知识点 完全平方公式(填空)
- 格式:docx
- 大小:105.34 KB
- 文档页数:44
完全平方公式及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】完全平方公式(一)知识点:1.完全平方公式:=+2)(b a ;=-2)(b a 2.特点:左边:右边:例1:(1)2)2(y x - (2)2)32(b a - (3)2)21(b a +- (4))32)(23(x y y x -- 变式:1、判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a 2+b 2;( ) (2)(a-b)2=a 2-b 2;( )(3)(a+b)2=(-a-b)2;( ) (4)(a-b)2=(b-a)2.( )2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、下列计算正确的是( )A 、9124)32(22--=-x x xB 、424)22(222y xy x y x ++=+ C 、22))((b a b a b a -=--- C 、22244)2(y xy x y x +-=--4、(a+3b)2-(3a+b)2计算的结果是( ).(a-b)2 (a+b)2 C.8b 2-8a 2 D.8a 2-8b 25、(1)2)21(y x - (2)2)3(b a -- (3)2)212(+-a (4)2)(z y x +- 例2:(1)(3a+2b)2-(3a-2b)2 (2)(x 2+x+6)(x 2-x+6) (3)(a+b+c+d)2变式 :(1))4)(2)(2(22y x y x y x --+ (2)22)321()321(b a b a +- (3)22)2()2)(2()1(++-+-+x x x x 其中x=-2(4)化简求值:22)2()2()2)(12(+---+-x x x x ,其中23-=x 例2;(1)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).B.-9C.9或-9 或-18(2)2216y mxy x ++是完全平方式。
初三数学导学案课题:完全平方公式(二)一、学习目标:能熟练掌握平方差公式和完全平方公式及其相关计算。
二、学习过程:复习回顾:1、叙述完全平方公式的内容并用字母表示;叙述平方差公式的内容并用字母表示;2、用简便方法计算(1)1022(2)(3x-2y)2(3)(3x+2y)(3x-2y) (4) (100+1)(100-1)3、请同学们各编一个符合平方差公式、完全平方公式结构的计算题,并算出结果.【知识应用与能力形成】例1:计算(x-2y)(x+2y) –(x+2y)2 + 8y2(1)思考: 此题能使用几个公式?用同桌讲一讲,然后完成此题。
(2)解: (x-2y)(x+2y) –(x+2y)2 + 8y2===(3)总结一下解此题的收获。
例2 计算:(a+2b+3c)(a+2b-3c)解:(a+2b+3c)(a+2b-3c)=[(a+2b)+3c][(a+2b)- 3c]=(a+2b)2-(3c)2=思考:用以上办法计算(a+2b+3c)2(把a+2b看做公式中的a,把3c看做公式中的b)三.达标检测1、填空:(1)a+b+c=( )+c; (2)a-b+c=( )+c;(3)-a+b-c=-( )-c; (4)-a-b+c=-( )+c;(5)a+b-c=a+( ) (6)a-b+c=a-( );(7)a-b-c=a-( ); (8)a+b+c=a-( ).2运用乘法公式计算:(l)()()x y z x y z++--(2)(21)(21)a b a b+++-(3)(23)(23)a b c a b c-++-(4)(1)(1)x y x y++--3.(1)与相等吗?答:(2)与相等吗?答:4.计算:(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2(3)(x+3)2—x2 (4)(x+5)2-(x-2)(x-3)初三数学导学案课题:乘法公式复习(一)基本训练,巩固旧知1.填空:两个数的和乘以这两个数的差,等于这两个数的 ,即 (a+b)(a-b)= ,这个公式叫做 公式.2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) = = = =(3) (y+3x)(3x-y) (4) (-2+ab)(2+ab) = = = = = = 3.判断正误:对的画“√”,错的画“×”.(1)(a-b)(a+b)=a 2-b 2; ( ) (2)(b+a)(a-b)=a 2-b 2; ( ) (3)(b+a)(-b+a)=a 2-b 2; ( ) (4)(b-a)(a+b)=a 2-b 2; ( ) (5)(a-b)(a-b)=a 2-b 2. ( ) 4.运用完全平方公式计算: (1) 219921100⨯ (2) (y-5)2(3) (-2x+5)2(4) (34x-23y)2(一)基本训练,巩固旧知 1.填空:完全平方公式(a+b)2= ,(a-b)2= . 2.运用乘法公式计算:(1) (a+2b-1)2(2) (2x+y+z)(2x-y-z) (3)(x+1)(x-3)-(x+2)2+(x+2)(x-2) (4) )32)(32(+--+y x y x3.先化简,再求值(8分)(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-14、17)5)(1()1(2=+---x x x 29、)10(13)13()52(222->++-x x x5已知:2,3==n m x x ,求n m x 23+ 的值。
初中数学《完全平方公式》知识点归纳初中数学《完全平方公式》知识点归纳完全平方公式是初中学习当中一个比较重要的知识点,今天极客数学帮就为大家总结了完全平方公式的知识点以及练习题。
帮助同学们学习、掌握完全平方公式的知识内容。
完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a b)2=a 2ab b ,(a-b)2=a -2ab b 。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用。
难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
结构特征:1左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2左边两项符号相同时,右边各项全用“ ”号连接;左边两项符号相反时,右边平方项用“ ”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.记忆口诀:首平方,尾平方,2倍首尾。
使用误解:①漏下了一次项;②混淆公式;③运算结果中符号错误;④变式应用难于掌握。
注意事项:1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b 可以是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。
完全平方公式例题解析:(一)、变符号例:运用完全平方公式计算:(1)(-4x 3)(2)(-a-b)分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原公式中的a,将(-b)看成原公式中的b,即可直接套用公式计算。
第2课时 完全平方公式知识点 1 完全平方公式1.填空:(1)(x +2)2=x 2+2·________·________+________2=__________; (2)(2a -3b )2=________2+________+________2=__________. 2.下列计算正确的有( )①(a +b )2=a 2+b 2; ②(a -b )2=a 2-b 2; ③(a +2b )2=a 2+2ab +2b 2; ④(-2m -3n )2=(2m +3n )2. A .1个 B .2个 C .3个 D .4个3.若x 2+16x +m 是完全平方式,则m 的值是( ) A .4 B .16 C .32 D .644.计算:(1)(2x +y )2=______________; (2)⎝ ⎛⎭⎪⎫12x -2y 2=______________; (3)(-2x +3y )2=______________; (4)(-2m -5n )2=______________.5.计算:(1)(x +y )2-x (2y -x ); (2)计算:(a +1)(a -1)-(a -2)2;(3)(x +y -3)2.知识点 2 完全平方公式的几何意义6.利用如图8-5-3①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图8-5-3②所示的图形,则根据图②的面积关系能验证的恒等式为( )图8-5-3A .(a -b )2+4ab =(a +b )2B .(a -b )(a +b )=a 2-b 2C .(a +b )2=a 2+2ab +b 2D .(a -b )2=a 2-2ab +b 2知识点 3 利用完全平方公式进行简便计算7.计算:3012=________.8.用简便方法计算:20182-4036×2019+20192.知识点 4 与完全平方公式有关的化简求值问题9.(1)[2018·宁波]先化简,再求值:(x -1)2+x (3-x ),其中x =-12.(2)已知代数式(x -2y )2-(x -y )(x +y )-2y 2.①当x =1,y =3时,求代数式的值;②当4x =3y 时求代数式的值.10.若x 2+kx +64是某个整式的平方,则k 的值是( )A .8B .-8C .±8D .±1611.若等式x 2+ax +19=(x -5)2-b 成立,则a +b 的值为( )A .16B .-16C .4D .-412.如图8-5-4,从边长为(a +4)cm 的正方形纸中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )图8-5-4A .(2a 2+5a )cm 2B .(3a +15)cm 2C .(6a +9)cm 2D .(6a +15)cm 213.若xy =12,(x -3y )2=25,则(x +3y )2的值为( )A .196B .169C .156D .14414.已知(x -1)2=ax 2+bx +c ,则a +b +c 的值为________.15.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________. 16.用两种方法计算:(12x -2y )2-(12x +2y )2.17.阅读下列材料并解答后面的问题:利用完全平方公式(a ±b )2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b )2-2ab 或a 2+b 2=(a -b )2+2ab .从而使某些问题得到解决.例:已知a +b =5,ab =3,求a 2+b 2的值.解:a 2+b 2=(a +b )2-2ab =52-2×3=19. 解决问题:(1)已知a +1a =6,则a 2+1a2=________;(2)已知a -b =2,ab =3,分别求a 2+b 2,a 4+b 4的值.18.如图8-5-5所示,已知AB =a ,P 是线段AB 上一点,分别以AP ,BP 为边作正方形. (1)设AP =x ,求两个正方形的面积之和S ; (2)当AP 分别为13a 和12a 时,比较S 的大小.图8-5-5完全平方公式答案【详解详析】1.(1)x 2 2 x 2+4x +4(2)(2a ) (-2·2a ·3b ) (3b ) 4a 2-12ab +9b 22.A3.D [解析] x 2+16x +m =x 2+2×8x +m .∵x 2+16x +m 是完全平方式,∴m =82=64.4.(1)4x 2+4xy +y 2(2)14x 2-2xy +4y 2(3)4x 2-12xy +9y 2(4)4m 2+20mn +25n 25.解:(1)原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.(2)原式=a 2-1-(a 2-4a +4)=a 2-1-a 2+4a -4 =4a -5.(3)(x +y -3)2=(x +y )2-2(x +y )×3+32=x 2+2xy +y 2-6x -6y +9.6.A [解析] ∵大正方形的边长为(a +b ),∴大正方形的面积为(a +b )2.1个小正方形的面积加上4个长方形的面积和为(a -b )2+4ab ,∴(a -b )2+4ab =(a +b )2.7.90601 [解析] 3012=(300+1)2=3002+2×300+1=90601.8.解: 原式=20182-2×2018×2019+20192=(2018-2019)2=1.9.解:(1)原式=x 2-2x +1+3x -x 2=x +1.当x =-12时,原式=-12+1=12.(2)原式=x 2-4xy +4y 2-(x 2-y 2)-2y 2=x 2-4xy +4y 2-x 2+y 2-2y 2=-4xy +3y 2.①当x =1,y =3时,原式=-4×1×3+3×32=-12+27=15; ②当4x =3y 时,原式=-y (4x -3y )=0.10.D [解析] 由完全平方公式的特点可知,当k =±16时,x 2+kx +64是某个整式的平方.故选D.11.D [解析] 由已知,得x 2+ax +19=(x -5)2-b =x 2-10x +25-b ,可得a =-10,b =6,则a +b =-10+6=-4.故选D.12.D13.B [解析] (x +3y )2=(x -3y )2+12xy =25+12×12=169.故选B.14.0 [解析] 将x =1代入(x -1)2=ax 2+bx +c ,得(1-1)2=a +b +c ,则a +b +c =0.15.2 [解析] 依题意,得(x +1)2-(1-x )2=(x 2+2x +1)-(1-2x +x 2)=4x =8, ∴x =2.16.解:方法一:原式=(14x 2+4y 2-2xy )-(14x 2+4y 2+2xy )=-4xy .方法二:原式=(12x -2y +12x +2y )(12x -2y -12x -2y )=x ·(-4y )=-4xy .17.解:(1)a 2+1a 2=(a +1a )2-2·a ·1a=62-2=34.(2)a 2+b 2=(a -b )2+2ab =22+2×3=10;a 4+b 4=(a 2+b 2)2-2a 2b 2=102-2×32=100-18=82.18.解:(1)S =AP 2+BP 2=x 2+(a -x )2=x 2+a 2-2ax +x 2=2x 2-2ax +a 2.(2)当AP =13a 时,S =⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫23a 2=19a 2+49a 2=59a 2;当AP =12a 时,S =⎝ ⎛⎭⎪⎫12a 2+⎝ ⎛⎭⎪⎫12a 2=12a 2.因为59a 2>12a 2,所以当AP =12a 时,S 更小.。
初中数学完全平方公式知识点归纳完全平方公式是指二元二次方程的解可以通过将方程化为完全平方形式来求解的方法。
下面是初中数学中关于完全平方公式的归纳知识点:1.完全平方公式的形式:对于一元二次方程ax^2 + bx + c = 0,如果其中a ≠ 0,那么它的解可以通过将方程化为完全平方形式来求解。
完全平方形式是指将二次项和一次项的系数合并为一个完全平方的形式。
2.完全平方公式的表达式:设一元二次方程为ax^2 + bx + c = 0,其中a ≠ 0,则它的解可以表示为:x = (-b ± √(b^2 - 4ac)) / (2a)3.完全平方公式的推导:在推导完全平方公式时,首先将方程右侧移到左侧,得到一个平方的形式,然后通过配方完成平方形式的提取。
4.完全平方公式的用途:完全平方公式可以用于求解一元二次方程的根,特别对于不能直观看出解的二次方程来说,可以通过完全平方公式直接求解。
5.完全平方公式的例题:例如,对于方程2x^2+5x-3=0,可以应用完全平方公式计算出其解为:x=(-5±√(5^2-4(2)(-3)))/(2(2))6.完全平方公式的注意事项:在应用完全平方公式时,需要注意判别式的值。
判别式为b^2 - 4ac,当判别式大于0时,方程有两个不相等的实数根;当判别式等于0时,方程有两个相等的实数根;当判别式小于0时,方程没有实数根。
7.完全平方公式与图像的关系:完全平方公式也可以用来解释二次函数的图像特征。
例如,当b=0时,方程的解为x=±√(-c/a),可以看出二次函数的图像与x轴交于两点;当判别式大于0时,二次函数的图像与x轴有两个不相等的交点;当判别式等于0时,二次函数的图像与x轴有一个重复的交点;当判别式小于0时,二次函数的图像与x轴没有交点。
8.完全平方公式的应用:完全平方公式不仅可以用于求解一元二次方程的根,还可以应用于其他数学问题中。
例如,可以用完全平方公式证明两条直线之间的距离公式、证明两个平面之间的夹角余弦公式等。
完全平方公式知识点例题变式完全平方公式知识点、例题、变式。
一、完全平方公式知识点。
1. 公式内容。
- (a + b)^2=a^2 + 2ab+b^2- (a - b)^2=a^2-2ab + b^22. 公式结构特点。
- 左边是一个二项式的完全平方,右边是一个三项式。
- 右边第一项是左边第一项的平方,右边第三项是左边第二项的平方,右边第二项是左边两项乘积的2倍(对于(a + b)^2是正的2ab,对于(a - b)^2是负的2ab)。
二、例题。
1. 计算(3x + 2y)^2。
- 解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 3x,b=2y。
- 计算过程:- (3x+2y)^2=(3x)^2+2×(3x)×(2y)+(2y)^2- = 9x^2+12xy + 4y^2。
2. 计算(2m - 5n)^2。
- 解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 2m,b = 5n。
- 计算过程:- (2m - 5n)^2=(2m)^2-2×(2m)×(5n)+(5n)^2- =4m^2-20mn + 25n^2。
三、变式。
1. 已知(x + 3)^2=x^2+ax + 9,求a的值。
- 解析:根据完全平方公式(x + 3)^2=x^2+2× x×3+9=x^2 + 6x+9,因为(x + 3)^2=x^2+ax + 9,所以a = 6。
2. 若(m - n)^2=16,m^2 + n^2=20,求mn的值。
- 解析:- 由完全平方公式(m - n)^2=m^2-2mn + n^2,已知(m - n)^2 = 16,即m^2-2mn + n^2=16。
- 又已知m^2 + n^2=20,将其代入m^2-2mn + n^2=16中,得到20-2mn = 16。
- 移项可得-2mn=16 - 20=-4,解得mn = 2。
1、已知n是正整数,1++是一个有理式A的平方,那么,A= ±.考点:完全平方式。
专题:计算题。
分析:先通分,分母n2(n+1)2是完全平方的形式,然后把分子整理成完全平方式的形式,从而即可得解.解答:解:1++=,分子:n2(n+1)2+(n+1)2+n2=n2(n+1)2+n2+2n+1+n2,=n2(n+1)2+2n(n+1)+1,=[n(n+1)+1]2,∴分子分母都是完全平方的形式,∴A=±.故答案为:±.点评:本题考查了完全平方式,先通分,然后把分子整理成完全平方公式的形式是解题的关键,难度较大,灵活性较强.2、关于x的二次三项式:x2+2mx+4﹣m2是一个完全平方式,求m的值.考点:完全平方式。
专题:计算题。
分析:这里首末两项是x和m这两个数的平方,那么中间一项为加上或减去x和m积的2倍.解答:解:∵x2+2mx+4﹣m2是完全平方式,∴x2+2mx+4﹣m2=(x±m)2,∴4﹣m2=m2,∴m=±,即m1=,m2=﹣.点评:本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.考点:完全平方式。
专题:证明题。
分析:先假设x2+y+1和y2+4x+3的值能同时是完全平方,那么就可写成完全平方式,从而可求y=2x,x=y,而xy是自然数,则必是无理数,那么就与已知相矛盾,故可得证.解答:解:设x2+y+1和y2+4x+3的值能同时是完全平方,那么有x2+y+1=(x+1)2,y2+4x+3=(y+)2,∴y=2x,4x=2y,即y=2x,x=y,又∵x、y是自然数,∴y必是无理数,∴与已知矛盾,故x2+y+1和y2+4x+3的值不能同时是完全平方.点评:本题考查了完全平方式、无理数、自然数的定义.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.4、(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.考点:完全平方式。
专项练习:完全平方公式一、填空题1.(x+3y)2=_________,_________=y2﹣y+.2.________=9a2﹣______+16b2;x2+10x+____=(x+_____)2.3.(﹣x﹣y)_________=x2+2xy+y2.4.(x+y)2=(x﹣y)2+_________.5.若(x+y)2=9,(x﹣y)2=5,则xy=_________.6.如果x2+mx+16是一个整式的完全平方,那么m=_________.7.已知x﹣=5,则x2+=_________.二、选择题8.下列算式不成立的是()A.3a﹣b)2=9a2﹣6ab+b2B.(a+b﹣c)2=(c﹣a﹣b)2C.(x﹣y)2=﹣xy+y2D.(x+y)(x﹣y)(x2﹣y2)=x4﹣y49.若|x+y﹣5|+(xy﹣3)2=0,则x2+y2的值为()A.19 B.31 C.27 D.2310.若(x﹣2y)2=(x+2y)2+m,则m等于()A.4xy B.﹣4xy C.8xy D.﹣8xy11.若(3x+2y)2=(3x﹣2y)2+A,则代数式A是()A.﹣12xy B.12xy C.24xy D.﹣24xy12.若a﹣b=2,a﹣c=1,则(2a﹣b﹣c)2+(c﹣a)2的值是()A.9B.10 C.2D.1三、解答题13.计算.(1)(5x﹣2y)2+20xy;(2)(x﹣3)2(x+3)2;(3)(3x﹣5)2﹣(2x+7)2;1/ 5(4)(x+y+1)(x+y﹣1)14.计算.(1)89.82;(2)472﹣94×27+272.15.已知(x+y)2=25,(x﹣y)2=9,求xy与x2+y2的值.16.南湖公园有一正方形草坪,需要修整成一长方形草坪,在修整时一边长加长了4m,另一边长减少了4m,这时得到的长方形草坪的面积比原来正方形草坪的边长减少2m后的正方形面积相等,求原正方形草坪的面积是多少.17.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是_________.(填上正确的一个即可,不必考虑所有可能的情况)18.(2011•凉山州)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.参考答案一、填空题1.解:(x+3y)2=x2+6xy+9y2,(y﹣)2=y2﹣y+.故答案为x2+6xy+9y2,y﹣.2.解:(3a﹣4b)2=9a2﹣24ab+16b2;x2+10x+25=(x+5)2.故答案为3a﹣4b,24ab;25,5.3.解:∵(x+y)2=x2+2xy+y2,而﹣x﹣y=﹣(x+y),∴[﹣(x+y][﹣(x+y)]=x2+2xy+y2,即(﹣x﹣y)(﹣x﹣y)=x2+2xy+y2.故答案为﹣x﹣y.4.解:∵(x+y)2=x2+2xy+y2,(x﹣y)2=x2﹣2xy+y2,∴(x+y)2﹣(x﹣y)2=4xy.故本题答案为:4xy.5.解:(x+y)2=x2+2xy+y2=9 (1),(x﹣y)2=x2﹣2xy+y2=5 (2),(1)﹣(2)可得:4xy=4,解得xy=1.6.解:∵x2+mx+16=x2+mx+42,∴mx=±2×4x,解得m=±8.故答案为:±8.7.解:∵x﹣=5,∴(x﹣)2=25,即x2﹣2+=25,∴x2+=27.故答案为:27.二、选择题8.解:A、(3a﹣b)2=9a2﹣6ab+b2,成立,故本选项错误;B、(a+b﹣c)2=(c﹣a﹣b)2成立,故本选项错误;C、(x﹣y)2=x2﹣xy+y2,成立,故本选项错误;D、(x+y)(x﹣y)(x2﹣y2)=(x2﹣y2)(x2﹣y2)=x4﹣2x2y2+y4,故本选项正确.故选D.9.解:根据题意得,x+y﹣5=0,xy﹣3=0,∴x+y=5,xy=3,∵(x+y)2=x2+2xy+y2=25,∴x2+y2=25﹣2×3=25﹣6=19.故选A.10.解:(x﹣2y)2,=x2﹣4xy+4y2,=x2﹣8xy+4xy+4y2,=(x+2y)2﹣8xy,∴m=﹣8xy.故选D.11.解:∵(3x+2y)2=(3x﹣2y)2+A,∴A=(3x+2y)2﹣(3x﹣2y)2=9x2+12xy+4y2﹣9x2+12xy﹣4y2=24xy.故选C.三、解答题13.解:(1)(5x﹣2y)2+20xy=25x2﹣20xy+4y2+20xy=25x2+4y2;(2)(x﹣3)2(x+3)2=(x2﹣9)2=x4﹣18x2+81;(3)(3x﹣5)2﹣(2x+7)2=9x2﹣30x+25﹣(4x2+28x+49)=9x2﹣30x+25﹣4x2﹣28x﹣49=5x2﹣58x﹣24;(4)(x+y+1)(x+y﹣1)=[(x+y)+1][(x+y)﹣1]=(x+y)2﹣1=x2+2xy+y2﹣1.14.解:(1)(89.8)2=(90﹣0.2)2=902﹣2×0.2×90+0.22=8064.04;(2)472﹣94×27+272=472﹣2×47×27+272=(47﹣27)2=202=400.15.解:∵(x+y)2=25,(x﹣y)2=9,∴x2+2xy+y2=25①,x2﹣2xy+y2=9②,①﹣②得,4xy=16,解得xy=4,①+②得,2(x2+y2)=34,解得x2+y2=17.故答案为:4,17.16.解:设原正方形草坪的边长为xm,则(x+4)(x﹣4)=(x﹣2)2,x2﹣16=x2﹣4x+4,解得:x=5,故原正方形的面积为:x2=52=25(m2).17.解:∵4x2±4x+1=(2x±1)2,∴加上的单项式可以是±4x.故答案为:4x(答案不唯一).18.解:(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5(3分)(2)原式=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5 (5分)=(2﹣1)5=1(6分)注:不用以上规律计算不给分.。
1、(2005•)计算:(a﹣b)2﹣(a+b)2= ﹣4ab .考点:完全平公式。
分析:根据完全平公式展开整理即可.解答:解:(a﹣b)2﹣(a+b)2,=a2﹣2ab+b2﹣a2﹣2ab﹣b2,=﹣4ab.点评:本题主要考查完全平公式,熟记公式结构是解题的关键.2、(2004•天津)已知x2+y2=25,x+y=7,且x>y,则x﹣y的值等于 1 .考点:完全平公式。
专题:计算题。
分析:运用完全平公式先求出x﹣y的平,结合已知条件求出2xy的值,从而求出(x﹣y)2的值,最后根据x、y的大小,开平求解.解答:解:∵x2+y2=25,x+y=7∴(x+y)2=x2+2xy+y2=49,解得2xy=24,∴(x﹣y)2=x2﹣2xy+y2=25﹣24=1,又因为x>y∴x﹣y=.点评:本题主要考查完全平公式的变形,熟记公式结构是解题的关键,需要注意,因为x>y,所以最后结果只有一个.3、(2004•)已知x+y=1,则x2+xy+y2= .考点:完全平公式。
分析:先提取公因式后再利用完全平公式整理即可转化为已知条件的形式,然后平即可求解.解答:解:∵x+y=1,∴x2+xy+y2,=(x2+2xy+y2),=(x+y)2,=.点评:本题主要考查完全平公式的运用,熟记公式结构是解题的关键.4、(2002•)如图为辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ 4 a3b+ 6 a2b2+ 4 ab3+b4.考点:完全平公式。
专题:规律型。
分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.点评:在考查完全平公式的前提下,更深层次地对辉三角进行了了解.5、(2004•)若x+y=5,x﹣y=1,则xy= 6 .考点:完全平公式。
完全平方公式知识点完全平方公式是高中数学中常用的一个重要公式,它在解决二次方程相关问题时起到了关键作用。
它的形式为:若a是实数,那么二次方程ax^2+bx+c=0的解为x=(-b±√(b^2-4ac))/(2a)。
完全平方公式的应用范围很广泛,涉及到解方程、求根、求解问题等多个方面。
接下来我们将从不同角度来讲解完全平方公式的相关知识点。
一、完全平方公式的推导过程完全平方公式的推导过程相对简单,我们可以通过配方法将二次方程化简为完全平方的形式,从而得到该公式。
具体推导过程如下:对于二次方程ax^2+bx+c=0,我们可以通过配方法将其化简为(a·x^2+b·x+c)=a(x^2+(b/a)·x+(c/a))=a((x+(b/2a))^2-(b/2a)^2+c/a)=a(x+(b/2a))^2+(c-b^2/4a)。
由此可得,原二次方程的解为x=(-b±√(b^2-4ac))/(2a)。
二、完全平方公式的含义和应用完全平方公式的含义在于,它可以将一个二次方程转化为一个完全平方的形式,使得求解过程更加简便。
在实际应用中,完全平方公式常被用来求解二次方程的根,解决与二次方程相关的各种问题。
1. 求解二次方程的根完全平方公式可以帮助我们求解任意形式的二次方程的根。
通过将二次方程化简为完全平方的形式,我们可以直接得到方程的解。
2. 求解几何问题在几何问题中,完全平方公式也有重要的应用。
例如,求解一个矩形的对角线长度时,我们可以将其转化为一个二次方程,并利用完全平方公式求解。
3. 解决实际问题完全平方公式不仅仅在数学问题中有应用,它还可以帮助我们解决一些实际问题。
例如,在物理学中,通过将一些物理量表示为二次方程的形式,再利用完全平方公式求解,可以得到一些有用的结果。
三、完全平方公式的注意事项在应用完全平方公式时,我们需要注意以下几点:1. 判断二次方程是否适合使用完全平方公式。
新人教版数学八年级上册第十四章第二节完全平方公式课时练习一、选择题(每小题5分,共30分)1.计算(a+b)(-a-b)的结果是()A.a2-b2 B.-a2-b2 C.a2-2ab+b2 D.-a2-2ab-b2答案:D.知识点:完全平方公式解析:解答:(a+b)(-a-b)=-(a+b)(a+b)=-( a2+2ab+b2)=-a2-2ab-b2.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选D.2.设(3m+2n)2=(3m-2n)2+P,则P的值是()A.12mn B.24mn C.6mn D.48mn答案:B.知识点:完全平方公式解析:解答:∵(3m+2n)2=9m2+4n2+12mn=9m2+4n2-12mn+24mn=(3m-2n)2+24mn ∴P=24mn分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选B.3.若x2-kxy+9y2是一个完全平方式,则k值为()A.3 B.6 C.±6 D.±81答案:C.知识点:完全平方公式解析:解答:∵x2-kxy+9y2是一个完全平方公式;∴x2-kxy+9y2=(x±3y)2∴k应该是±6 .分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选C.4.已知a2+b2=25,且ab=12,则a+b的值是()A.1 B.±1 C.7 D.±7答案:D.知识点:完全平方公式解析:解答:∵a2+b2=25,ab=12;∴a2+b2+2ab=(a+b)2=25+2×12=49;∴a+b应该是±7 .分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选D.5.下列运算正确的是( )A.(a-2b) (a-2b)=a2-4b2B.(P-q)2=P2-q2C.(a+2b) (a-2b)=-a2-2b2D.(-s-t)2=s2+2st+t2答案:D.知识点:完全平方公式解析:解答:A.(a-2b) (a-2b)=a2+4b2-4ab,所以本题错误;B.(P-q)2=P2+q2-2Pq,所以本题错误;C.(a+2b) (a-2b)= a2-4b2,所以本题错误;D.(-s-t)2=s2+2st+t2,本题正确.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选D.6.下列等式成立的是()A.(-x-1)2=(x-1)2B.(-x-1)2=(x+1)2C.(-x+1)2=(x+1)2D.(x+1)2=(x-1)2答案:B.知识点:完全平方公式解析:解答:A. (-x-1)2=(x+1)2,所以本题错误;B. (-x-1)2=(x+1)2,本题正确;C.(-x+1)2=(x-1)2,所以本题错误;D. (x+1)2≠(x-1)2,所以本题错误.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选B.7.计算(a+1)(-a-1)的结果是()A.-a2-2a-1B.a2-1C.-a2-1D.-a2+2a-1答案:A.知识点:完全平方公式解析:解答:(a+1)(-a-1)=- (a+1)(a+1)=-(a+1)2=-a2-2a-1分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选A.8.若x+y=10,xy=24,则x2+y2的值为( )A.52B.148C.58D.76答案:A.知识点:完全平方公式解析:解答:∵(x+y)2= x2+y2+2xy=100;∴x2+y2=100-2xy=100-48=52.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选A.9.计算1012等于()A.1002+1B.101×2C.1002+100×1+1D.1002+2×100+1 答案:D.知识点:完全平方公式解析:解答:1012=(100+1)=1002+2×100+1.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选D.10.若(a+b)2=9,(a-b)2=1,则ab的值为( )A.2B.-2C.8D.-8答案:A.知识点:完全平方公式解析:解答:(a+b)2-(a-b)2=2ab-(-2ab)=4ab=9-1;ab的值为2.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 故选A.11.若(a+b)2=36,(a-b)2=4,则a2+b2的值为( )A.9B.40C.20D.-20答案:C.知识点:完全平方公式解析:解答:(a+b)2+(a-b)2=2 (a 2+b 2)=36+4;a 2+b 2的值为20.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选C.12. 化简:(m+1)2-(1-m)(1+m)正确的结果是( )A.2m 2B.2m+2C.2m 2+2mD.0答案:C.知识点:完全平方公式 平方差公式解析:解答:(m+1)2 -(1-m)(1+m)=m 2+2m+1-1+m 2=2m 2+2m ,分析:此题考查了完全平方公式和平方差公式,再合并同类项即可.故选C.13.已知a+a 1=4,则a 2+(a1)2的值是( ) A.4 B.16 C.14 D.15答案:C.知识点:完全平方公式解析:解答:(a+a 1)2= a 2+(a1)2+2=16;a 2+(a1)2的值为14. 分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选C.14.设(5a+3b)2=(5a-3b)2+A ,则A=( )A.30abB.60abC.15abD.12ab答案:B.知识点:完全平方公式解析:解答:A=(5a+3b)2-(5a-3b)2=30ab-(-30ab)=60ab.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选B.15.若x 2+y 2=(x+y)2+A=(x-y)2+B ,则A ,B 各等于( )A.-2xy ,2xyB. -2xy ,-2xyC. 2xy ,-2xyD. 2xy ,2xy答案:A.知识点:完全平方公式解析:解答:∵x 2+y 2=(x+y)2+A=(x-y)2+B ;x 2+y 2= x 2+y 2+2xy+A= x 2+y 2-2xy+B∴A=-2xy ,B=2xy.分析:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.故选A.二、填空题(每小题5分,共25分)16.计算:(-x-y )2=__________答案:x 2+y 2+2xy.知识点:完全平方公式解析:解答:(-x-y)2=[-(x+y)]2= x2+y2+2xy.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.17.x2+y2=(x+y)2-__________=(x-y)2+________.答案:2xy,2xy.知识点:完全平方公式解析:解答:x2+y2=(x+y)2-(2xy)=(x-y)2+2xy.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.18.多项式4x2+1加上一个单项式后能成为一个整式的完全平方,请你写出符合条件的这个单项式是___________.答案:±4x.知识点:完全平方公式解析:解答:4x2+1=(2x+1)2-4x;4x2+1=(2x-1)2+4x.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.19. (a+b)(-b-a)=________答案:-a2-b2-2ab.知识点:完全平方公式解析:解答:(a+b)( -b-a)= -a2- b2-2ab分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.20.已知a+b=6,ab=5,则代数式a2+b2的值是答案:26.知识点:完全平方公式解析:解答:∵a2+b2=(a+b)2-2ab=36-2×5=26.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.三、解答题(每题10分,共50分)21. 计算9992的结果.答案:998001.知识点:完全平方公式解析:解答:9992=(1000-1)2=10002+1-2000=998001.分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.22. 解方程2(x-1)2+(x-2)(x+2)=3x(x-5)2答案:x=11知识点:完全平方公式平方差公式合并同类项解析:解答:2(x-1)2+(x-2)(x+2)=3x(x-5)2x2+2-4x+x2-4=3x2-15x3x2-3x2-4x+15x=22x=11分析:本题考查了完全平方公式、平方差公式以及全并同类项,掌握运算法则是解答本题的关键.23.已知:x+y=3,xy=1,试求:(1)x2+y2的值;(2)(x-y)2的值.答案:7,5.知识点:完全平方公式解析:解答:(1) x 2+y 2=(x+y)2-2xy=9-2=7;(2) (x-y)2= x 2+y 2-2xy=7-2=5. 分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.24.已知a+a 1=6,求(a-a 1)2的值. 答案:32.知识点:完全平方公式解析:解答:∵(a+a 1)2=a 2+(a1)2+2=36 ∴a 2+(a1)2=34 又∵(a-a 1)2= a 2+(a1)2-2=34-2=32 分析:本题考查了完全平方公式,掌握运算法则是解答本题的关键.25.已知a ,b 是有理数,试说明a 2+b 2-2a-4b+8的值是正数.答案:知识点:完全平方公式 非负数的性质 偶次方解析:解答:证明:原式= a 2+b 2-2a-4b+8= a 2+b 2-2a-4b+1+4+3=(a-1)2+(b-2)2+3∵(a-1)2≥0;(b-2)2≥0;∴(a-1)2+(b-2)2+3≥3.∴a 2+b 2-2a-4b+8的值是正数.分析:先把常数项8拆为1+4+3,在分组凑成完全平方式,从而判断它的非负性.。
完全平方公式知识点总结一、完全平方公式的定义在代数中,完全平方是指一个数的平方能够整除另一个数。
在一元二次方程中,如果其二次项和一次项可以写成一个完全平方的形式,那么我们就可以利用完全平方公式来求解方程的根。
二、完全平方公式的形式一元二次方程的标准形式为ax^2 + bx + c = 0,而完全平方公式的一般形式为(a+b)^2 =a^2 + 2ab + b^2,其中a、b为任意实数。
根据这个形式,我们可以进一步推导出完全平方公式的常用形式,即(a+b)^2 = a^2 + 2ab + b^2。
三、完全平方公式的推导要理解完全平方公式的推导过程,我们可以通过简单的代数运算来进行推导。
假设我们有一个二次方程x^2 + 6x + 9 = 0,我们可以将其写成完全平方的形式,即(x+3)^2 = 0。
通过这个例子,我们可以看到完全平方公式的推导过程,即将一元二次方程的一次项系数分解成两个相同的系数,然后将其写成完全平方的形式。
四、完全平方公式的应用技巧在使用完全平方公式求解一元二次方程时,我们需要注意以下几点应用技巧:1.将一元二次方程转化为完全平方的形式2.确定完全平方公式的形式,即(a+b)^2 = a^2 + 2ab + b^23.利用完全平方公式求解方程的根4.注意判断方程的解的情况,即判断判别式的正负性五、完全平方公式的拓展应用除了求解二次方程外,完全平方公式还可以在数学和科学领域的其他问题中进行拓展应用。
比如在几何学中,我们可以利用完全平方公式来求解圆的面积和周长;在物理学中,我们可以利用完全平方公式来分析物体的运动规律等。
总之,完全平方公式是求解一元二次方程的重要方法之一,它有着广泛的应用领域,对于学生来说掌握完全平方公式是十分重要的。
通过以上的知识点总结,相信大家对完全平方公式有了更深入的理解和掌握,希望能够帮助大家更好地学习和应用完全平方公式。
完全平方公式(基础)巩固练习【巩固练习】一.选择题1. 将224144a a ++因式分解,结果为( ).A.()()188a a ++B.()()1212a a +-C.()212a +D.()212a -2.2()n m x y -是下列哪一个多项式分解的结果( )A.22n m xy - B.2n n m m x x y y -+ C.222n n m m x x y y -+ D.2n n m mx x y y --3. (2015•邵阳)已知a+b=3,ab=2,则a 2+b 2的值为( ) A . 3B .4C .5D .64. 如果222536a mab b ++可分解为()256a b -,那么m 的值为( ).A.30B.-30C.60D.-605. 如果229x kxy y ++是一个完全平方公式,那么k 是( )A.6B.-6C.±6 D.186. 下列各式中,是完全平方式的是( )A.2991x x --B.2691y y -++ C.2169y y -- D.2931y y --二.填空题7. 若()22416-=+-x mx x ,那么________m =.8. 因式分解:()()225101a b a b -+-+=____________.9. 分解因式:214m m ---=_____________.10.(2015春•萧山区期末)将4x 2+1再加上一项,使它成为(a+b )2的形式(这里a 、b 指代的是整式或分式),则可以添加的项是 .11. 分解因式:()()154a a +++ =_____________.12. (1)()()225=a a -+;(2)()()22412m mn -+=.三.解答题13. 若13x x +=,求221x x +的值.14.(2015春•万州区期末)已知x ﹣y=1,x 2+y 2=25,求xy 的值.15. 把()()3322x y x y x xy y +=+-+称为立方和公式,()()3322x y x y x xy y -=-++称为立方差公式,据此,试将下列各式因式分解:(1)38a +; (2)3271a -.【答案与解析】一.选择题1. 【答案】C;2. 【答案】C;【解析】2222()n n m m n m x x y y x y -+=-.3. 【答案】C;【解析】解:∵a+b=3,ab=2,∴a 2+b 2=(a+b )2﹣2ab=32﹣2×2=5,故选C .4. 【答案】D;【解析】()22256256036a b a ab b -=-+.5. 【答案】C;【解析】()22222229239693x kxy y x x y y x xy y x y ++=±⋅⋅+=±+=±.6. 【答案】B;【解析】()2269131y y y -++=-.二.填空题7. 【答案】8;【解析】()224816x x x -=-+.8. 【答案】()2551a b -+;【解析】()()()()()222251015251551a b a b a b a b a b -+-+=-+⋅-+=-+⎡⎤⎣⎦.9. 【答案】212m ⎛⎫-+ ⎪⎝⎭; 【解析】222111442m m m m m ⎛⎫⎛⎫---=-++=-+ ⎪ ⎪⎝⎭⎝⎭.10.【答案】4x,﹣4x,. 【解析】解:①4x 2是平方项时,4x 2±4x+1=(2x ±1)2,可加上的单项式可以是4x 或﹣4x ,②当4x 2是乘积二倍项时,4x 4+4x 2+1=(2x 2+1)2,可加上的单项式可以是4x 4,③1是乘积二倍项时,,可加上的单项式可以是,故答案为:4x,﹣4x,.11.【答案】()23a +;【解析】()()()22154693a a a a a +++=++=+.12.【答案】(1)255,42a -;(2)29,23n m n -.三.解答题13.【解析】解:222222*********x x x x x x ⎛⎫+=++-=+-=-= ⎪⎝⎭.14.【解析】解:∵x ﹣y=1,∴(x ﹣y )2=1,即x 2+y 2﹣2xy=1;∵x 2+y 2=25,∴2xy=25﹣1,解得xy=12.15. 【解析】解:(1)()()333282224a a a a a +=+=+-+ (2)()()()3322713131931a a a a a -=-=-++.完全平方公式(基础)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即,.形如,的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.【高清课堂400108 因式分解之公式法 知识要点】要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到).要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、 下列各式是完全平方式的是( ).A.B.C.D.【思路点拨】完全平方式是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【答案】A;【解析】.【总结升华】形如,的式子叫做完全平方式.举一反三:【变式】(2015春•临清市期末)若x 2+2(m﹣3)x+16是完全平方式,则m 的值是( ) A.﹣1B.7C.7或﹣1D.5或1()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 412+-x x 21x +1++xy x 122-+x x 221142x x x ⎛⎫-+=- ⎪⎝⎭222a ab b ++222a ab b -+【答案】C.2、分解因式:(1); (2); (3); (4).【答案与解析】解:(1).(2).(3).(4).【总结升华】本题的关键是掌握公式的特征,套用公式时要注意把每一项同公式的每一项对应.举一反三:【变式】分解因式:(1); (2);(3); (4).【答案】解:(1).(2).(3).(4).3、分解因式:21449x x ++29124x x -+214a a ++22111162a b ab -+22221449277(7)x x x x x ++=+⋅⋅+=+22229124(3)2322(32)x x x x x -+=-⋅⋅+=-2222111124222a a a a a ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭222221111112111162444a b ab ab ab ab ⎛⎫⎛⎫-+=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭29()12()4a b a b +-++222()()a a b c b c ++++21025a a --22()4()()4()x y x y x y x y +++-+-29()12()4a b a b +-++22[3()]23()22a b a b =+-⋅+⋅+22[3()2](332)a b a b =+-=+-222()()a a b c b c ++++22[()]()a b c a b c =++=++()2210251025a a a a --=--+2(5)a =--22()4()()4()x y x y x y x y +++-+-22()2()2()[2()]x y x y x y x y =+++-+- 22[()2()](3)x y x y x y =++-=-(1);(2);(3).【答案与解析】解:(1).(2).(3).【总结升华】分解因式的一般步骤:一“提”、二“套”、三“查”,即首先有公因式的提公因式,没有公因式的套公式,最后检查每一个多项式因式,看能否继续分解.举一反三:【高清课堂400108 因式分解之公式法 例4】【变式】分解因式:(1).(2).(3);(4);(5);【答案】解:(1)原式.(2)原式.(3)原式(4)原式=(5)原式类型二、配方法2234162x y xy y ++4224168a a b b -+222(3)(1)x x x +--2234162x y xy y ++22222()()1624x xy x y y y y =++=+4224168a a b b -+222222(4)[(2)(2)](2)(2)a b a b a b a b a b =-=+-=+-222(3)(1)x x x +--22(31)(31)x x x x x x =++-+-+2222(41)(21)(41)(1)x x x x x x x =+-++=+-+224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-2244x y xy --+322344x y x y xy ++()()2222221x xx x -+-+22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+()()222442x y xy x y =-+-=--()()222442xy x xy yxy x y ++=+()()242211x x x =-+=-4、(2015春•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).【思路点拨】(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式利用多项式乘以多项式法则计算,整理后将各自的值代入计算即可求出值.【答案与解析】解:(1)∵x+y=3,xy=﹣8,∴原式=(x+y)2﹣2xy=9+16=25;(2)∵x+y=3,xy=﹣8,∴原式=x 2y 2﹣(x 2+y 2)+1=64﹣25+1=40.【总结升华】要先观察式子的特点,看能不能将式子进行变形,以简化计算.举一反三:【变式】已知为任意有理数,则多项式-1-的值为( ). A.一定为负数 B.不可能为正数 C.一定为正数 D.可能为正数,负数或0【答案】B;提示:-1-=.x x 142x x 142x 221111042x x x ⎛⎫⎛⎫--+=--≤ ⎪ ⎪⎝⎭⎝⎭完全平方公式(提高)巩固练习【巩固练习】一.选择题1. 若是完全平方式,则的值为( )A.-5 B.7 C.-1 D.7或-12. 下列各式中,是完全平方式的是( )①;②;③;④ A.0 B.1 C.2 D.33. 如果是一个完全平方公式,那么是( ) A. B. C. D.4. (2015•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c 2﹣ab﹣bc﹣ac 的值为( ) A. 0B.1C.2D.35. 若,则的值为( )A.12B.6C.3D.06. 若为任意实数时,二次三项式的值都不小于0,则常数满足的条件是()A. B. C. D. 二.填空题7.(1)=____________;(2)=___________.8. 因式分解:=_____________.9. 因式分解: =_____________.10. 若,=_____________.11. 当取__________时,多项式有最小值_____________.12.(2015•宁波模拟)如果实数x、y 满足2x 2﹣6xy+9y 2﹣4x+4=0,那么= .三.解答题13.若,,求的值.14.(2015春•怀集县期末)已知a+=,求下列各式的值:(1)(a+)2;(2)(a﹣)2;(3)a﹣.15. 若三角形的三边长是,且满足,试判断三角形22(3)16x m x +-+m 241a -214a a -++212x x +-()()21025x y x y +-++24a ab m --m 2116b 2116b -218b 218b -3a b +=222426a ab b ++-x 26x x c -+c 0c ≥9c ≥0c >9c >21002100244-⨯+228001600798798-⨯+()222224m n m n +-2221x x y ++-224250x y x y +-++=x y +x 2610x x ++44225a b a b ++=2ab =22a b +a b c 、、2222220a b c ab bc ++--=的形状.小明是这样做的:解:∵,∴. 即 ∵,∴.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: 为三角形的三条边,且,试判断三角形的形状.【答案与解析】一.选择题1. 【答案】D;【解析】由题意,=±4,.2. 【答案】C;【解析】③④能用完全平方公式分解.3. 【答案】B;【解析】,所以,选B.4. 【答案】D;【解析】解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a 2+2b 2+2c 2﹣2ab﹣2bc﹣2ca),=[(a 2﹣2ab+b 2)+(b 2﹣2bc+c 2)+(a 2﹣2ac+c 2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D.5. 【答案】A;【解析】原式=.6. 【答案】B;【解析】,由题意得,,所以.二.填空题7. 【答案】(1);(2)4.2222220a b c ab bc ++--=2222(2)(2)0a ab b c bc b -++-+=()()220a b b c -+-=()()220,0a b b c -≥-≥,a b b c a b c ====即a b c 、、2220a b c ab bc ac ++---=3m -71m =-或222211142222a ab m a a b b a b ⎛⎫⎛⎫--=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭2144m b -=()222623612a b +-=⨯-=()()22639x x c x c -+=-+-90c -≥9c ≥610【解析】; .8. 【答案】;【解析】.9. 【答案】【解析】.10.【答案】1;【解析】,所以,.11.【答案】-3,1;【解析】,当时有最小值1.12.【答案】.【解析】解:可把条件变成(x 2﹣6xy+9y 2)+(x 2﹣4x+4)=0,即(x﹣3y)2+(x﹣2)2=0,因为x,y 均是实数,∴x﹣3y=0,x﹣2=0,∴x=2,y=,∴==.故答案为.三.解答题13.【解析】解: 将代入 ∵≥0,∴=3.()22610021002441002210-⨯+=-=()22280016007987988007984-⨯+=-=()()22m n m n +-()()()()()22222222222422m n m n m n mn m n mn m n m n +-=+++-=+-()()11x y x y +++-()()()222221111x x y x y x y x y ++-=+-=+++-()()2222425210x y x y x y +-++=-++=2,1x y ==-1x y +=()2261031x x x ++=++3x =-44224422222a b a b a b a b a b++=++-()22222a b a b =+-2ab =()222225a b a b +-=()()2222222259a b a b +-=+=22a b +22a b +14.【解析】解:(1)把a+=代入得:(a+)2=()2=10;(2)∵(a+)2=a 2++2=10,∴a 2+=8,∴(a﹣)2=a 2+﹣2•a•=8﹣2=6;(3)a﹣=±=±.15.【解析】解:∵ ∴ ∴ ∴,该三角形是等边三角形.2222222220a b c ab bc ac ++---=()()()2222222220a ab bb bc c a ac c -++-++-+=()()()2220a b b c a c -+-+-=000a b b c a c -=⎧⎪-=⎨⎪-=⎩a b c ==完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即,.形如,的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.【高清课堂400108 因式分解之公式法 知识要点】要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到).要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式【高清课堂400108 因式分解之公式法 例4】1、分解因式:(1); (2);(3); (4).【答案与解析】解:(1).(2).(3)()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 22363ax axy ay -+-42242a a b b -+2222216(4)x y x y -+4224816a a b b -+222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-2222216(4)x y x y -+.(4).【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1).(2).【答案】解:(1)原式.(2)原式.2、分解因式:.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分作为一个整体,展开后再进行分解就容易了.【答案与解析】解: .【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】若,是整数,求证:是一个完全平方数.【答案】22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+22(33)(35)1x x x x +++++23x x +22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++222(3)8(3)16x x x x =++++22(34)x x =++x y ()()()()4234x y x y x y x y y +++++解:令∴上式即类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如添上什么就可以成为完全平方式?因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:.【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如 ()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++2254x xy y u++=2422222(2)()(55)u u y y u y x xy y ++=+=++()()()()4222234(55)x y x y x y x y y x xy y +++++=++()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-2x bx +2222()2222b b b x bx x x x ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭2352x x +-2252352333x x x x ⎛⎫+-=+- ⎪⎝⎭222555233663x x ⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25493636x ⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2257366x ⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决.类型三、完全平方公式的应用4、(2015春•娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x﹣1)2+9,∵无论x 取什么数,都有(x﹣1)2的值为非负数,∴(x﹣1)2的最小值为0,此时x=1,∴3(x﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为、、,且满足, 求证:.【答案】解:575736666x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭()1323x x ⎛⎫=+- ⎪⎝⎭a b c 222166100a b c ab bc --++=2a c b +=22216610a b c ab bc --++所以所以所以因为△ABC 的三边长分别为、、,,所以,矛盾,舍去.所以.【变式2】(2015春•萧山区期中)若(2015﹣x)(2013﹣x)=2014,则(2015﹣x)2+(2013﹣x)2= .【答案】4032.解:∵(2015﹣x)(2013﹣x)=2014,∴[(2015﹣x)﹣(2013﹣x)]2=(2015﹣x)2+(2013﹣x)2﹣2(2015﹣x)(2013﹣x)=4,则(2015﹣x)2+(2013﹣x)2=4+2×2014=4032.()()()22222269251035a ab b b bc c a b b c =++--+=+--()()22350a b b c +--=()()2235a b b c +=-3(5)a b b c +=±-28a c b b c a+==-或a b c c a b -<8b c a b =-<2a c b +=。
高中数学必修一知识点
01、平方差公式
02、完全平方公式
03、立方和差公式
04、求根公式
05、韦达定理
06、二次函数对称轴方程
07、二次函数值域
08、等边三角形的高,面积
09、质数:
10、集合的性质:确定性,互异性,无序性
11、自然数集
正整数集
整数集
有理数集Q,实数集R
12、空集的性质:空集是任何集合的子集,即:
空集是任何非空集合的真子集,即,若,则
13、子集的性质:任何一个集合是它本身的子集,即
如果且,那么
14、函数三要素:定义域,对应关系,值域。
15、闭区间
开区间
半开半闭区间
或
16、当时则叫增函数
当时则叫减函数
17、如果叫偶函数,它的图像关于轴对称
18、如果叫奇函数,它的图像关于原点对称,且
19、当n为奇数时,
当n为偶数时,20、分数指数幂负分数指数幂
21、指数函数
图像
定义域
值域
图像过定点
单调性
22、指数式和对数式的转化
23、三个特殊对数值
24、对数的运算性质
25、对数函数
图像
定义域
值域
图像过定点
单调性
26、叫幂函数。
平方差与完全平方式一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。
1、即:(a+b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。
3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2二、完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()c a b a -+ (2)()()x y y x +-+(3)()()ab x x ab ---33 (4)()()n m n m +--2.判断:(1)()()22422b a a b b a -=-+ ( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x ( )(3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( )3、计算:(1))4)(1()3)(3(+---+a a a a (2)22)1()1(--+xy xy(3))4)(12(3)32(2+--+a a a (4))3)(3(+---b a b a(5)22)3(x x -+ (6)22)(y x y +-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5⑵[]x y y x y x y x 25)3)(()2(22÷--+-+,其中21,2=-=y x(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
1、多项式x2+2mx+64是完全平方式,则m=±8.考点:完全平方式。
分析:根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍.解答:解:∵x2+2mx+64是完全平方式,∴2mx=±2•x•8,∴m=±8.点评:本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解.2、代数式4x2+3mx+9是完全平方式,则m=±4.考点:完全平方式。
分析:本题考查完全平方公式的灵活应用,这里首末两项是2x和3的平方,那么中间项为加上或减去2x和3的乘积的2倍.解答:解:∵4x2+3mx+9是完全平方式,∴3mx=±2×3•2x,解得m=±4.点评:本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.3、设4x2+mx+121是一个完全平方式,则m=±44.考点:完全平方式。
分析:这里首末两项是2x和11这两个数的平方,那么中间一项为加上或减去2x和11积的2倍.解答:解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4、若9x2+mx+25是完全平方式,则m=±30.考点:完全平方式。
专题:计算题。
分析:这里首末两项是3x和5这两个数的平方,那么中间一项为加上或减去3x和5积的2倍,故m=±30.解答:解:∵(3x±5)2=9x2±30x+25,∴在9x2+mx+25中,m=±30.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.5、已知x2﹣4x+a是一个完全平方式,则a为4.考点:完全平方式。
分析:根据乘积二倍项先确定出这两个数是x和2,再根据完全平方公式结构特点,a等于2的平方.解答:解:∵4x=2×2x,则a=22=4.点评:本题考查完全平方公式的灵活应用程度.根据完全平方公式,两数和的平方加上或减去它们乘积的2倍,根据结构特征分析得出a=4.6、如果x2+kx+1是一个完全平方式,那么k的值是±2.考点:完全平方式。
分析:这里首末两项是x和1这两个数的平方,那么中间一项为加上或减去x和1积的2倍,故k=±2.解答:解:中间一项为加上或减去x和1积的2倍,故k=±2.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7、若a2+ma+36是一个完全平方式,则m=±12.考点:完全平方式。
分析:由完全平方公式:(a±b)2=a2±2ab+b2.把所求式化成该形式就能求出m的值.解答:解:a2+ma+36=(a±6)2,解得m=±12.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求乘积项.8、要使多项式x2+4x+m可以化成一个完全平方式,则m=4.考点:完全平方式。
专题:计算题。
分析:先根据乘积二倍项确定出这两个数是x和2,再根据完全平方公式即可求出m等于2的平方.解答:解:∵4x=2×2•x,∴m=22=4.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,确定出这两个数是求解的关键.9、若9x2+kx+16是一个完全平方式,则k的值是24或﹣24.考点:完全平方式。
分析:这里首末两项是3x和4这的平方,那么中间一项为加上或减去3x和4积的2倍,故k=±24.解答:解:中间一项为加上或减去3x和4积的2倍,故k=±24故填24;﹣24.点评:本题考查了完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10、多项式4x2+M+9y2是一个完全平方式,则M等于12xy(填一个即可).考点:完全平方式。
分析:这里首末两项是2x和3y这两个数的平方,那么中间一项为加上或减去2x和3y积的2倍,故M=±12xy.解答:解:∵(2x±3)2=4x2±12xy+9y2=4x2+M+9y2,∴M=±12xy.故答案为:12xy或﹣12xy(任选一个即可).点评:本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.11、若25x2﹣mxy+9y2是完全平方式,则m的值为±30.考点:完全平方式。
分析:完全平方公式:(a±b)2=a2±2ab+b2.把所求式化成该形式就能求出m的值.解答:解:由25x2﹣mxy+9y2=(5x±3y)2,解得m=±30.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求乘积项.12、已知x2﹣ax+16在整数范围内可以用完全平方公式分解因式,则整数a的值是8(a>0).考点:完全平方式。
分析:先根据两平方项确定出这两个数,再利用完全平方公式即可求得答案.解答:解:∵x2﹣ax+16是完全平方公式,∴这两个数是x和4,∵a>0,∴ax=2×4x,解得a=8,故整数a的值是8.点评:本题考查完全平方式,根据两平方项确定出这两个数是解题的关键.13、若(x+m)(x+3)中不含x得一次项,则m的值为﹣3;x2+kx+9是一个完全平方式,则k=±6.考点:完全平方式。
专题:计算题。
分析:(1)先把式子展开并合并,因为其中不含有一次项,即一次项系数为0,列方程求解;(2)x2+kx+9是一个完全平方式,这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍,故k=±6.解答:解:(1)(x+m)(x+3)=x2+(m+3)x+3m,∵x2+(m+3)x+3m中不含x得一次项,∴m+3=0,即m=﹣3.(2)∵(x±3)2=x2±6x+9,∴在x2+kx+9中,k=±6.点评:不含某一项就是让这一项的系数等于0;根据完全平方公式确定出这两个数是求解的关键.14、若多项式x2+mx+9恰好是另一个多项式的平方,则m=±6.考点:完全平方式。
分析:本题考查完全平方公式的灵活应用,这里首末两项是x和3的平方,那么中间项为加上或减去x和3的乘积的2倍.解答:解:∵x2+3mx+9是另一个多项式的平方,∴mx=±2×x×3,解得m=±6.点评:本题考查了完全平方式,根据两平方项确定出这两个数是解题的关键,注意m的值有正负两种情形,不可漏解.15、如果4x2﹣mxy+9y2是一个完全平方式,则m=±12.考点:完全平方式。
分析:这里首末两项是2x和3y这两个数的平方,那么中间一项为加上或减去2x和3y积的2倍.解答:解:∵4x2﹣mxy+9y2是一个完全平方式,∴﹣mxy=±2×2x×3y,∴m=±12.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16、①a2﹣4a+4;②a2+a+;③4a2﹣a+;④4a2+4a+1.以上各式中属于完全平方式的有①②④.(填序号)考点:完全平方式。
分析:完全平方公式展开的三项应符合以下条件:符号相同的能写成平方的两项,加上或减去底数的积的2倍.解答:解:①a2﹣4a+4=(a﹣2)2,符合;②a2+a+=(a+)2,符合;③4a2﹣a+,不符合;④4a2+4a+1=(2a+1)2,符合.故应填:①②④.点评:本题考查了完全平方式的运用,熟练掌握完全平方式的结构是解题的关键.17、在□x2□2x□1的空格中,任意填上“+”,“﹣”,共有8种不同的代数式,其中能构成完全平方式的有4种.考点:完全平方式。
分析:根据每个空有“+”,“﹣”两种填法,所以共有23=8种不同的代数式,再根据完全平方公式判断完全平方式的种数.解答:解:共有8种具体如下:x2±2x+1;x2±2x﹣1;﹣x2±2x+1;﹣x2±2x﹣1.其中x2±2x+1、﹣x2±2x﹣1是完全平方式.故填8,4.点评:解决本题的关键是正确对括号中的符号进行讨论,以及对完全平方式结构的理解与记忆.18、a2x2﹣4x+b2是一个完全平方式,则ab=±2.考点:完全平方式。
分析:这里首末两项是ax和b这两个数的平方,那么中间一项为加上或减去ax和b积的2倍,故2ab=±4,ab=±2.解答:解:中间一项为加上或减去ax和b积的2倍,故2ab=±4,ab=±2故填±2.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19、已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=2.考点:完全平方式。
专题:计算题。
分析:把14分成1+4+9,与剩余的项构成3个完全平方式,从而出现三个非负数的和等于0的情况,则每一个非负数等于0,解即可.解答:解:∵x2+y2+z2﹣2x+4y﹣6z+14=0,∴x2﹣2x+1+y2+4y+4+z2﹣6z+9=0,∴(x﹣1)2+(y+2)2+(z﹣3)2=0,∴x﹣1=0,y+2=0,z﹣3=0,∴x=1,y=﹣2,z=3,故x+y+z=1﹣2+3=2.故答案为:2.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.20、当k=±12时,4x2﹣kxy+9y2为完全平方式.考点:完全平方式。
分析:先根据平方项确定出这两个数是2x和3y,再根据完全平方公式的乘积二倍项列式求解即可.解答:解:∵4x2﹣kxy+9y2为完全平方式,∴这两个数是2x和3y,∴﹣kxy=±2×2x•3y,解得k=±12.点评:本题考主要考查完全平方公式的应用,根据平方项确定出这两个数是求解的关键,要注意k值有两个,不要漏解.21、k取±4时,二次三项式4x2﹣kx+3是一个完全平方式.考点:完全平方式。