函数图像专题研究
- 格式:ppt
- 大小:1.25 MB
- 文档页数:1
高考数学最新真题专题解析—函数的图象及性质考向一 由函数图像求解析式【母题来源】2022年高考全国乙卷(文科)【母题题文】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A. 3231x x y x -+=+B. 321x x y x -=+C. 22cos 1x x y x =+D.22sin 1x y x =+ 【答案】A【试题解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x x h x x x =<≤++,故排除C;设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的周期性,判断图像的循环往复.(5) 从函数的特征点,排除不合要求的图象.考向二 由解析式判断图像【母题来源】2022年高考全国乙卷(文科)【母题题文】函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( ) A. B. C. D.【答案】A【试题解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A. 【命题意图】本类题主要考查函数的定义域、值域、奇偶性、单调性、对称性、周期性等规律性质,属于中档题目.【命题方向】这类试题命题形式主要有由函数的性质及解析式选图,试题难度不大,多为中低档题,函数图像是历年高考的热点,其重点是基本初等函数的图像以及函数的性质在图像上的直观体现.常见的命题角度有:(1)由函数的图像来研究函数的性质;(2)由函数图像求解析式;(3)由解析式判断大致图像.【得分要点】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图像的循环往复.(5)从函数的特征点,排除不合要求的图象.真题汇总及解析1.函数()22cos6x x y x -=-的图像大致是( )A .B .C .D .【答案】C【解析】【分析】利用排除法求解,先判断函数的奇偶性,再利用函数的变化情况判断即可【详解】定义域为R ,因为()()()22cos(6)22cos6()x x x x f x x x f x ---=--=--=-,所以函数为奇函数,所以排除AB , 当012x π<<时,062x π<<,则cos60x >,因为当012x π<<时,220x x -->,所以当012x π<<时,()22cos60x x y x -=->,所以排除D ,故选:C 2.从函数y x =,2y x ,2x y -=,sin y x =,cos y x =中任选两个函数,记为()f x 和()g x ,若()()()h x f x g x =+或()()()h x f x g x =-的图象如图所示,则()h x =( )A .2sin x x -B .cos x x +C .2sin x x -+D .cos x x -【答案】C【解析】【分析】 根据图象可知函数()h x 过定点(0,1),当0x <时()1h x >,为减函数;当0x >时()0h x >或()0h x <交替出现,结合排除法和选项中函数的图象与性质,即可得出结果.【详解】由图象可知,函数()h x 过定点(0,1),当0x <时,()1h x >,为减函数;当0x >时,()0h x >或()0h x <交替出现.若2()sin h x x x =-,则()00h =,不符合题意,故A 错误;若()cos h x x x =+,则(0)1h =,即函数()h x 过定点(0,1),又1cos 1x -≤≤,当1x <-时,()cos 0h x x x =+<,不符合题意,故B 错误;若()cos h x x x =-,则(0)1h =-,不符合题意,故D 错误.故选:C3.函数()2cos sin ln 2cos x f x x x-=⋅+的部分图象大致为( ) A .B .C .D .【答案】C【解析】【分析】先判断函数的奇偶性得函数为奇函数,进而排除AB 选项,再根据0,4x π⎛⎫∈ ⎪⎝⎭时的函数符号排除D 选项得答案.【详解】解:由题意可知,函数()f x 的定义域为R ,因为2cos()2cos ()sin()ln sin ln ()2cos()2cos x x f x x x f x x x----=-=-⋅=-+-+, 所以()f x 为奇函数,图象关于原点对称,排除选项A ,B ;当0,4x π⎛⎫∈ ⎪⎝⎭时,sin 0,2cos 2cos 0x x x >+>->,所以2cos 012cos x x -<<+, 所以2cos ()sin ln02cos x f x x x-=⋅<+,排除D. 故选:C.4.已知R α∈,则函数()e x x f x α=的图象不可能是( ) A . B .C .D .【答案】C【分析】 令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】 当12α=时,()e x x f x =且0x ≥,则12()e x x f x x-'=, 所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =, 所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=, 所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能;当1α=-时,1()e xf x x =且0x ≠,则21()e x x f x x +'=-, 所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >,所以D 图象可能;综上,排除A 、B 、D.故选:C5.函数()2222x xx x f x -+=+的部分图象大致是( ) A . B . C . D .【答案】B【分析】先判断()f x 的奇偶性,可排除A ,再由单调性、特值点排除选项C 、D ,即可得出答案.【详解】函数的定义域为R ,因为()()2222x x x x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B .6.函数()22x f x x -=⋅在区间[]22-,上的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵()()22x f x x f x --=⋅=,∴()f x 是偶函数,函数图象关于y 轴对称,排除A ,B 选项;∵()()122f f ==,∴()f x 在[0,2]上不单调,排除D 选项.故选:C7.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=-D .21x y =--【答案】A【解析】【分析】 根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项; 当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项.故选:A.8.函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <【答案】D【解析】【分析】 由函数的单调性得到a 的范围,再根据函数图像平移关系分析得到b 的范围.【详解】由函数()x b f x a -=的图像可知,函数()x b f x a -=在定义域上单调递减,01a ∴<<,排除AB 选项;分析可知:函数()x b f x a -=图像是由x y a =向左平移所得,0b ∴->,0b ∴<.故D 选项正确. 故选:D9.已知函数()f x ax b =+的图象如图所示,则函数()x g x a b =+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由函数()f x ax b =+的图象可得1a >,1b <-,从而可得()x g x a b =+的大致图象.【详解】由()f x ax b =+的图象可得(0)1f b =<-,(1)0f a b =+>,所以1a >,1b <-,故函数()x g x a b =+为增函数,相对x y a =向下平移大于1个单位故选:B10.设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( )A .y =f (|x )B .y =-|f (x )| )C .y =-f (-|x )D .y =f (-|x )【答案】C【解析】 由题意结合指数函数的图象及函数图象的变换可得函数图象对应的函数解析式,即可得解.【详解】由图象可知函数图象对应的函数解析式是||2x y -=-,所以函数图象对应的函数解析式是y =-f (-|x |).故选:C .【点睛】本题考查了指数函数的图象及函数图象变换的应用,属于基础题.11.函数()cos f x x x =的图像大致是( )A .B .C .D .【答案】A【解析】【分析】先根据函数奇偶性的概念可知()()f x f x -=-,即函数()f x 为奇函数,排除选项D ;再利用三角函数的性质排除BC 即得.【详解】()cos()cos ()f x x x x x f x -=--=-=-,∴函数()f x 为奇函数,排除选项D ; 当(0,)2x π∈时,0x >,0cos 1x <<, 0()f x x ∴<<,排除选项BC . 故选:A .12.下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x =A .④②①③B .②④①③C .②④③①D .④②③①【答案】A【解析】【分析】先通过函数定义域和奇偶性进行判断,再利用导数对①求导,求其在()0,π上的最大值.【详解】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x =>在定义域内恒成立,则前两个对应函数分别为④②当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x <<()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 542f x f ≤=>①对应的为第三个函数故选:A .。
专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。
专题:绝对值函数研究意义:研究绝对值函数图像有助于:①绝对值不等式求解集问题(包括解集为空或R 问题);②绝对值函数最值问题.---------------------------------------------(一)绝对值函数图像特点归纳实例1:21-+-=x x y(函数图像如右图所示)函数图像特点:①图像类似“平底锅”;②函数有最小值,但无最大值;③函数取到最小值的x 有无穷多个,即当21≤≤x 时,对应函数值均为最小值1.小结此类函数图像特点:①图像类似“平底锅”;②此类函数有最小值,但无最大值;③函数取到最小值的x 有无穷多个,即当x 介于a ,b 之间时,对应函数值均为a b y -=min .函数最值情况: ①函数有最小值,但无最大值;②函数有唯一的最小值:仅当2x x =(中间零点)时,13min x x y -=.【备注】绝对值零点:x =1x 时,01=-x x ,称1x 是零点.函数最值情况:①函数有最小值,但无最大值;②当n 为奇数时,函数有唯一的最小值:仅当x 取中间零点i x 时,min y ;当n 为偶数时,函数取到最小值的x 有无穷多个,即当x 介于中间两零点之间时,min y .举例1:43211-+-+-+-++=x x x x x y分析:零点从小到大:-1,1,2,3,4,显然2是中间零点,故仅当x =2时,=min y 74232221212=-+-+-+-++.举例2:13121-+-+-=x x x y分析:3131312*********-+-+-+-+-+-=-+-+-=x x x x x x x x x y 零点从小到大:1/3,1/3,1/3,1/2,1/2,1显然1/3,1/2是中间两零点,故当2131≤≤x 时,=≡min )(y x y 1.---------------------------------------------实例2:21---=x x y(函数图像如右图所示)函数图像特点:①图像类似“Z 字形”;②函数有最小值-1,且取到最小值的x 有无穷多个,即当1≤x 时,对应函数值均为最小值-1;③函数有最大值1,且取到最大值的x 有无穷多个,即当2≥x 时,对应函数值均为最大值1.实例3:12---=x x y(函数图像如右图所示)函数图像特点:①图像类似“Z 字形”;②函数有最小值-1,且取到最小值的x 有无穷多个,即当2≥x 时,对应函数值均为最小值-1;③函数有最大值1,且取到最大值的x 有无穷多个,即当1≤x 时,对应函数值均为最大值1.小结此类函数图像特点:①图像类似“Z 字形”; ②此类函数既有最小值b a --,也有最大值b a -;③函数取到最小、最大值的x 均有无穷多个,且这样的x 分别位于a ,b 两侧(相对a ,b 之间而言的):--------------------------------------------- (二)作形如d cx b ax y +±+=的函数图像技巧(三段论)【注意】此方法只是用于画出该类函数的大致图像以便分析问题.步骤:①描出折点,记为A ,B ;②连结A ,B 得到一条线段,即为两折点间的函数图像;③折点两侧的函数图像趋势判断是根据∞→x 来确定,即抹掉常数项d b ,,x 系数保留,再根据⎪⎩⎪⎨⎧<=>±.00,0,两侧图像向下,两侧图像呈水平;两侧图像向上;cx ax 【备注】③步骤的处理原因:如下图所示是某一此类绝对值函数,两侧x 趋势是∞±,显然此时d b ,是有限数,对x 趋势影响不大,故可抹去。
专题17 三次函数的图像与性质一、例题选讲题型一 运用三次函数的图像研究零点问题遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.例1,(2017某某,某某,某某,某某三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值X 围是.【答案】3(2)2-,【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即30260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤,(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x ax x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,a≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1),(2),得实数a 的取值X 围为3(,2)2-.例2,(2017某某学情调研)已知函数f (x )=⎩⎪⎨⎪⎧12x -x3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值X 围为[-16,+∞),则实数m 的取值X 围是________.【答案】 [-2,8]【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值X 围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值X 围进行确定.当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.题型二 三次函数的单调性问题研究三次函数的单调性,往往通过导数进行研究.要特别注意含参的讨论.例3,已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当94a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;②当94a <时,2max 99(),984|3|max{,}994()48a a x x a a a a a ⎧<<⎪⎪-+=-=⎨⎪-⎪⎩≤; 由①②,得9(),8()99()48a a g a a a ⎧>⎪⎪=⎨⎪-⎪⎩≤; (3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-,令()0f x =,得0x =或230x x a -+=,当94a <时,由230x x a -+=,解得132x =232x =令()0f x '=,得23(1)30x a -+-=,当3a <时,由23(1)30x a -+-=,解得31x =41x =+1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;2)当934a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞;3)当904a <<时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞.例4,(2018某某期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值X 围是________.【答案】 (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|.令g(x)=x 3+(2-a)x 2+(1-2a)x -a,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a).令g ′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g ′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫-1,2a -13,(a,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值X 围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.,图3)例5,(2018某某期末)已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax ,x ≥0,其中常数a ∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,某某数a 的取值X 围;规X 解答 (1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分)(2) 当x>0时,f(x)=e x -ax,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分) 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x2=(x -1)(2x2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分)所以g(x)的值域是[5,+∞),即实数a 的取值X 围是[5,+∞).(10分)题型三 三次函数的极值与最值问题①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.函数,方程和不等式的综合题,常以研究函数的零点,方程的根,不等式的解集的形式出现,大多数情况下会用到等价转化,数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.例6,(2018苏锡常镇调研)已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;规X 解答 (1)①由2()32f x x ax b '=++及02=+b a ,得22()32f x x ax a '=+-,令()0f x '=,解得3ax =或a x -=.由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-. ② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点; 当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<,即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<,则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ①3222222()10f x x ax a x =+-+=, ②3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=,因为310x x ->,所以2310x x x a +++=,又1322x x x +=,所以23ax =-.所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.例7,(2017⋅某某)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值X 围.解析(1)2'()32f x x ax b =++有零点,24120a b ∆=->,即23a b >,又''()620f x x a =+=,解得3a x =-,根据题意,()03a f -=,即3210333a a a a b ⎛⎫⎛⎫⎛⎫-+-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2239b a a =+,又203a a b >⎧⎨>⎩,所以3a >,即223(3)9b a a a =+>;(2)设2433224591()3(427)(27)81381g a b a a a a a a a =-=-+=--,而3a >,故()0g a >,即23b a >;(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33b ax x x x =+=-, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++ 22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3324242232()202732739a ab a a a a =-+=-++=.记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2'()33a a f b -=-, 则221237()()()'()3392a a a S a f x f x f b a =++-=-=--≥, 而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7(6)2S =-,故36a <≤.法二:下面证明()f x 的图像关于(,())33a af --中心对称,233232()1()()()1333327a a a ab a f x x ax bx x b x =+++=++-++-+23()()()()3333a a a ax b x f =++-++-,所以()()2()0333a a a f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.例8,(2018某某学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax,a ∈R .(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值X 围;(3) 若a >1,设函数f (x )在区间[1,2]上的最大值,最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f ′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =53.规X 解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a,所以曲线y =f(x)在x =0处的切线的斜率k =f ′(0)=6a,所以6a =3,所以a =12.(2分)(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2lnxx2.(4分)令g(x)=2lnx x2,x >0,则g ′(x)=2(1-2lnx )x3.令g ′(x)=0,解得x = e.当x ∈(0,e)时,g ′(x)>0,所以g(x)在(0,e)上单调递增;当x ∈(e,+∞)时,g ′(x)<0,所以g(x)在(e,+∞)上单调递减.所以g(x)max =g(e)=1e,(6分)所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值X 围为⎝⎛⎦⎥⎤-∞,-1-1e .(8分)(3) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f ′(x)=0,则x =1或x =a.(10分)f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =53.①当1<a ≤53时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在⎝ ⎛⎦⎥⎤1,53上单调递减,所以当a ∈⎝ ⎛⎦⎥⎤1,53时,h(a)的最小值为h ⎝ ⎛⎭⎪⎫53=827.(12分)②当53<a <2时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在⎝ ⎛⎭⎪⎫53,2上单调递增,所以当a ∈⎝ ⎛⎭⎪⎫53,2时,h(a)>h ⎝ ⎛⎭⎪⎫53=827.(14分)③当a ≥2时,当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a -1-4=3a -5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.(16分)二、达标训练1,(2017某某暑假测试) 已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x3,-1≤x ≤1,)若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值X 围是________.【答案】 ⎝ ⎛⎭⎪⎫0,12【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.2,(2017苏北四市期末) 已知函数f (x )=⎩⎪⎨⎪⎧sinx ,x <1,x3-9x2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________.【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x,联立⎩⎪⎨⎪⎧y =sinx ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x=0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a,联立⎩⎪⎨⎪⎧y =x3-9x2+25x +a ,y =x ,得a =-x 3+9x 2-24x,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:32数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.3,(2019某某,某某二模)已知函数f(x)=⎪⎩⎪⎨⎧>+-≤+0,3120,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的图像经过四个象限,则实数k 的取值X 围为________.【答案】 ⎝⎛⎭⎪⎫-9,13【解析】解法1 y =⎩⎪⎨⎪⎧|x +3|-(kx +1),x ≤0,x 3-(k +12)x +2,x>0,若其图像经过四个象限.①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y=x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>⎝ ⎛⎭⎪⎫x2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2x2=2(x3-1)x2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当0<x<1时,h ′(x)<0,h(x)在(0,1)上递减,当x =1时取得极小值,也是最小值,h(x)min =h(1)=3,所以k +12>3,即k>-9.②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<|x +3|-1x,即k<⎝⎛⎭⎪⎫|x +3|-1x max .令φ(x)=|x +3|-1x=⎩⎪⎨⎪⎧-1-4x ,x ≤-3,1+2x ,-3<x<0,易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.综上,由①②得实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足0<k<13.②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x30-12x 0+3),由k =3x20-12=x30-12x 0+3-1x 0,解得x 0=1,切线斜率k =-9,所以k∈(-9,0).③当k =0也符合题意.综上可知实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.4,(2018苏中三市,苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值X 围是 ▲ .【答案】a <0或a >2【解析】当a <0时,10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 (0,+∞)恒成立,所以图象仅在第一象限,所以a <0时显然满足题意; 当a ≥0时,10y ax x =-,≤的图象仅经过第三象限,由题意 3|2|0y x ax x x =-+->,的图象需经过第一,二象限.【解法1】(图像法)3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).如图,3|2|y x x =+-=332,022,2x xx x xx,设切点坐标为3000(,2)x x x ,231yx,则有32000231x x x x ,解得01x ,所以临界直线l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x,使得3|2|0,yxax x即2|2|x a xx 设函数22221,02|2|()21,2x x x x g x x xx x x,当02x,322222()2x g x xx x()g x 在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a >2,则实数a 的取值X 围为a <0或a >2.5,(2019某某期末)已知函数f(x)=ax 3+bx 2-4a(a,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,某某数b 的取值X 围.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t2=0,-st2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分)令f ′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-∞,-23和(0,+∞).(4分)(2)法一:f ′(x)=3ax 2+2bx,令f ′(x)=0,得x =0或x =-2b3a,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝ ⎛⎭⎪⎫-2b 3a =0.当f(0)=0时,得a =0,不合题意,舍去;(8分)当f ⎝ ⎛⎭⎪⎫-2b 3a =0时,代入得a ⎝ ⎛⎭⎪⎫-2b 3a +b ⎝ ⎛⎭⎪⎫-2b 3a 2-4a =0,即-827⎝ ⎛⎭⎪⎫b a 3+49⎝ ⎛⎭⎪⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x3x2=4x2-x(x ≠0).(6分)设h(x)=4x2-x,h ′(x)=-8x3-1,令h ′(x)=0,得x =-2, 当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增,当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增,当x>0时,h(x)的值域为R ,故不论b a取何值,方程b a=4-x3x2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3)当a =0时,因为f (x )<ln x ,所以bx 2<ln x ,设g (x )=ln x -bx 2,则g ′(x )=1x-2bx =1-2bx2x(x >0),当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分)当b >0时,令g ′(x )=1-2bx2x=0,得x =12b,所以g (x )在⎝ ⎛⎭⎪⎪⎫0,12b 递增,在⎝⎛⎭⎪⎪⎫12b ,+∞递减, 所以g (x )max =g ⎝⎛⎭⎪⎪⎫12b =ln12b -12,要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e. ①(13分)又因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln2-4b>0,ln3-9b ≤0,解得ln39≤b <ln24. ②(15分)设h (x )=lnx x,则h ′(x )=1-lnx x2,当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e,+∞)时,h ′(x )<0,h (x )递减.所以h (x )max =h (e)=1e>h (2)=ln22,所以12e >ln24,所以由①和②得,ln39≤b <ln24.(16分)(注:用数形结合方法做只给2分)6,(2019某某,某某一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.设函数f(x)=x 3-tx 2+1(t ∈R ).(1) 若函数f (x )在(0,1)上无极值点,求t 的取值X 围;(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.规X 解答 (1)由函数f(x)=x 3-tx 2+1,得f ′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =23t.因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥32.(4分)(2)令f ′(x)=3x 2-2tx =p,即3x 2-2tx -p =0,Δ=4t 2+12p.当p >-t23时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)设这两条切线方程为分别为y =(3x21-2tx 1)x -2x31+tx21+1和y =(3x22-2tx 2)x -2x32+tx22+1.若两切线重合,则-2x31+tx21+1=-2x32+tx22+1,即2(x21+x 1x 2+x22)=t(x 1+x 2),即2=t(x 1+x 2).而x 1+x 2=2t 3,化简得x 1·x 2=t29,此时(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4t29-4t29=0,与x 1≠x 2矛盾,所以,这两条切线不重合.综上,对任意实数t,函数f(x)的图像总存在两条切线相互平行.(10分)(3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x.由(2)知x 1+x 2=2时,两切线平行.设A(x 1,x31-3x21+1),B(x 2,x32-3x22+1),不妨设x 1>x 2,则x 1>1.过点A 的切线方程为y =(3x21-6x 1)x -2x31+3x21+1.(11分)所以,两条平行线间的距离 d =|2x32-2x31-3(x22-x21)|1+9(x21-2x 1)2=|(x2-x1)|1+9(x21-2x 1)2=4,化简得(x 1-1)6=1+92,(13分)令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解.因为x 1-1>0,所以x 1有3解,所以满足此条件的平行切线共有3组.(16分)7,(2018某某,某某一调)已知函数g(x)=x 3+ax 2+bx(a,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g ′(-a -1)=0且g ′(x)=0有两个不等的实数解,解之得b 与a 的关系.(2) 求导得F ′(x)=(x +a +1)(e x -3x +a +3),解方程F ′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规X 解答 (1) 因为f ′(x)=e x +(x +a)e x =(x +a +1)e x ,令f ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g ′(x)=3x 2+2ax +b,由题意可知g ′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a ≠-32.所以b =-a 2-4a -3⎝⎛⎭⎪⎫a ≠-32.(6分)(2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F ′(x)=f ′(x)-g ′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h ′(x)=e x -3,令h ′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a=3ln e23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e -a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e -a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m ′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m ′(t)>0,所以m(t)单调递增.(14分)所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)。