到正确的电路反馈结果。
在实际电路分析中,可以只设温度升高进行电路补偿的分析,不必再分析温度降低时电路补偿的情况,因为温度降低的电路分析思路、过程是相似的,只是电路分析的每一步变化相反。
(4)在上述电路分析中,VT1 基极与发射极之间PN 结(发射结)的温度特性与VD1 温度特性相似,因为它们都是PN 结的结构,所以温度补偿的结果比较好。
(5)在上述电路中的二极管VD1 ,对直流工作电压+V 的大小波动无稳定作用,所以不能补偿由直流工作电压+V 大小波动造成的VT1 管基极直流工作电流的不稳定性。
5.故障检测方法和电路故障分析这一电路中的二极管VD1 故障检测方法比较简单,可以用万用表欧姆档在路测量VD1 正向和反向电阻大小的方法。
当VD1 出现开路故障时,三极管VT1 基极直流偏置电压升高许多,导致VT1 管进入饱和状态,VT1可能会发烧,严重时会烧坏VT1。
如果VD1出现击穿故障,会导致VT1管基极直流偏置电压下降0.6V,三极管VT1直流工作电流减小,VT1管放大能力减小或进入截止状态。
二极管7种应用电路详解之三943二极管控制电路及故障处理二极管导通之后,它的正向电阻大小随电流大小变化而有微小改变,正向电流愈大,正向电阻愈小;反之则大。
利用二极管正向电流与正向电阻之间的特性,可以构成一些自动控制电路。
如图9-43所示是一种由二极管构成的自动控制电路,又称ALC电路(自动电平控制电路),它在磁性录音设备中(如卡座)的录音电路中经常应用。
图9-43二极管构成的自动控制电路1电路分析准备知识说明二极管的单向导电特性只是说明了正向电阻小、反向电阻大,没有说明二极管导通后还有哪些具体的特性。
二极管正向导通之后,它的正向电阻大小还与流过二极管的正向电流大小相关。
尽管二极管正向导通后的正向电阻比较小(相对反向电阻而言) ,但是如果增加正向电流,二极管导通后的正向电阻还会进一步下降,即正向电流愈大,正向电阻愈小,反之则大。
不熟悉电路功能对电路工作原理很不利,在了解电路功能的背景下能有的放矢地分析电路工作原理或电路中某元器件的作用。
ALC电路在录音机、卡座的录音卡中,录音时要对录音信号的大小幅度进行控制,了解下列几点具体的控制要求有助于分析二极管VD1自动控制电路。
(1)在录音信号幅度较小时,不控制录音信号的幅度。
(2)当录音信号的幅度大到一定程度后,开始对录音信号幅度进行控制,即对信号幅度进行衰减,对录音信号幅度控制的电路就是ALC电路。