知识讲解 椭圆的简单性质 基础
- 格式:doc
- 大小:482.42 KB
- 文档页数:7
1.2 椭圆的简单性质1.我们把定值e=c/a(0<e<1) 叫做椭圆的离心率。
当e 越接近于1时,c 越接近于a ,从而b 越小,因此椭圆越扁;反之,e 越接近于0,从而b 越接近于a ,椭圆越接近于圆。
可见离心率是刻画椭圆圆扁程度的量。
2..椭圆的顶点:曲线与坐标轴的交点叫做曲线的顶点。
同时我们把AA1,BB1分别叫做椭圆的长轴和短轴。
另外我们将a,b 叫半长轴长和半短轴长。
3.椭圆的范围:椭圆位于一个矩形内。
4.椭圆的对称性:椭圆既关于坐标轴对称,又关于原点对称。
1 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.【解析】由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫ ⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则()1122+=++m y x 它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.2 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点. (1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB . (2)如果椭圆上存在一个点Q ,使120=∠AQB ,求C 的离心率e 的取值范围. 分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据 120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.【解析】(1)设()0,c F ,()0,a A -,()0,a B .⎪⎪⎭⎫ ⎝⎛⇒⎩⎨⎧=+=a b c P ba y a xbc x 2222222, 于是()a c a b k AP +=2,()a c ab k BP -=2. ∵APB ∠是AP 到BP 的角.∴()()()2222242221tan c a a c a b a c a b a c a b APB -=-++--=∠ ∵22c a >∴2tan -<∠APB 故3tan -≠∠APB ∴ 120≠∠APB .(2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角. ∴22222221tan a y x ay a x y a x y a x y AQB -+=-++--=∠ ∵ 120=∠AQB , ∴32222-=-+ay x ay 整理得()023222=+-+ay a y x ∵22222y b a a x -= ∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a ∵0≠y , ∴2232cab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e . 3 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.【解析】当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.4 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e . 由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离, ∴b e PF d 3211==,即P 到左准线的距离为b 32.解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b e PF d 33222==. 又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解. 椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.5 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.【解析】 设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan =,即2tan =α. 而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.。
椭圆与方程【知识梳理】 1、椭圆的定义平面内,到两定点1F 、2F 的距离之和为定长()1222,0a F F a a <>的点的轨迹称为椭圆,其中两定点1F 、2F 称为椭圆的焦点,定长2a 称为椭圆的长轴长,线段12F F 的长称为椭圆的焦距.此定义为椭圆的第一定义. 2、椭圆的简单性质3、焦半径椭圆上任意一点P 到椭圆焦点F 的距离称为焦半径,且[],PF a c a c ∈-+,特别地,若00(,)P x y 为椭圆()222210x y a b a b +=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,则10||PF a ex =+,20||PF a ex =-,其中ce a=. 4、通径过椭圆()222210x y a b a b +=>>焦点F 作垂直于长轴的直线,交椭圆于A 、B 两点,称线段AB 为椭圆的通径,且22b AB a=.P 为椭圆()222210x y a b a b+=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,称12PF F ∆为椭圆的焦点三角形,其周长为:1222F PF C a c ∆=+,若12F PF θ∠=,则焦点三角形的面积为:122tan 2F PF S b θ∆=.6、过焦点三角形直线l 过椭圆()222210x y a b a b+=>>的左焦点1F ,与椭圆交于11(,)A x y 、22(,)B x y 两点,称2ABF ∆为椭圆的过焦点三角形,其周长为:24ABF C a ∆=,面积为212y y c S ABF -=∆.7、点与椭圆的位置关系()00,P x y 为平面内的任意一点,椭圆方程为22221(0)x y a b a b +=>>:若2200221x y a b +=,则P 在椭圆上;若2200221x y a b +>,则P 在椭圆外;若2200221x y a b+<,则P 在椭圆内.8、直线与椭圆的位置关系直线:0l Ax By C ++=,椭圆Γ:22221(0)x y a b a b+=>>,则l 与Γ相交22222a A b B C ⇔+>;l 与Γ相切22222a A b B C ⇔+=;l 与Γ相离22222a A b B C ⇔+<.9、焦点三角形外角平分线的性质(*)点(,)P x y 是椭圆22221(0)x y a b a b+=>>上的动点,12,F F 是椭圆的焦点, M 是12F PF ∠的外角平分线上一点,且【推广2】设直线()110l y k x m m =+≠:交椭圆()222210x y a b a b +=>>于C D 、两点,交直线22l y k x =:于点E .若E 为CD 的中点,则2122b k k a=-.11、中点弦的斜率()()000,0M x y y ≠为椭圆()222210x y a b a b +=>>内的一点,直线l 过M 与椭圆交于,A B 两点,且AM BM =,则直线l 的斜率2020ABb x k a y =-.12、相互垂直的半径倒数的平方和为定值若A 、B 为椭圆C :()222210x y a b a b+=>>上的两个动点,O 为坐标原点,且OA OB ⊥.则2211||||OA OB +=定值2211ab+.【典型例题】例1、直线1y kx =+与椭圆2215x y m+=恒有公共点,则m 的取值范围是__________. 【变式1】已知方程13522-=-+-k y k x 表示椭圆,则k 的取值范围__________. 【变式2】椭圆12222=-++m x m y 的两个焦点坐标分别为__________.【变式1】已知圆()11:221=++y x O ,圆()91:222=+-y x O ,动圆M 分别与圆1O 相外切,与圆2O 相内切.求动圆圆心M 所在的曲线的方程.【变式2】已知ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为__________.【变式3】已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆的圆心P 的轨迹方程.例3、若P 是椭圆13422=+y x 上的点,1F 和2F 是焦点,则 (1)21PF PF ⋅的取值范围为__________. (2)12PF PF ⋅的取值范围为__________.(3)2212PF PF +的取值范围为__________.【变式1】点(,)P x y 是椭圆22194x y +=上的一点,12,F F 是椭圆的焦点,M 是1PF 的中点,且12PF =,O 为坐标原点,则OM =_______.【变式2】点(,)P x y 是椭圆22221(0)x y a b a b+=>>上的动点,12,F F 是椭圆的焦点,M 是12F PF ∠的外角平分线上一点,且20F M MP ⋅=,则动点M 的轨迹方程为________.例4、已知椭圆2212516x y +=内有一点()2,1A ,F 为椭圆的左焦点,P 是椭圆上动点,求PA PF +的最大值与最小值__________.【变式】若椭圆171622=+y x 的左、右两个焦点分别为1F 、2F ,过点1F 的直线l 与椭圆相交于A 、B 两点,则B AF 2∆的周长为__________.例5、12,F F 是椭圆221x y +=的焦点,点P 为其上动点,且1260F PF ∠=︒,则12F PF ∆的面积是__________.【变式】焦点在轴x 上的椭圆方程为2221(0)x y a a +=>,1F 、2F 是椭圆的两个焦点,若椭圆上存在点B ,使得122F BF π∠=,那么实数a 的取值范围是________.例6、已知椭圆2212x y +=, (1)求过点1122P ⎛⎫⎪⎝⎭,且被P 平分的弦所在的直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过(21)A ,引椭圆的割线,求截得的弦的中点的轨迹方程.(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例7、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例8、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.例9、已知定点()2,0A -,动点B 是圆64)2(:22=+-y x F (F 为圆心)上一点,线段AB 的垂直平分线交BF于P .(1)求动点P 的轨迹方程; (2)直线13+=x y 交P 点的轨迹于,M N 两点,若P 点的轨迹上存在点C ,使,OC m ON OM ⋅=+求实数m的值;例10、已知椭圆12222=+b y a x (0>>b a ),过点(),0A a -,()0,B b 的直线倾斜角为6π,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线过()1,0D -与椭圆交于E ,F 两点,若DF ED 2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点(1,0)D -?若存在,求出k 的值;若不存在,请说明理由.例11、若AB是经过椭圆2212516x y+=中心的一条弦点,12,F F分别为椭圆的左、右焦点,求1F AB∆的面积的最大值.【变式1】已知直线l与椭圆2213xy+=交于A B、两点,坐标原点O到直线l的距离为2,求AOB∆的面积的最大值.【变式3】已知定点)0,(a A 和椭圆8222=+y x 上的动点),(y x P(1)若2=a 且223||=PA ,计算点P 的坐标; (2)若30<<a 且||PA 的最小值为1,求实数a 的值.【变式4】如图,椭圆的中心在原点,()()2,0,0,1A B 是它的两个顶点,直线(0)y kx k =>交线段AB 于点D ,交椭圆于,E F 两点.(1)若6ED DF =,求直线的斜率k ;D(2)求四边形AFBE 的面积S 的最大值.【变式5】椭圆()222104x y b b +=>的一个焦点是()1,0F - (1)求椭圆的方程;(2)已知点P 是椭圆上的任意一点,定点M 为x 轴正半轴上的一点,若PM 的最小值为85,求定点M 的坐标; (3)若过原点O 作互相垂直两条直线,交椭圆分别于,A C 与,B D 两点,求四边形ABCD 面积的取值范围.【变式6】在平面直角坐标系xOy中,动点P到定点()),的距离之和为4,设点P的轨迹为曲线C,直E-,且与曲线C交于,A B两点.线l过点(1,0)(1)求曲线C的方程;(2)以AB为直径的圆能否通过坐标原点?若能通过,求此时直线l的方程,若不能,说明理由.∆的面积是否存在最大值?若存在,求出面积的最大值,以及此时的直线方程,若不存在,请说明理由.(3)AOB例12、已知椭圆2222(0)x y a a +=>的一个顶点和两个焦点构成的三角形的面积为4. (1)求椭圆C 的方程;(2)已知直线)1(-=x k y 与椭圆C 交于A 、B 两点,试问,是否存在x 轴上的点(),0M m ,使得对任意的k R ∈,MA MB ⋅为定值,若存在,求出M 点的坐标,若不存在,说明理由.【变式1】过椭圆22182x y +=长轴上某一点(),0S s (不含端点)作直线l (不与x 轴重合)交椭圆于,M N 两点,若点(),0T t 满足:8OS OT ⋅=,求证:MTS NTS ∠=∠.【变式2】已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的一个动点,过P 作方向向量()2,1d =的直线l 交椭圆C 于A 、B 两点,求证:22PA PB +为定值.【变式3】如图,A 为椭圆()2222+10x y a b a b =>>上的一个动点,弦,AB AC.当AC x ⊥轴时,恰好123AF AF =(1)求ca的值 (2)若111AF F B λ=,222AF F C λ=,试判断12λλ+是否为定值?若是,求出定值;若不是,说明理由.【变式4】线段,A B 分别在x 轴,y 轴上滑动,且3AB =,M 为线段AB 上的一点,且1AM =,M 随,A B 的滑动而运动(1)求动点M 的轨迹方程E ;(2)过N 的直线交曲线E 于,C D 两点,交y 轴于P ,1PC CN λ=,2PD DN λ=,试判断12λλ+是否为定值?若是,求出定值;若不是,说明理由.2F 1F【变式5】如图,已知椭圆C :22221x y a b+=,其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记△1GF D 的面积为1S ,△OED (O 为原点)的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.xyO A B1F D GE2F【变式6】已知椭圆C 的方程为22212x y a +=(0)a >,其焦点在x 轴上,点Q 为椭圆上一点. (1)求该椭圆的标准方程;(2)设动点P 00(,)x y 满足2OP OM ON =+,其中M 、N 是椭圆C 上的点,直线OM 与ON的斜率之积为12-,求证:22002x y +为定值; (3)在(2)的条件下探究:是否存在两个定点,A B ,使得PA PB +为定值?若存在,给出证明;若不存在,请说明理由.例13、椭圆的一个顶点(0,1)A -,焦点在x 轴上,右焦点到直线0x y -+的距离为3.(1)求椭圆的方程;(2)设椭圆与直线(0)y kx m k =+≠相交于不同两点,M N ,当AM AN =时,求实数m 的取值范围.【变式1】已知A 、B 、C 是椭圆()222210x y a b a b+=>>上的三点,其中()A ,BC 过椭圆的中心,且0AC BC ⋅=,2BC AC =.(1)求椭圆的方程;(2)过点()0,M t 的直线l (斜率存在时)与椭圆交于两点,P Q ,设D 为椭圆与y 轴负半轴的交点,且DP DQ =.求实数t 的取值范围.。
数学椭圆入门知识点总结椭圆,是解析几何学中一种重要的平面曲线。
它在物理学、工程学和数学中都有广泛的应用,而且它的性质也十分有趣。
在本文中,我将总结椭圆的入门知识点,包括椭圆的定义、性质、方程、参数方程、焦点、离心率等内容,希望对初学者有所帮助。
1. 椭圆的定义在几何学中,椭圆是一个平面上的点,满足到两个固定点(称为焦点)的距离之和恒定的性质。
这个性质可以用数学语言表述为:设椭圆的两个焦点分别为F1和F2,到这两个焦点的距离之和等于一个固定的常数2a,即|PF1|+|PF2|=2a。
其中P为椭圆上的任意点,a为椭圆的长半轴。
2. 椭圆的性质(1)椭圆是一个凸曲线,即曲线上的任意两点之间的线段都完全在曲线的内部。
(2)椭圆的形状受到长半轴a和短半轴b(a>b)的控制。
其中长半轴a是椭圆的焦点之间的距离的一半,短半轴b是椭圆在焦点所在直线上的轴线之间的距离的一半。
(3)椭圆上的点到两个焦点的距离之和为常数2a,这个常数称为椭圆的半通径。
当椭圆的长短半轴分别为a和b时,其半通径为a。
3. 椭圆的方程椭圆的方程表示为:x^2/a^2 + y^2/b^2 = 1其中a和b分别表示椭圆的长短半轴。
方程中的参数a和b可以决定椭圆的大小和形状,例如,a>b时,椭圆更加狭长,而a=b时,椭圆变成一个圆。
4. 椭圆的参数方程椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中t为参数,a和b分别表示椭圆的长短半轴。
通过参数方程,我们可以轻松地画出椭圆的形状,而且还可以方便地对椭圆进行各种运算。
5. 椭圆的焦点椭圆有两个焦点F1和F2,它们分别位于椭圆的长轴两端。
椭圆的焦点满足以下性质:(1)焦点到椭圆上任意一点的距离之和为常数2a,即|PF1|+|PF2|=2a。
(2)焦点到长轴的中点的距离为c,满足c^2 = a^2 - b^2。
6. 椭圆的离心率离心率e是衡量椭圆形状的一个重要参数,它表示焦点到椭圆中心的距离与长半轴的比值。
(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。
这两个给定点称为焦点,而常数称为离心率。
椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。
2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。
- 椭圆的离心率介于0和1之间,且离心率为0时为圆。
- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。
- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。
- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。
3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。
4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。
5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。
- 椭圆的两个焦点与椭圆的直径的交点相同。
6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。
- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。
- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。
7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。
- 椭圆滤波器:在信号处理中用于清除噪音。
- 光学器件:如折射球面镜、椭圆镜等。
以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。
椭圆的知识点总结一、椭圆的定义椭圆是平面上的一种特殊曲线,它的定义可以有多种方式。
在解析几何中,我们通常采用焦点-直线之和等于常数的定义来描述椭圆。
具体而言,椭圆定义为到两个固定点(焦点)的距离之和等于常数的点的集合。
这个常数被称为椭圆的长轴长度。
另外,椭圆还有一个短轴,它垂直于长轴且通过长轴的中点。
椭圆的长轴和短轴的长度决定了椭圆的形状。
二、椭圆的性质1. 焦点性质:椭圆有两个焦点,它们位于长轴上,且椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
2. 直径性质:椭圆的直径是经过焦点的直线段,并且它恰好与椭圆相交于椭圆上的两点。
3. 周长性质:椭圆的周长可以用椭圆的半长轴和半短轴的长度来表示,即2πb+4aE(e),其中a和b分别为椭圆的长轴和短轴的长度,E(e)为第二类椭圆积分。
4. 质心性质:椭圆的质心位于椭圆的中心,且与椭圆的几何中心重合。
椭圆的质心满足椭圆上所有点到该质心的距离之和等于椭圆的长轴长度。
5. 对称性质:椭圆具有关于长轴和短轴的对称性,且同时具有关于两个焦点的对称性。
6. 离心率性质:椭圆的离心率e是一个重要的参数,它刻画了椭圆的形状。
椭圆的离心率满足0<e<1,且e=√(1-b²/a²)。
7. 焦点和直角坐标系的关系:椭圆在直角坐标系中的方程形式可以用来描述椭圆的形状,其一般方程为(x²/a²)+(y²/b²)=1。
三、椭圆的方程椭圆的方程通常以长轴和短轴的长度来表示,其一般方程为(x²/a²)+(y²/b²)=1。
在给定长轴和短轴的情况下,可以通过椭圆的方程来确定椭圆的形状和位置。
四、椭圆的焦点椭圆有两个焦点,它们分别位于长轴的两端。
椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
焦点是椭圆的重要特性,它们的位置决定了椭圆的形状和方向。
五、椭圆的参数方程椭圆还可以用参数方程来描述。
数学椭圆知识点总结椭圆,作为数学中的一个重要几何图形,拥有许多有趣的性质和应用。
在本文中,我们将对椭圆的相关知识点进行总结和介绍,旨在帮助读者更好地理解和掌握椭圆的特性。
一、椭圆的定义椭圆可以通过一对焦点和一个到这两个焦点距离之和等于一定值的点的集合来定义。
这个固定值称为椭圆的长轴长度。
而长轴的中点则为椭圆的中心。
椭圆还具有一个短轴,它是与长轴垂直且通过中心的线段。
二、椭圆的性质1. 对称性椭圆具有关于两条轴的对称性。
也就是说,关于长轴或短轴对称的点,其到两个焦点的距离和相等。
这一性质在解决椭圆相关问题时经常被用到。
2. 焦点椭圆的两个焦点是与椭圆定义密切相关的概念。
焦点对于椭圆的形状和特性起着重要的作用。
例如,离椭圆中心较远的焦点,它的位置将决定椭圆的长轴长度。
3. 倾斜椭圆可以有不同的倾斜程度。
当椭圆的长轴与水平线不平行时,我们称之为斜椭圆。
斜椭圆相对于水平椭圆来说,具有更多的特殊性质和难度。
研究斜椭圆可以帮助我们探索椭圆的更多奥秘。
三、椭圆的方程椭圆的方程式是通过数学推导出的表达式,用于表示椭圆的轨迹。
对于以坐标系原点为中心、长轴与x轴平行的标准椭圆来说,其方程可以用以下形式表示:(x/a)^2 + (y/b)^2 = 1 。
其中a和b分别代表长轴和短轴的长度。
同样,当椭圆的中心不在坐标原点处,或者长轴不与x轴平行时,我们可以通过平移和旋转坐标系的方法将其转化为标准椭圆的方程。
四、椭圆的参数方程椭圆也可以通过参数方程的方式进行描述。
参数方程将椭圆上的点的坐标表示为参数t的函数。
对于以坐标系原点为中心的椭圆来说,其参数方程可以表示为:x = a*cos(t),y = b*sin(t)。
参数方程在椭圆的绘制和计算过程中具有一定的优势。
通过改变参数t的取值范围,我们可以绘制出完整的椭圆图形。
五、椭圆的一些应用椭圆在许多领域都有广泛的应用。
以下是一些常见的应用例子:1. 天体轨道分析由于天体运动的规律是椭圆的轨迹,椭圆在行星、卫星以及彗星等天体的轨道分析中具有重要作用。
椭圆的性质及知识点总结一、椭圆的定义和基本性质1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
设d1和d2分别表示P到F1和F2的距离,则椭圆的定义可以用数学表达式表示为|d1 + d2| = 2a 。
1.2 椭圆的基本性质(1)椭圆对称轴:椭圆有两个对称轴,分别称为长轴和短轴。
长轴的端点是两个焦点F1和F2,短轴与长轴垂直并通过椭圆的中心点。
(2)椭圆的焦点和离心率:椭圆的焦点是定义椭圆的两个定点F1和F2,离心率e是一个表示椭圆形状的参数,e的取值范围是0<e<1。
(3)椭圆的三大定律:椭圆有三个基本定律,分别是:(a)椭圆内到两个焦点的距离之和等于长轴的长度;(b)椭圆内到两个焦点的距离之差等于长轴的长度;(c)椭圆的面积等于πab,其中a和b分别是长轴和短轴的长度。
1.3 椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是长轴和短轴的长度,椭圆的中心点位于原点(0,0)。
二、椭圆的相关知识点2.1 椭圆的离心率椭圆的离心率e的定义是e=c/a,其中c为焦距,a为长半轴的一半。
离心率越接近于0,椭圆形状越圆;离心率越接近于1,椭圆形状越扁。
2.2 椭圆的参数方程椭圆也可以用参数方程表示,参数方程为:x = a * cosθy = b * sinθ其中θ为参数,a和b分别是长轴和短轴的长度。
2.3 椭圆的焦半径椭圆的焦半径是指从椭圆的焦点到该椭圆上的任意一点P的距离,椭圆上各点的焦半径之和等于椭圆的周长。
2.4 椭圆的切线椭圆上的切线有一个特点:与椭圆相切的切线在切点处与切线的法线垂直。
根据这个特点可以求出椭圆上任意一点处的切线方程。
2.5 椭圆的焦点坐标椭圆的焦点坐标可以通过椭圆的离心率和焦距来求解。
焦点坐标为(±ae, 0),a为长轴的一半,e为椭圆的离心率。
2.6 椭圆的面积椭圆的面积可以通过参数法求解,面积为πab,其中a和b分别是长轴和短轴的长度。
椭圆基础知识点椭圆是几何学中的一个重要概念,它在数学和实际应用中都有广泛的应用。
椭圆具有一些独特的性质和特点,让我们一步步来了解椭圆的基础知识点。
1.椭圆的定义椭圆是一个平面上的闭合曲线,它的形状类似于拉长的圆。
椭圆可以由一个固定点F(焦点)和到该点距离之比为常数的点P(到焦点的距离之和等于常数)构成。
这个常数称为离心率,通常用字母e表示。
当离心率小于1时,椭圆是个封闭的曲线;当离心率等于1时,椭圆变成一个抛物线;当离心率大于1时,椭圆变成一条双曲线。
2.椭圆的主要特点椭圆具有一些独特的特点,让我们来逐个了解:•长半轴和短半轴:椭圆由两个相互垂直的轴构成,其中较长的轴称为长半轴(通常用字母a表示),较短的轴称为短半轴(通常用字母b表示)。
•焦点和准线:椭圆的两个焦点和一条过焦点的垂线称为准线。
准线是椭圆上所有点的几何平均线,即任意一点到两个焦点的距离之和等于准线的长度。
•主轴和次轴:椭圆的长半轴是主轴,短半轴是次轴。
主轴的长度是椭圆的最长直径,次轴的长度是椭圆的最短直径。
主轴和次轴互相垂直,且交于椭圆的中心点。
•离心率:椭圆的离心率e是一个常数,它表示焦点到准线的距离与准线长度的比值。
离心率越接近0,椭圆越接近圆形;离心率越大,椭圆越扁平。
•离心角:椭圆上任意一点P的离心角是焦点到P的线段与准线的夹角。
离心角的大小与离心率和点P的位置有关。
3.椭圆的方程椭圆的方程是用来描述椭圆的数学表达式。
一般来说,椭圆的标准方程有两种形式:•椭圆的中心在坐标原点的情况下,其方程为x2/a2 + y2/b2 = 1,其中a 和b分别表示椭圆的长半轴和短半轴的长度。
•椭圆的中心不在坐标原点的情况下,其方程为[(x-h)^2]/a^2 + [(y-k)^2]/b^2 = 1,其中(h,k)表示椭圆的中心坐标。
4.椭圆的应用椭圆在数学和实际应用中都有广泛的应用。
以下是一些椭圆的应用领域:•天文学:行星和卫星的轨道通常是椭圆形的,椭圆的研究对于天体运动的理解和预测非常重要。
椭圆知识点详细总结椭圆是平面上的一个特殊几何图形,其形状和性质具有独特的特点。
在学习椭圆的知识时,我们需要了解它的定义、性质、方程和应用等方面的内容。
一、椭圆的定义和性质:1.定义:在平面上给定一对焦点F1和F2以及一个距离2a(长轴),该点到两个焦点F1和F2的距离之和是常数2a(2a>0)。
以两个焦点F1、F2和连接它们的直线段为轴的点的轨迹,构成了一个椭圆。
2.性质:a)长轴和短轴:椭圆的长轴是两个焦点之间的距离2a,短轴是通过中点M的两条焦半径之间的距离2b。
b)焦点关系:椭圆上的任意一点到两个焦点的距离之和等于常数2a。
c)中点关系:椭圆上任意一点到两个焦点的距离之差等于长轴的长度。
d)准线:椭圆上的点到两条焦半径的距离之和等于准线的长度。
e) 离心率:椭圆的离心率ε的定义为eccentricity=e=c/a,其中c是焦点到中心的距离。
f)焦半径和法线:椭圆上的点到两个焦点的距离之和等于该点到准线的距离,即焦半径等于法线。
二、椭圆的方程和参数方程:1.方程:a)标准方程:椭圆的标准方程为x^2/a^2+y^2/b^2=1,其中a是长轴的长度,b是短轴的长度。
b) 参数方程:椭圆的参数方程为x = a*cosθ, y = b*sinθ,其中θ为参数。
2.其他形式的方程:椭圆还可以通过平移、旋转和缩放等变换得到其他形式的方程。
比如椭圆的中心在坐标原点的方程为x^2/a^2+y^2/b^2=1三、椭圆的性质:1.对称性:椭圆具有相对于两个轴的对称性,即关于x轴和y轴对称。
2.离心角和弧长:任意两个焦点之间的线段所对应的圆心角等于椭圆上的弧的长度。
3.焦点面积和弧长:椭圆上两个焦点和一点的连线所围成的三角形面积等于以该点为焦点的椭圆弧长的一半。
4.弦:椭圆上的弦的长度是准线的长度小于2a。
5.游程:椭圆上两个焦点之间的距离等于椭圆上两个点之间的最短路径长度。
6.光学性质:椭圆是一个反射光线的特殊曲面,具有反射原则和等角反射原理。
椭圆知识点归纳总结椭圆的定义可以用数学表达式表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中a和b分别表示椭圆的主轴长度和次轴长度,椭圆的标准方程为椭圆定点到F1、F2的距离之和等于常数2a的定点轨迹的数学描述。
椭圆是一种非常基本的几何图形,具有许多独特的性质和特点。
本文将对椭圆的性质、参数方程、焦点、直径、离心率、焦距、渐近线、面积等方面进行归纳总结。
第一部分:椭圆的基本性质1.1 椭圆的定义和参数1.2 椭圆的性质1.3 椭圆的对称性1.4 椭圆的离心率和焦点第二部分:椭圆的参数方程和一般方程2.1 参数方程和一般方程的含义2.2 椭圆的参数方程2.3 椭圆的一般方程第三部分:椭圆的焦点、直径和离心率3.1 椭圆的焦点特点3.2 椭圆的直径特点3.3 椭圆的离心率特点第四部分:椭圆的焦距和渐近线4.1 椭圆的焦距含义4.2 椭圆的渐近线含义4.3 椭圆的焦距和渐近线的性质第五部分:椭圆的面积和周长5.1 椭圆的面积公式5.2 椭圆的周长公式5.3 椭圆的面积和周长的计算方法第六部分:椭圆的相关定理和实例分析6.1 椭圆的凸性定理和实例分析6.2 椭圆的垂直切线定理和实例分析6.3 椭圆的切线与法线定理和实例分析结论部分:椭圆的应用和拓展7.1 椭圆在日常生活中的应用7.2 椭圆的拓展和推广第一部分:椭圆的基本性质1.1 椭圆的定义和参数椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。
这两个定点称为焦点,常数2a称为椭圆的主轴长度。
椭圆的主轴长度决定了椭圆的大小和形状。
椭圆的参数包括主轴长度a、次轴长度b、焦距2c、离心率e等。
其中焦距2c和主轴长度a之间有关系:c^2 = a^2 - b^2。
离心率e的计算公式为:e = c/a。
主轴长度a和次轴长度b决定了椭圆的形状,焦距2c和离心率e描述了椭圆与焦点之间的距离关系。
1.2 椭圆的性质椭圆具有许多特殊的性质,如平行轴定理、离心角定理、矩形椭圆定理等。
椭圆的知识点总结笔记一、椭圆的定义椭圆可以有多种定义方式,其中最常见的一种是:设定一个固定点F1和F2,椭圆定义为平面上到这两个点F1和F2的距离之和等于一个常数2a的点的轨迹。
这两个点分别称为椭圆的焦点,常数2a称为椭圆的长轴长度。
另外一种定义方式是:设定一个固定点F和一条线段L,椭圆定义为平面上到这个点F距离的总和等于这条线段L的点的轨迹。
这个固定点称为椭圆的焦点,线段L称为椭圆的准线。
二、椭圆的性质1. 对称性:椭圆具有关于长轴和短轴的对称性,即椭圆关于长轴对称和关于短轴对称。
2. 离心率:椭圆的离心率e是一个常数,表示焦点F到椭圆上任意一点P的距离与点P 到准线的距离的比值。
离心率的取值范围为0到1,当e=0时,是一个圆,当e=1时,是一个双曲线。
3. 焦点:椭圆上到焦点的距离与到准线的距离相等。
4. 方程:椭圆的标准方程为x^2/a^2+y^2/b^2=1,其中a和b是长轴和短轴的长度。
5. 参数表示:椭圆上的点可以用参数方程表示为x=a*cos(t),y=b*sin(t),其中t为参数。
6. 周长和面积:椭圆的周长和面积公式分别为2πa(1-e^2)和πab。
三、椭圆的方程椭圆的一般方程为Ax^2+By^2+Cx+Dy+E=0,其中A、B、C、D、E为常数。
如果方程可以化为标准方程x^2/a^2+y^2/b^2=1,则表示这个方程描述的是一个椭圆。
四、椭圆的参数表示椭圆的参数表示是描述椭圆上的点的一种方式,参数方程为x=a*cos(t),y=b*sin(t),其中t为参数。
参数t的取值范围通常是0到2π。
五、椭圆的焦点和直径1. 焦点:椭圆的焦点是椭圆的一个重要性质,它是椭圆上到焦点的距离与到准线的距离相等的点。
2. 直径:椭圆的直径是椭圆上的一个特殊直线段,它通过椭圆的中心并且与椭圆的两个端点相接。
六、椭圆的离心率椭圆的离心率e是描述椭圆形状的一个重要参数,它表示焦点到椭圆上任意一点的距离与这个点到准线的距离的比值。
椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。
下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。
一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。
2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。
(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。
长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。
(3)中心:椭圆的中心是指长轴和短轴的交点。
(4)半焦距:则是焦点到中心的距离。
(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。
3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。
(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。
(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。
4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。
二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。
(2)长轴和短轴也是椭圆的对称轴。
2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。
(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。
3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。
(2)法线是与切线垂直且通过椭圆上切点的直线。
4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。
5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。
(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。
椭圆的基本概念与性质椭圆是一种常见的几何图形,具有一些独特的性质和应用。
本文将介绍椭圆的基本概念以及一些相关的性质。
一、椭圆的定义与特点椭圆可以由一个固定点F(焦点)和到该点距离的总和等于常数2a (长轴)的点P的轨迹组成。
根据定义,椭圆上的任意点到焦点F和焦点到点到点P的距离之和等于常数2a。
椭圆还有一个参数b,称为短轴。
这两个参数构成了椭圆的两个辅助直径。
椭圆的中心是离焦点F和点P等距离的点O。
长轴和短轴的长度分别为2a和2b,其中2a>2b。
两个焦点F与F'关于中心O对称。
椭圆有一些特殊的性质:1. 椭圆上的任意点P到焦点的距离之和等于2a。
2. 椭圆的离心率e是一个介于0和1之间的数,定义为焦点到椭圆的中心的距离与长轴的一半的比值。
离心率决定了椭圆形状的“瘦胖程度”。
当e=0时,椭圆退化成一个点;当e=1时,椭圆退化成一个线段。
3. 椭圆的面积等于πab,其中π是圆周率。
二、椭圆的方程与坐标表示椭圆的方程可以通过焦点和离心率进行表示。
一般形式的椭圆方程为:(x^2/a^2) + (y^2/b^2) = 1其中,a和b分别表示长轴和短轴的长度。
椭圆的中心位于原点(0,0)处。
椭圆还可以通过参数方程进行表示:x = a * cosθy = b * sinθ其中,θ为参数,0 ≤ θ ≤ 2π。
三、椭圆的性质1. 焦点定理:椭圆上的任意点P到焦点F1和F2的距离之和等于2a。
2. 切线性质:椭圆上的任意点P处的切线斜率等于y/x的导数值,即m = (dy/dx) = -b^2 / a^2 * (x / y)。
3. 点到椭圆的距离:点(x1, y1)到椭圆(x^2/a^2) + (y^2/b^2) = 1的距离为d = sqrt[(x1^2/a^2) + (y1^2/b^2) - 1]。
4. 对称性:椭圆关于x轴和y轴对称。
5. 垂直角性质:椭圆上的任意点P处,直线PF1和PF2的夹角相等于直线PL1和PL2的夹角。
高三知识点总结椭圆一、椭圆的定义椭圆是平面上一个动点到两个不同的固定点的距离之和等于常数的轨迹。
这两个固定点分别称为焦点,这个常数称为椭圆的半长轴的长度。
椭圆的定义可以用数学表达式表示为:椭圆的标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a>b>0)$其中,a和b分别为椭圆的半长轴和半短轴的长度,且椭圆的长轴在x轴上,短轴在y轴上。
二、椭圆的性质1. 焦点性质:椭圆定义的两个焦点到椭圆曲线上的任意一点的距离之和等于常数2a。
2. 直径性质:椭圆的任意一条直径上任意一点到焦点的距离与到准位线的距离之和等于直径的长。
3. 对称性质:椭圆具有关于x轴、y轴和原点对称的性质。
4. 离心率:椭圆的离心率为$e = \sqrt{1-\frac{b^2}{a^2}}$,它描述了椭圆的扁平程度,离心率越接近于0,椭圆越圆。
三、椭圆的参数方程椭圆的参数方程可以表示为:$x=a \cos t$$y=b \sin t$其中,t为参数,a和b分别为椭圆的半长轴和半短轴的长度。
四、椭圆的焦点与准位线椭圆的焦点和准位线是椭圆的重要性质之一,它们在椭圆的图形、方程和计算中起着重要作用。
1. 焦点的坐标:椭圆的焦点坐标为$(\pm \sqrt{a^2 - b^2},0)$2. 准位线方程:椭圆的准位线方程为$x=\pm a \epsilon$,其中ε为椭圆的离心率。
五、椭圆的相关定理1. 椭圆的直径定理:椭圆的所有直径的长度之和为常数2a。
2. 椭圆的离心率定理:椭圆的离心率e的平方等于1减去b平方除以a平方。
六、椭圆的应用椭圆在生活和工程领域中有着广泛的应用,例如:1. 太阳系中行星的轨迹一般为椭圆,椭圆的性质可以帮助我们更好地理解天体运动规律。
2. 椭圆在工程中的应用:例如建筑、机械、航天等领域都会涉及到椭圆的应用,例如在建筑设计中椭圆形的圆顶结构、在机械制造中椭圆齿轮的设计等等。
椭圆基础知识点椭圆是数学中的重要概念,广泛应用于物理、工程、几何等领域。
本文将介绍椭圆的基础知识点,包括定义、性质、参数方程、焦点与准线等内容。
一、椭圆的定义椭圆是平面上一条封闭曲线,其上各点到两个定点的距离之和恒定。
这两个定点称为焦点,连接两焦点的线段称为主轴,主轴的中点为椭圆的中心,主轴长度的一半称为半长轴,垂直于主轴的线段称为次轴,次轴长度的一半称为半短轴。
二、椭圆的性质1. 弦长定理:椭圆上任意两点连线的长度之和等于两焦点之间的距离。
2. 焦点定理:椭圆上任意一点到两个焦点的距离之和等于两个焦点之间的距离。
3. 反射定理:从椭圆上一点出发的光线经过反射后,会经过另一个焦点。
4. 离心率:椭圆的离心率e是一个0到1之间的实数,定义为焦距与半长轴之间的比值。
三、椭圆的参数方程椭圆的参数方程可以用参数θ表示,如下所示:x = a * cosθy = b * sinθ其中,a和b分别是椭圆的半长轴和半短轴。
四、椭圆的焦点与准线1. 焦点:椭圆上的焦点是满足椭圆定义的两个定点,记为F1和F2。
焦点与椭圆的离心率e有关,可以通过公式e = c / a计算,其中c为焦距,a为半长轴。
2. 准线:椭圆上到两个焦点距离之和等于椭圆长轴长度的两条直线称为准线,记为L1和L2。
五、应用领域1. 天体运动:行星、卫星等天体围绕太阳、行星等轨道呈椭圆形。
2. 光学:椭圆抛物面反射镜和透镜用于天文望远镜、摄影镜头等光学仪器中。
3. 电子学:椭圆偏振器在液晶显示器等领域有广泛应用。
4. 地理测量:在地球上,纬线和经线的组合形成椭圆,用来表示地球的形状。
六、总结椭圆作为一种几何形状,具有丰富的性质和广泛的应用。
本文介绍了椭圆的定义、性质、参数方程以及焦点与准线等内容。
椭圆在数学、物理、工程等领域中都有重要的应用,对于理解和解决相关问题具有重要意义。
希望本文能够帮助读者对椭圆有更深入的了解。
椭圆知识点详细总结在数学的世界中,椭圆是一个非常重要的几何图形,它具有独特的性质和广泛的应用。
接下来,让我们一起深入了解椭圆的相关知识。
一、椭圆的定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用数学语言表示就是:|PF₁| +|PF₂| = 2a(2a > 2c,其中 2c 为焦距)。
二、椭圆的标准方程1、焦点在 x 轴上的椭圆标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(a > b > 0),其中 a 为椭圆的长半轴长,b 为椭圆的短半轴长。
2、焦点在 y 轴上的椭圆标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(a > b > 0)。
要注意区分焦点所在的坐标轴,根据焦点位置来确定方程的形式。
三、椭圆的性质1、对称性椭圆关于 x 轴、y 轴和原点对称。
2、范围对于焦点在 x 轴上的椭圆,x 的取值范围是a, a,y 的取值范围是b, b;对于焦点在 y 轴上的椭圆,x 的取值范围是b, b,y 的取值范围是a, a。
3、顶点椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为(±a, 0),(0, ±b);焦点在 y 轴上时,顶点坐标为(0, ±a),(±b, 0)。
4、离心率椭圆的离心率 e =\(\frac{c}{a}\)(0 < e < 1),其中 c 为焦距的一半。
离心率反映了椭圆的扁平程度,e 越接近 0,椭圆越接近于圆;e 越接近 1,椭圆越扁。
5、焦半径椭圆上一点 P(x₀, y₀)到焦点 F₁、F₂的距离分别为|PF₁| = a +ex₀,|PF₂| = a ex₀(焦点在 x 轴上);|PF₁| = a + ey₀,|PF₂| = a ey₀(焦点在 y 轴上)。
椭圆的简单性质【学习目标】1. 知识与技能目标:了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴、对称中心、顶点、离心率的概念;进一步掌握椭圆的标准方程、会用椭圆的定义解决实际问题.2 .过程与方法目标:引导学生通过观察、类比、讨论等方法,让学生迅速获得椭圆的性质.3.情感态度、价值观目标:在椭圆的简单性质的学习过程中,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.【要点梳理】要点一:椭圆的简单几何性质2 22 2对于椭圆标准方程X2y2 =1,把x换成一x,或把y换成一y,或把x、y同时换成一X、一y,方程都不a b2 2变,所以椭圆X2 •爲=1是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,a b这个对称中心称为椭圆的中心.2. 范围椭圆上所有的点都位于直线x=±a和y= ±b所围成的矩形内,所以椭圆上点的坐标满足|x冋,|y冋.3. 顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点.2 2②椭圆笃•占=1 (a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A i (—a, 0),a bA2 (a, 0), B1 (0, —b), B2 ( 0, b).③线段A1A2, B1B2分别叫做椭圆的长轴和短轴,A1A2|=2a, |B1B2|=2b. a和b分别叫做椭圆的长半轴长和短半轴长.4. 离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作e二空二卫.2a a②因为a>c> 0,所以e的取值范围是0v e v 1. e越接近1,则c就越接近a,从而b = • a2越小,(1)|PM i | |PM 2| 因此椭圆越扁;反之,e 越接近于0, c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆•当且仅当 a=b 时,c=0,这时两个焦点重合,图形变为圆,方程为x 2+y 2=a 2.要点诠释:2 2椭圆 冷•爲=1的图象中线段的几何特征(如下图)a b,,||PF i | |PF 212a 2PF i| -|PF 2 =2a ,12e ,|PM i | ■ |PM 2'i" ' 'i" ' c(2) BF i| I BF 2 = a , OF i =0F 2 =c , AB| |AB = .a 2 b 2 ; (3) AF i = AF 2 =a -c , AF 2I I A 2F 1 =a c ,a —c _ PF _a c ;要点二:椭圆标准方程中的三个量a 、b 、c 的几何意义椭圆标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示 椭圆的长半轴长、短半轴长和半焦距长, 均为正数,且三个量的大小关系为:a > b >0, a >c > 0,且a 2=b 2+c 2. 可借助下图帮助记忆:a 、b 、c 恰构成一个直角三角形的三条边,其中 a 是斜边,b 、c 为两条直角边.和a 、b 、c 有关的椭圆问题常与与焦点三角形PF 1F 2有关,这样的问题考虑到用椭圆的定义及余弦定1理(或勾股定理)、三角形面积公式 S^F 1F ^-|P F 1 PF 2 sin N F 1PF 相结合的方法进行计算与解题,将有关线 段PF 1、 PF ?、 F 1F 2,有关角• F 1PF2C F 1PF 2匚F 1BF 2)结合起来,建立 PF 」T PF 2、 PF 1 PF 2之间的关系.要点三:椭圆两个标准方程几何性质的比较 标准方程2 2x 1 y pUW a A b 〉。
(完整版)椭圆的性质及判定归纳1. 背景介绍椭圆是几何学中的一种重要的二次曲线,具有独特的性质和形式。
在实际应用中,我们经常需要理解和判定一个曲线是否为椭圆,因此有必要深入了解椭圆的性质及其判定方法。
2. 椭圆的定义在平面解析几何中,椭圆是指到两个给定点的距离之和等于定值的所有点的集合。
这两个点称为椭圆的焦点,定值称为椭圆的长轴。
3. 椭圆的性质椭圆具有以下几个基本的性质:3.1 长轴和短轴椭圆的长轴是通过焦点且垂直于短轴的线段,是椭圆的最长直径。
而短轴是通过焦点且垂直于长轴的线段,是椭圆的最短直径。
3.2 焦点和准线椭圆的焦点是确定椭圆的两个点,修改这两个点的位置可以改变椭圆的形状和大小。
准线是垂直于长轴且通过焦点的直线。
3.3 离心率椭圆的离心率定义为焦点到准线的距离与长轴的比值。
离心率的值在0到1之间,离心率越接近于0,椭圆越接近于圆形。
3.4 对称性椭圆具有两种对称性:关于长轴的对称性和关于短轴的对称性。
通过这两种对称性,我们可以更好地理解和分析椭圆的性质。
4. 椭圆的判定方法在解决实际问题中,我们常常需要判断一个曲线是否为椭圆。
以下是几种常用的判定方法:4.1 椭圆方程椭圆方程是判定一个曲线是否为椭圆的主要方法之一。
一般而言,椭圆的方程形式为(x-h)²/a² + (y-k)²/b² = 1,其中h、k为椭圆的中心坐标,a、b分别为长轴和短轴的长度。
通过将曲线的方程与椭圆方程进行对比,我们可以确定该曲线是否为椭圆。
4.2 轴积性质椭圆具有轴积性质,即椭圆的长轴与短轴的乘积等于焦点到准线的距离与长轴的乘积。
通过计算曲线的焦点到准线的距离与长轴的乘积,我们可以判断该曲线是否满足轴积性质,从而确定是否为椭圆。
4.3 椭圆的图形特征椭圆的图形特征也可以用来判定是否为椭圆。
椭圆具有规则的椭圆形状,不会存在异常的伸缩或扭曲情况。
通过观察图形特征,我们可以直观地判断一个曲线是否为椭圆。
椭圆定理知识点总结椭圆是一种常见的几何形状,而椭圆定理则是围绕椭圆的特性和属性展开的一系列数学定理。
椭圆定理在数学研究和应用中起到了重要作用,其应用涉及到物理学、工程学、计算机图形学等多个领域。
因此,对椭圆定理的理解和掌握具有重要的意义。
在本文中,我们将系统地总结椭圆定理的相关知识点,包括椭圆的定义、性质、方程、焦点、直径、切线等内容,并阐述其在实际应用中的重要性。
一、椭圆的定义和性质1.1 椭圆的定义椭圆定义为平面上到两个定点的距离之和等于常数的点的集合。
这两个定点称为焦点,两个焦点之间的距离则是椭圆的长轴,而椭圆的短轴则是长轴的一半。
因此,我们可以用数学形式描述椭圆的定义:对于给定的两个焦点F1和F2,以及一个常数2a,所有满足条件PF1+PF2=2a的点P构成的集合就是一个椭圆。
1.2 椭圆的性质椭圆有多个重要的性质,其中一些是几何性质,而另一些则是数学性质。
在此,我们简要总结一些重要的椭圆性质:(1)椭圆关于长轴和短轴对称。
具体而言,如果一个点P在椭圆上,那么P关于长轴和短轴的对称点也一定在椭圆上。
(2)椭圆内的任意点P到焦点的距离之和等于常数2a,即PF1+PF2=2a。
(3)椭圆的离心率定义为焦点间距离与长轴长度的比值,它的取值范围是0<e<1,其中e=0表示椭圆为圆。
(4)椭圆的方程可以用标准形式表示为(x^2/a^2)+(y^2/b^2)=1,其中a和b分别为椭圆的长轴和短轴长度。
二、椭圆方程及参数2.1 椭圆的标准方程椭圆的标准方程是一种简化形式的表示方式,它可以直观地描述椭圆的形状和大小。
通常情况下,椭圆的标准方程可以表示为(x^2/a^2)+(y^2/b^2)=1,其中a和b分别为椭圆的长轴和短轴长度。
在这个方程中,a和b是椭圆的两个重要参数。
2.2 椭圆方程的一般形式除了标准方程外,椭圆还可以使用一般形式的方程进行描述。
一般形式的椭圆方程具有更广泛的适用性,它可以表示任意位置和方向的椭圆。