(完整版)Maxwell超级电容器的发展
- 格式:ppt
- 大小:8.17 MB
- 文档页数:96
超级电容器的现状及发展趋势一、本文概述随着科技的飞速发展和人类对能源需求的日益增长,超级电容器作为一种新兴的储能器件,正逐渐在能源储存和转换领域崭露头角。
本文旨在全面概述超级电容器的现状及其未来发展趋势,从而为相关领域的研究人员和技术人员提供有价值的参考。
本文将回顾超级电容器的历史发展,探讨其从概念提出到实际应用的过程。
文章将详细介绍超级电容器的基本原理、结构特点以及性能优势,以便读者对其有深入的理解。
在此基础上,文章将重点分析当前超级电容器在各个领域的应用状况,如交通运输、电力储能、电子设备等领域。
同时,文章还将探讨超级电容器在实际应用中面临的挑战和问题,如成本、安全性、寿命等。
本文还将关注超级电容器的未来发展趋势。
随着材料科学、纳米技术、电化学等领域的进步,超级电容器的性能有望得到进一步提升。
文章将预测超级电容器在未来可能的技术突破和市场应用前景,包括新型电极材料的开发、电容器结构的优化、以及与其他能源储存技术的融合等。
本文将全面梳理超级电容器的现状及其未来发展趋势,旨在为读者提供一个清晰、全面的视角,以便更好地把握超级电容器在能源储存和转换领域的发展动态。
二、超级电容器的现状超级电容器,作为一种介于传统电容器和电池之间的新型储能器件,以其独特的性能优势在现代能源领域引起了广泛的关注。
目前,超级电容器的应用已经渗透到了许多领域,包括交通、能源、工业、电子等。
在交通领域,超级电容器以其高功率密度和快速充放电的特性,被广泛应用于电动公交、混合动力汽车以及电动汽车的启动和加速过程中。
超级电容器能够在短时间内提供大量的电能,使车辆在短时间内达到较高的速度,从而提高车辆的动力性能。
超级电容器还可以作为车辆的辅助能源,与电池配合使用,延长车辆的续航里程。
在能源领域,超级电容器被用作风力发电和太阳能发电系统的储能装置。
在这些系统中,超级电容器可以平滑输出电能,避免由于风速和日照强度的不稳定而导致的电能波动。
超级电容器的研究进展及其在新能源领域中的应用近年来,越来越多的人开始意识到新能源的重要性,而超级电容器作为重要的能源储存设备,备受人们的关注。
本文将介绍超级电容器的研究进展以及其在新能源领域中的应用。
一、超级电容器的研究进展超级电容器是一种能够储存和释放能量的设备,它与传统的电池不同,电容器可以快速充放电且寿命较长。
随着技术的不断改进,超级电容器的性能也得到了很大的提升。
1.1 材料研发超级电容器的性能很大程度上取决于储存介质的材料。
传统电容器使用的是电解质,而超级电容器使用的是活性碳、金属氧化物等材料。
目前,研究人员致力于开发新的储存介质,如金属材料、纳米纤维等,以提高超级电容器的性能。
1.2 结构设计超级电容器的结构设计也是影响其性能的关键因素。
采用不同的结构设计,可以提高电容器的能量密度和功率密度。
当前,研究人员正在探索多种结构设计,如半球形或石墨烯包覆的超级电容器等。
1.3 改进制备工艺超级电容器的制备工艺也是影响其性能的一个关键因素。
目前,研究人员正致力于改进预处理工序、电极浸渍工艺等,以提高超级电容器的性能。
二、超级电容器在新能源领域中的应用超级电容器在新能源领域中有广泛的应用,包括电动车、储能系统等。
2.1 电动车电动车需要一个可靠的能源储存设备。
超级电容器具有快速充放电、寿命长等特点,是一种适合用于电动车的储能设备。
超级电容器还能提高电动车的动力性能和续航里程,因此越来越受到关注。
2.2 储能系统超级电容器在储能系统中也有重要的应用。
在发电系统和能源系统之间,需要一种缓冲机制,可以储存电能并在需要时快速释放。
超级电容器可以很好地满足这个需求。
此外,超级电容器还可以协助防止电力峰值和电压下降等问题,提高能源利用效率。
三、结论超级电容器已经成为新能源领域中的重要组成部分,越来越多的研究人员开始关注其研究和应用。
未来,随着技术的不断提升,超级电容器的性能将会进一步提高,其在新能源领域中的应用将变得更加广泛。
超级电容储能发展历史超级电容储能是一种能够高效储存和释放电能的先进技术。
它的发展历史可以追溯到上世纪60年代初,当时科学家们开始研究电化学电容器,以寻找一种比传统电池更高效的能量储存方式。
最初的电化学电容器是由两个电极和一个电解质组成的,通过在电极上施加电压,电荷可以在电极和电解质之间移动,实现能量的储存和释放。
然而,由于电极材料的限制,这种电容器的能量密度很低,无法满足实际应用的需求。
随着科学技术的不断进步,研究人员开始寻找新的电极材料,以提高电化学电容器的能量密度。
在20世纪80年代,碳材料被引入到电容器中作为电极材料,这种新型电容器被称为超级电容器。
碳材料具有很高的比表面积和导电性能,可以大大增加电容器的能量密度。
在超级电容器的发展过程中,研究人员还不断改进电解质和电极结构,以提高电容器的性能。
一种重要的改进是使用活性材料作为电极,这可以增加电容器的能量密度,并扩大其应用范围。
例如,金属氧化物和导电聚合物等材料被广泛应用于电极制备中。
随着对超级电容器研究的深入,人们发现它具有很多优点。
首先,超级电容器的充放电速度非常快,可以在几秒钟内完成充放电过程。
其次,超级电容器具有很长的寿命,可以进行数万次的充放电循环。
此外,超级电容器还具有较高的功率密度和较低的内阻,可以满足高功率应用的需求。
超级电容器的发展为许多领域带来了新的机遇。
在交通运输领域,超级电容器可以用于回收制动能量,并提供额外的动力输出。
在可再生能源领域,超级电容器可以与太阳能电池和风力发电机等设备结合使用,平衡能源供应和需求。
此外,超级电容器还可以应用于电网调峰、储能系统和便携设备等领域。
总的来说,超级电容器的发展经历了数十年的研究和改进。
通过不断改进电极材料、电解质和电极结构,超级电容器的能量密度和性能得到了显著提高。
超级电容器的应用范围也不断扩大,为各个领域的发展带来了新的机遇。
相信随着科学技术的不断进步,超级电容器将在未来发挥更重要的作用,为人类创造更加绿色、高效的能源未来。
2024年超级电容器市场规模分析引言超级电容器是一种新兴的电子器件,其具有高能量密度、快速充放电、长寿命等特点。
随着电动车、可再生能源等领域的快速发展,超级电容器市场呈现出快速增长的趋势。
本文将对超级电容器市场的规模进行深入分析。
市场规模超级电容器市场的规模主要由市场容量和市场价值两个方面来衡量。
根据市场研究数据,预计到2025年,全球超级电容器市场的市场容量将达到X万台。
同时,市场价值也将达到X亿美元。
行业状况超级电容器市场在过去几年取得了快速增长,主要得益于其在传统电池无法满足需求的领域的广泛应用。
特别是在电动车领域,由于超级电容器能够快速充电和高效能量释放,被认为是替代传统电池的重要解决方案。
此外,可再生能源领域也是超级电容器市场的主要驱动力之一。
超级电容器能够与太阳能和风能等可再生能源相结合,提供更稳定和可靠的电力存储和释放方案。
市场机会超级电容器市场在未来几年将继续保持快速增长的趋势,主要受到以下因素的驱动:1.新能源政策的推动:各国政府相继推出鼓励可再生能源发展的政策,为超级电容器市场提供了良好的环境。
2.电动车市场的扩大:随着电动车市场的不断扩大,对高效能量储存和释放的需求也在增加,超级电容器作为重要的解决方案将有更广阔的市场空间。
3.工业自动化需求的增加:工业自动化的快速发展带来了对高效能量存储设备的需求,超级电容器由于其快速充放电的特点而受到青睐。
挑战与限制虽然超级电容器市场发展迅猛,但仍面临一些挑战和限制:1.高成本:超级电容器的制造成本较高,导致产品价格相对较高,限制了其市场普及程度。
2.技术瓶颈:超级电容器的技术瓶颈仍存在,比如能量密度和电容量等方面与传统电池还有差距,限制了其在某些领域的应用。
3.市场竞争:目前超级电容器市场竞争激烈,存在着来自传统电池和其他新兴技术的竞争。
市场前景尽管存在一些限制和挑战,超级电容器市场仍具有广阔的前景:1.技术革新:随着技术的不断推进,预计超级电容器的能量密度和电容量等性能将大幅提升,进一步拓展其在各个领域的应用。
2024年超级电容器市场分析报告摘要本文对超级电容器市场进行了全面的分析。
首先,介绍了超级电容器的基本原理和分类。
然后,分析了超级电容器市场的发展趋势、竞争格局和主要应用领域。
最后,对超级电容器市场的前景进行了展望。
1. 引言超级电容器是一种新型的电子元件,具有高能量密度和高功率密度的特点,被广泛应用于储能、电动车辆、再生能源等领域。
本节介绍超级电容器的基本原理和分类。
1.1 基本原理超级电容器是一种电容器,其储存能量的机制是电荷在电极表面的吸附和解吸附。
相比传统电容器,超级电容器的电极表面积更大,电荷的吸附和解吸附速度更快,能够实现高能量密度和高功率密度。
1.2 分类根据电解质的不同,超级电容器可以分为电解质型和储能型两大类。
电解质型超级电容器使用液体电解质,具有高电导率和低内阻的特点;储能型超级电容器使用固体电解质,具有较高的储存能量密度。
2. 市场发展趋势超级电容器市场在近几年呈现出快速增长的趋势。
本节分析超级电容器市场的发展趋势,包括市场规模、成本趋势和技术进步。
2.1 市场规模超级电容器市场规模持续扩大,主要受到电动车辆、储能、再生能源等市场需求的推动。
随着相关技术的成熟和市场竞争的加剧,超级电容器市场有望进一步扩大。
2.2 成本趋势超级电容器的成本一直是市场发展的关键因素之一。
随着生产规模的增大和技术进步,超级电容器的成本逐渐降低。
预计随着技术的进一步成熟,超级电容器的成本将进一步下降。
2.3 技术进步超级电容器技术不断进步,主要表现在电极材料的改进、电解质的优化和结构设计的创新。
这些技术进步有助于提高超级电容器的性能,促进市场的发展。
3. 竞争格局超级电容器市场竞争激烈,主要由国际和国内企业共同竞争。
本节分析了超级电容器市场的竞争格局和主要竞争对手。
3.1 竞争格局超级电容器市场竞争主要集中在少数大型企业和一些小型企业之间。
大型企业具有较强的研发和生产能力,小型企业则寻找市场的细分和差异化发展。
文献综述超级电容器的现状及发展趋势目录1 前言2 超级电容器发展现状3 超级电容的特点4 超级电容器电压均衡技术解决方案5 超级电容器的发展趋势与展望6 小结21.前言随着化石能源资源的日益匮乏和人们强烈的环保意识,有力地促进了太阳能和风能等可再生能源的发展。
但太阳能、风能具有波动性和间歇性,需要有效的储能装置保证其能够稳定的在电网中并网工作。
同时,电动汽车产业的快速发展也迫切需要发展低沉本、环境友好、能量密度高的储能装置。
超级电容器也叫做双电层电容器是一种具有高能量密度的新型储能元器件,它可提供大功率并具有超长寿命,是一种兼备电容和电池特性的新型元件,在混合动力电动车、脉冲电源系统和应急电源等领域具有广泛的应用前景。
而对于大功率系统来说,由于超级电容单体的电压值和能量都比较低,不能满足应用系统功率、放电时间及电压要求。
为满足实际应用工况的电压需求,需将多个单体串并联以提高储能模块的工作电压,单体电容器参数的分散性是制约超级电容器模块寿命和可靠性的主要因素。
然而市面上同一型号规格的超级电容器在电压、内阻、容量等参数上存在着不一致,并且在超级电容器使用过程中,工作环境不同以及电压不均匀的积累又加剧了超级电容器的参数不一致性。
这种离散性极易造成超级电容的过充或过放,从而影响系统的使用寿命和可靠性。
因此,研究和实现超级电容器的电压均衡对于提高超级电容器的整体性能是十分必要和关键的技术。
基于此本文将主要对超级电容器的发展现状、优缺点、电压均衡方法及未来的发展趋势进行阐述。
2.发展现状超级电容器利用双电层原理直接存储电能,其容量可达数万法拉,是介于蓄电池和传统电容器之间的一种新型储能装置。
超级电容器储存的能量E=25.0V C ⨯⨯,与容量C 和工作电压V 的平方成正比,具有较大的比电容、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保的特点。
同时,与化学电源相比较,超级电容具有跟高的比功率,能够在短时间内释放化学电源所难达到的大电流,这一性质很好带地满足了某些电设备对瞬时大电流的需求,具有很大的发展潜能。
超级电容器发展现状及发展前景分析超级电容器研究国世界分布图超级电容器在新能源领域并不是一个陌生的名词。
实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。
然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。
因此,尽管研发过程困难重重,但攻克它的意义却很重大。
超级电容器的尴尬现状超级电容器从诞生到现在,已经历了三十多年的发展历程。
目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。
而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。
超级电容器“全家福”使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显著特点,这也使它成为当今世界最值得研究的课题之一。
目前,超级电容器的主要研究国为中、日、韩、法、德、加、美。
从制造规模和技术水平来看,亚洲暂时领先。
然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。
镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获得极大推动,也更容易聚焦全世界的目光。
相比之下,超级电容器却很难得到雄厚的资金支持,技术的进步和发展也就受到很大程度地制约。
另外,超级电容器成本高、能量密度低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。
先驱EEStor公司勇于挑战却惨遭败北尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。
一部分厂商面对超级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个涉足此领域并获得成功的例子。
另外一部分厂商则坚信,只要超级电容器的生产成本实现大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。
美国超级电容器生产商EEStor就属于后者。
超级电容器行业市场现状及发展前景分析一、超级电容器行业概况超级电容器是一种利用电解质的极化来存储电能的高效供电设备,也是一种基本的应用非常广泛的电化学元器件。
依据储能原理不同可划分为双电层电容器(靠电极-电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两大类。
从国内超级电容器消费结构来看,交通运输用超级电容器消费占比38.2%,工业用超级电容器消费占比30.8%,新能源用超级电容器消费占比21.8%,装备等其他应用领域消费占比9.2%。
二、中国超级电容器行业市场现状分析中国是全球电容器最大市场。
据统计,2019年全球电容器市场规模达220亿美元,中国电容器市场规模为1102亿元,占全球额比重达71%,中国已经成为全球最大的电容器市场。
且中国电容器行业规模增速持续高于全球规模增速。
从国内超级电容器市场规模来看,据统计,中国超级电容器行业市场规模从2012年16.3亿元增长至2018年120亿元。
三、海外超级电容器厂商简介目前,世界上许多国家积极开展超级电容相关的研究开发工作,主要的生产企业有:美国的MAXWELL公司、Ioxus公司,日本的ELNA 公司、PANASONIC公司,韩国的LS Mtron公司、Vina Technology公司和俄罗斯的ECOND公司等。
目前国外企业处于领先地位,占据着全球大部分市场。
日、美、欧洲等均把超级电容器项目作为国家级的重点研究和开发项目,美国的USMSC计划、日本的New Sunshine计划和欧洲的PNGU计划均将超级电容器列入开发内容。
四、超级电容器制作工艺流程图超级电容器属于双电层电容器,它是目前双电层电容器中容量最大的--种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
通常,超级电容器在初次化成时都会产生气体,如未能及时排出将会影响级电容器的电化学性能,当内部的气压达到一定程度时而未能及时释放减压,有可能发生爆炸现象。
超级电容器发展现状及前景分析超级电容器发展现状及前景分析一、超级电容器的概念超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。
超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。
由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。
超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。
目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。
超级电容器的性能特点:①.具有法拉级的超大电容量;②.比脉冲功率比蓄电池高近十倍;③.充放电循环寿命在十万次以上;④.能在-40℃-70℃的环境温度中正常使用;⑤.有超强的荷电保持能力,漏电源非常小;⑥.充电迅速,使用便捷;⑦.无污染,真正免维护。
二、超级电容器行业市场分析超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。
钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。
这三种超级电容器在全球和国内的生产规模情况分别见表1和表2所示。
表1 2007年、2008年全球超级电容产业规模(单位:亿美元)年份钮扣型卷绕型和大型总规模同比增长2007 10.2 34.8 45 45%2008 15.3 52.2 67.5 50%数据来源中国超级电容网表2 国内超级电容产业规模(单位:亿美元)年份钮扣型卷绕型和大型总规模同比增长2005 0.4 3.5 3.9 57.2%2006 0.9 4.8 5.7 46.2%2007 1.4 7.2 8.6 50.9%2008 2.1 11.2 13.3 54.7%数据来源中国超级电容网表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和我国超级电容器产业的情况。
2023年超级电容器行业市场前景分析超级电容器是一种高能量密度、高功率密度的电化学储能器件,具有很高的循环寿命、快速充放电、低内阻、可靠性高等特点,因此在各个领域得到了广泛应用。
近年来,随着新能源和智能化技术的不断发展,超级电容器的市场需求逐渐增长。
本文将从市场需求、主要应用领域和行业发展趋势等方面分析超级电容器行业的市场前景。
一、市场需求目前,超级电容器的应用领域非常广泛,主要包括新能源汽车、轨道交通、风力发电、光伏发电、消费电子、家电等领域。
以新能源汽车为例,超级电容器可以作为储能单元,辅助锂电池完成动力输出,提升车辆加速性能及制动能量回收效率,延长电池寿命。
另外,超级电容器还可以作为停车休眠系统的主要能源储备,在车辆长时间停靠时提供动力,降低电池损耗和车辆起动电流等问题。
然而,目前超级电容器的覆盖率还比较低,市场空间巨大,未来的市场需求前景非常广阔。
据市场调研机构预测,到2025年,全球超级电容器市场规模将达到190亿美元,这将极大推动较快的产业发展。
二、主要应用领域1.新能源汽车随着新能源汽车市场的逐年扩大,在汽车发动机的能量输出逐渐被电力输出所替代的背景下,超级电容器的应用需求也在不断增加。
在电动汽车中,超级电容器可作为电力系统中的辅助动力来源,提供汽车加速、空调、制动能量回收等所需能量。
2.轨道交通超级电容器在轨道交通领域也有广泛应用。
利用超级电容器具有快速充放电、寿命长等特点,可用作制动能量回收和储能单元,实现能量的高效利用和节能减排。
3.可再生能源超级电容器在风力发电和光伏发电领域受到广泛关注,它可以作为能量储存装置,规避可再生能源波动性大的问题。
当可再生能源供应量较大时,超级电容器可以储存过剩能量,瞬间释放给电网,平稳供电,提高电网的可靠性和稳定性。
4.消费电子和家电超级电容器在消费电子和家电领域也有一定的市场需求。
它可以帮助电子产品实现快速充电和长时间使用等,对于节能、减排也有很大的促进作用。
超级电容器的现状及发展趋势综述文献综述超级电容器的现状及发展趋势目录1 前言2 超级电容器发展现状3 超级电容的特点4 超级电容器电压均衡技术解决方案5 超级电容器的发展趋势与展望6 小结1.前言随着化石能源资源的日益匮乏和人们强烈的环保意识,有力地促进了太阳能和风能等可再生能源的发展。
但太阳能、风能具有波动性和间歇性,需要有效的储能装置保证其能够稳定的在电网中并网工作。
同时,电动汽车产业的快速发展也迫切需要发展低沉本、环境友好、能量密度高的储能装置。
超级电容器也叫做双电层电容器是一种具有高能量密度的新型储能元器件,它可提供大功率并具有超长寿命,是一种兼备电容和电池特性的新型元件,在混合动力电动车、脉冲电源系统和应急电源等领域具有广泛的应用前景。
而对于大功率系统来说,由于超级电容单体的电压值和能量都比较低,不能满足应用系统功率、放电时间及电压要求。
为满足实际应用工况的电压需求,需将多个单体串并联以提高储能模块的工作电压,单体电容器参数的分散性是制约超级电容器模块寿命和可靠性的主要因素。
然而市面上同一型号规格的超级电容器在电压、内阻、容量等参数上存在着不一致,并且在超级电容器使用过程中,工作环境不同以及电压不均匀的积累又加剧了超级电容器的参数不一致性。
这种离散性极易造成超级电容的过充或过放,从而影响系统的使用寿命和可靠性。
因此,研究和实现超级电容器的电压均衡对于提高超级电容器的整体性能是十分必要和关键的技术。
基于此本文将主要对超级电容器的发展现状、优缺点、电压均衡方法及未来的发展趋势进行阐述。
2.发展现状超级电容器利用双电层原理直接存储电能,其容量可达数万法拉,是介于蓄电池和传统电容器之间的一种新型储能装置。
超级电容器储存的能量E=25.0V C ⨯⨯,与容量C 和工作电压V 的平方成正比,具有较大的比电容、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保的特点。
同时,与化学电源相比较,超级电容具有跟高的比功率,能够在短时间内释放化学电源所难达到的大电流,这一性质很好带地满足了某些电设备对瞬时大电流的需求,具有很大的发展潜能。
超级电容器的应用与发展摘要:超级电容器是介于传统电容器和蓄电池之间的一种新型储能装置,它具有功率密度大、容量大、使用寿命长、免维护、经济环保等优点。
文章介绍了超级电容器的原理、主要性能指标、特点及国内外发展和应用状况;归纳了超级电容器在电力系统中的若干具体应用,指出了使用中应注意的问题及其解决方法,以及今后的研究方向。
1概述超级电容器是介于传统电容器和充电电池之间的一种新型储能装置,其容量可达几百至上千法拉。
与传统电容器相比,它具有较大的容量、较高的能量、较宽的工作温度范围和极长的使用寿命;而与蓄电池相比,它又具有较高的比功率,且对环境无污染。
因此可以说,超级电容器是一种高效、实用、环保的能量存储装置。
几种能量存储装置的性能比较如表1所示。
超级电容器的发展始于20世纪60年代,起先被认为是一种低功率、低能量、长使用寿命的器件。
但到了20世纪90年代,由于混合电动汽车的兴起,超级电容器才受到广泛的关注并开始迅速发展起来。
现今,大功率的超级电容器被视作一种大功率物理二次电源,各发达国家都把对超级电容器的研究列为国家重点战略研究项目。
目前,超级电容器在电力系统中的应用越来越受到关注,如基于双电层电容储能的静止同步补偿器和动态电压补偿器等,国内外对他的研究和应用正在如火如荼地进行。
此外,超级电容器还活跃在电动汽车、消费类电子电源、军事、工业等高峰值功率场合。
超级电容器主要应用领域如表2[1]所列。
2超级电容器的工作原理及发展状况2.1工作原理和性能指标一般认为超级电容器包括双电层电容器和电化学电容器两大类[2]。
2.1.1双电层电容器早在1897年,德国人Helmholtz就提出了基于超级电容器的双电层理论。
当金属插入电解液中时,金属表面上的净电荷将从溶液中吸引部分不规则分布的带异种电荷的离子,使它们在电极-溶液界面的溶液一侧离电极一定距离处排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。
超级电容器产业前景分析
近几年,超级电容器(SC)在电源领域的发展前景非常明朗,在电源、可再生能源、汽车、航空航天等行业的应用也越来越多。
随着全球能源环
境改善的要求,超级电容器的发展正在以惊人的速度推动。
作为新兴能源
技术,超级电容器已经成为许多行业的主要应用者,例如电源、可再生能源、汽车、航空和航天等行业。
预计未来,超级电容器在电动汽车、储能应用中的应用将越来越多,
因为它可以提供更稳定、更安全、更低成本的能源解决方案,有效地缩短
充电时间,并且可以维持充电功率较高的状态,这使得超级电容发挥出可
替代传统锂电池的作用。
此外,随着政府对汽车政策的推动,电池生产和
开发将更加关注电池安全性,为超级电容器提供了更多的发展机会。