高层建筑结构设计规范思考分析
- 格式:docx
- 大小:15.69 KB
- 文档页数:2
之二十二,也高过了20%。
塔楼结构平面图勘察设计条件下的弹性时程以及不屈服,借助SATWE做出具体的验算以及分析;验算弹塑性静力的时候使用了EPDA,按照斜向以及水平作用正交对指标进行了计算。
3.2结果(1)分析周期。
无论是SATWE计算,还是GSSAP计算,都可以有如下所得:周期1、2都是平动的,周期3是扭转的。
比较扭转周期以及第1平动周期,二者之间的比值小于0.85这个限值,为0.807。
平动周期在两方面行比较接近,也就是运动性能没有很大的差距。
(2)水平位移。
不同水平荷载的条件下,弹性层间位移角即使在最大的条件下,也符合规范的具体要求。
(3)抗剪承载力值和层间刚度的比值。
伴随楼层增加,本建筑物的侧向高度呈均匀状态的减小。
不同工况条件下,规范的具体要求都能够得到满足:刚度最小的为首层刚度,和上一层相比,首层的刚度仅仅是其上一层的79%,和上面三层对应的平均刚度相比,首层的高度是平均水平的84%;在抗剪承载力方面,首层也是最小的,是其上一层剪承载力的95%,符合规范对应的具体要求。
(4)反应谱法其余主要计算结果。
计算时所选振型数满足规范要求,剪重比均大于1.6%,可不另作楼层地震剪力调整。
刚重比大于1.4,可通过整体稳定验算,且由于该值大于2.7,可不考虑重力二阶效应。
框架所承担的最大倾覆弯矩比例小于50%,底层框架承担的倾覆弯矩为45.6%,说明本工程结构布置的剪力墙数量较为合理,两程序在底部剪力及底部倾覆弯矩较接近,说明其计算结果可互相印证。
(5)弹性时程分析。
计算时选取了1条程序所提供的二类场地人工波数据以及2组天然波数据,经比对该3组波的计算结果,均符合《高规》3.3.5条要求。
(6)验算Pushover,中震和大震条件下的不屈服性能。
计算的过程中,大震推覆验算是依据X、Y向展开的。
结果告诉我们:推覆性能点在所有方向上对应的层间最大位移角应该要比限值小,这样结构体系能够在大震的情况下,具有抗震的功效。
第1章绪论1.我国对高层建筑结构是如何定义的《高规》将10层及10层以上或房屋高度大于28m的住宅建筑,以及房屋高度大于24m的其他高层民用建筑混凝土结构房屋,称之为高层。
2.高层建筑结构的受力及变形特点是什么设计时应考虑哪些问题(1)水平荷载对结构的影响大,侧移成为结构设计的主要控制目标之一;(2)楼盖结构整体性要求高;(3)高层建筑结构中的构建的多种变形影响大;(4)结构受到动力荷载作用时的动力效应大;(5)扭转效应大;(6)必须重视结构的整体稳定和抗倾覆问题;(7)当建筑物高度很大时,结构内外与上下温差过大而产生的温度内力和温度位移也是高层建筑结构的一种特点。
4.为什么要限制结构在正常情况下的侧移何谓舒适度高规采用何种限制来满足舒适度要求限制侧移主要原因:防止主题结构及填充墙、装修等非结构构件的开裂与损坏;同时过大的侧向变形会使人有不舒适感,影响正常使用;过大的侧移还会使结构产生较大的附加内力。
人体对居住在高楼内的舒适程度。
通过限制振动加速度满足舒适度要求。
5.什么是结构的重力二阶效应高层建筑为什么要进行稳定性验算如何进行框架结构的整体稳定验算框架结构在水平荷载作用下将产生侧移,如果侧移量比较大,由结构重力荷载产生的附加弯矩也将较大,危及结构的安全与稳定。
这个附加弯矩称之为重力二阶效应。
有侧移时,水平荷载会产生重力二阶效应,重力二阶效应过大会导致结构发生整体失稳破坏。
故要进行稳定性验算。
满足下式要求,式中n为结构总层数,否则将认为结构不满足整体稳定性要求。
第2章高层建筑结构体系与布置1. 何为结构体系高层建筑结构体系大致有哪几类选定结构体系主要考虑的因素有哪些所谓高层建筑建筑的结构体系是指结构抵抗外部作用的构件类型及组成方式。
框架结构;剪力墙结构;框架-剪力墙结构;筒体结构;巨体结构。
因素:建筑高度;抗震设防类别;设防烈度;场地类型;结构材料和施工技术;经济效益;3.在抗震结构中为什么要求平面布置简单、规则、对称,竖向布置刚度均匀怎样布置可以使平面内刚度均匀,减小水平荷载引起的扭转沿竖向布置可能出现哪些刚度不均匀的情况高层建筑结构平面、竖向不规则有哪些类型(1)因为大量宏观震害标明,布置不对称,刚度不均匀的结构会产生难以计算和处理得地震作用(如应力集中,扭曲等)引起的严重后果,建筑平面尺寸过长,如建筑,在蒜辫方向不仅侧向变形加大,而且会产生两端不同步的地震运动,价赔偿的楼板在平面既有扭转又有挠曲,与理论计算结果误差较大。
高层建筑结构设计规范要求详解高层建筑结构设计是一项复杂而关键的任务,涉及到建筑的安全性、可靠性和经济性等方面。
为了保证高层建筑在设计、建造和使用过程中的安全和可持续性,各国纷纷制定了相应的规范要求。
本文将详解高层建筑结构设计规范要求,从抗震设计、荷载设计以及结构材料等方面进行论述。
一、抗震设计高层建筑面临的最大威胁之一是地震。
因此,抗震设计成为高层建筑结构设计中至关重要的一个方面。
抗震设计规范要求建筑结构能够在地震发生时保持稳定。
这包括考虑建筑的承重墙、框架结构以及剪力墙等。
设计师需要根据规范要求,选取适当的抗震设计参数,如设计地震加速度、设计顶点加速度、抗震设防烈度等,并进行合理的结构配置和强度设计。
二、荷载设计高层建筑所受到的荷载来自多个方面,如常规荷载、风荷载、地震荷载等。
荷载设计规范要求设计师在结构设计过程中考虑各种荷载的作用,并进行相应的计算和分析。
常规荷载包括自重、活载和寒假荷载等,设计师需要根据建筑的功能和使用要求来确定相关参数。
风荷载是一种重要的非常规荷载,规范要求对风荷载进行综合考虑,包括风压、风速、风向等因素。
地震荷载是另一个需要重视的因素,设计师需要根据地震烈度、场地类型和结构体系等要素进行计算和分析。
三、结构材料高层建筑的结构材料选择直接关系到建筑的安全和可靠性。
设计规范要求结构材料具有足够的强度和刚度,以应对各种荷载的作用。
一般来说,高层建筑的主要结构材料包括钢筋混凝土、钢结构和预应力混凝土等。
设计师需要根据规范要求选择适当的结构材料,并进行相应的材料性能检测和试验。
此外,设计师还需要考虑结构材料的耐久性和防火性能等方面,以确保建筑的使用寿命和安全性。
总结:高层建筑结构设计规范要求涵盖了抗震设计、荷载设计以及结构材料等方面。
设计师在进行高层建筑结构设计时,需要遵守相应规范要求,合理选择设计参数和结构材料,以保证建筑的安全和可靠性。
同时,设计师还要根据具体项目的情况进行综合考虑和分析,确保设计方案的合理性和经济性。
高层住宅建筑剪力墙结构的设计与分析在现代城市的建设中,高层住宅建筑如雨后春笋般涌现。
剪力墙结构作为高层住宅建筑中一种常见且重要的结构形式,其设计的合理性和科学性直接关系到建筑物的安全性、稳定性以及使用功能的实现。
本文将对高层住宅建筑剪力墙结构的设计进行详细的探讨与分析。
一、剪力墙结构的基本概念与特点剪力墙结构是由一系列纵向和横向的钢筋混凝土墙体组成,这些墙体不仅承担着竖向荷载,还能有效地抵抗水平荷载,如风荷载和地震作用。
其主要特点包括:具有良好的抗侧刚度,能够有效控制建筑物在水平荷载下的变形;结构整体性强,空间整体性好,能够提供较为规则的建筑平面布局;墙体自身的承载能力较高,能够承受较大的竖向和水平荷载。
二、高层住宅建筑中剪力墙结构的设计要点1、结构布置在设计过程中,剪力墙的布置应遵循均匀、对称、周边化的原则。
均匀布置可以使结构在各个方向上的刚度相近,减少扭转效应;对称布置有助于减小水平荷载作用下的偏心影响;周边化布置则能增强结构的抗扭性能,提高结构的整体稳定性。
同时,要注意避免出现短肢剪力墙,因为短肢剪力墙的抗震性能相对较弱。
对于较长的剪力墙,应设置洞口将其分成若干墙段,以避免墙段过长而导致脆性破坏。
2、墙体厚度剪力墙的厚度应根据建筑物的高度、抗震等级以及墙体所承担的荷载等因素来确定。
一般来说,底层剪力墙的厚度较大,随着楼层的增加逐渐减小。
在满足结构要求的前提下,应尽量减小墙体厚度,以增加建筑的使用面积。
3、混凝土强度等级混凝土的强度等级应根据结构的受力情况、耐久性要求以及施工条件等综合确定。
高强度等级的混凝土可以减小墙体的截面尺寸,但过高的强度等级可能会导致混凝土的脆性增加,不利于结构的抗震性能。
4、配筋设计剪力墙的配筋包括竖向分布钢筋和水平分布钢筋。
竖向分布钢筋主要承受墙体的竖向荷载,水平分布钢筋则主要用于抵抗水平荷载产生的剪力。
配筋量应根据计算结果和规范要求进行确定,同时要注意钢筋的间距和锚固长度等构造要求。
高层建筑结构设计嵌固端及计算模型选取的若干关键问题探讨发布时间:2021-01-18T02:23:02.018Z 来源:《新型城镇化》2020年20期作者:邓荣斌[导读] 不同于多层建筑,在高层建筑结构中,风荷载和地震作用等水平荷载将成为控制因素,在水平力作用下,高层建筑结构受力特点类似于一个竖向悬臂构件,其倾覆弯矩与高度的关系呈二次方的关系,结构顶点的位移与高度呈四次方的关系。
广西地产集团有限公司摘要:从高层建筑结构受力特性来看,水平作用(风荷载和地震作用)在高层建筑分析和设计中起着主要作用,由此带来结构的侧向刚度、位移、地震效应等一系列复杂的问题,因此高层建筑的结构分析和设计要比一般的中低层建筑复杂得多。
而嵌固端及计算模型的选取,无疑是影响计算结构和分析计算合理性的重要因素,本文针对高层建筑结构设计嵌固端及计算模型选取的若干关键问题进行重点阐述,并结合实际分析计算结果,提出方法和建议。
关键词:高层建筑结构;嵌固端;计算模型引言不同于多层建筑,在高层建筑结构中,风荷载和地震作用等水平荷载将成为控制因素,在水平力作用下,高层建筑结构受力特点类似于一个竖向悬臂构件,其倾覆弯矩与高度的关系呈二次方的关系,结构顶点的位移与高度呈四次方的关系。
由于高度的增加,结构的振动周期加大,结构柔度更大,顶部位移迅速增大,使得抗侧力结构的设计成为关键,即必须设置有效抵抗水平力的结构体系(柱、剪力墙、筒体或支撑等抗侧力结构)。
在建立计算模型时,比较重要的问题之一,就是嵌固端的确定,以及计算模型的选择问题,本文针对这两个问题展开重点论述。
1、高层建筑结构嵌固端的若干关键问题:1.1、关于计算嵌固端与设计嵌固端:计算嵌固端为计算模型的嵌固端,或成为力学嵌固端(或刚度嵌固端),设计嵌固端为预期塑性铰出现部位或成为强度嵌固端。
高层建筑结构由于地下室土体约束作用,在地下室顶板产生刚度突变,地震作用下,地下一层吸收了绝大部分上部传来的地震力,可能使高层建筑的塑性铰由基础顶部转移到地下室顶板以上,故规范要求地下室结构的刚度和承载力适当加强,可考虑地下室顶板为上部结构的嵌固部位,即预期塑性铰出现部位,确定嵌固部位后就可以通过刚度和承载力调整迫使塑性铰在预期部位出现。
第二章2.1钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?每种结构体系举1~2例。
答:钢筋混凝土房屋建筑的抗侧力结构体系有:框架结构(如主体18层、局部22层的北京长城饭店);框架剪力墙结构(如26层的上海宾馆);剪力墙结构(包括全部落地剪力墙和部分框支剪力墙);筒体结构[如芝加哥Dewitt-Chestnut公寓大厦(框筒),芝加哥John Hancock大厦(桁架筒),北京中国国际贸易大厦(筒中筒)];框架核心筒结构(如广州中信大厦);板柱-剪力墙结构。
钢结构房屋建筑的抗侧力体系有:框架结构(如北京的长富宫);框架-支撑(抗震墙板)结构(如京广中心主楼);筒体结构[芝加哥西尔斯大厦(束筒)];巨型结构(如香港中银大厦)。
2.2框架结构、剪力墙结构和框架----剪力墙结构在侧向力作用下的水平位移曲线各有什么特点?答:(1)框架结构在侧向力作用下,其侧移由两部分组成:梁和柱的弯曲变形产生的侧移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线为弯曲型,自下而上层间位移增大。
第一部分是主要的,所以框架在侧向力作用下的水平位移曲线以剪切型为主。
(2)剪力墙结构在侧向力作用下,其水平位移曲线呈弯曲型,即层间位移由下至上逐渐增大。
(3)框架-剪力墙在侧向力作用下,其水平位移曲线呈弯剪型, 层间位移上下趋于均匀。
2.3框架结构和框筒结构的结构构件平面布置有什么区别?答:(1)框架结构是平面结构,主要由与水平力方向平行的框架抵抗层剪力及倾覆力矩,必须在两个正交的主轴方向设置框架,以抵抗各个方向的侧向力。
抗震设计的框架结构不宜采用单跨框架。
框筒结是由密柱深梁组成的空间结构,沿四周布置的框架都参与抵抗水平力,框筒结构的四榀框架位于建筑物的周边,形成抗侧、抗扭刚度及承载力都很大的外筒。
2.5中心支撑钢框架和偏心支撑钢框架的支撑斜杆是如何布置的?偏心支撑钢框架有哪些类型?为什么偏心支撑钢框架的抗震性能比中心支撑框架好?答:中心支撑框架的支撑斜杆的轴线交汇于框架梁柱轴线的交点。
高层建筑的结构规范要求与施工要点高层建筑的结构设计和施工是保障建筑物安全稳固的重要环节。
为了确保高层建筑的结构安全可靠,我们需要遵循一系列的规范要求和工作要点。
本文将介绍高层建筑结构规范要求和施工要点。
一、结构设计规范要求1. 承载能力要求:高层建筑的结构必须能够承受预期的荷载,包括静载、动载和临时荷载等。
设计应该满足建筑物正常使用和临时负荷,以及抗震设计要求。
2. 抗震设计要求:高层建筑的结构设计应具备一定的抗震能力,以应对地震产生的水平力和垂直力。
设计时需要根据地震烈度和建筑物所处地区的地震波特征进行计算和分析,确保建筑物的稳定性。
3. 材料选择和使用:高层建筑的结构材料选择要符合建筑设计要求和国家相关标准。
常用的结构材料包括钢材、混凝土等,应具备足够的强度和耐久性。
4. 稳定性和刚度要求:高层建筑的结构稳定性和刚度要求较高,设计应考虑到建筑物在风荷载、温度变化和荷载变化等情况下的变形和位移。
二、施工要点1. 施工方案制定:在进行高层建筑结构施工前,需要编制详细的施工方案。
该方案应包括结构施工的基本流程、施工工艺和安全措施等内容。
2. 基础施工:高层建筑的稳定性主要依赖于基础的承载能力。
在进行基础施工时,需要根据设计要求进行地基处理,确保基础的稳固和均匀。
3. 结构施工:结构施工包括梁、柱、墙等部分的施工。
施工过程中需要严格按照设计要求进行操作,保证结构的准确和稳定。
4. 防水施工:高层建筑的防水施工需要特别注意。
在屋面、外墙和地下室等地方进行防水处理,确保建筑物的密封性和防潮性。
5. 监测与检测:在高层建筑结构施工过程中,需要进行定期的监测和检测工作。
以确保施工质量和结构安全,及时发现和解决可能存在的问题。
结构规范要求与施工要点是确保高层建筑结构安全的基础。
遵循规范要求和施工要点,可以有效降低事故发生的概率,保证建筑物的安全和可靠性。
因此,在进行高层建筑的结构设计和施工时,务必严格按照相关规范和要求进行操作,合理安排施工流程,确保高层建筑结构的稳定性和安全性。
高层建筑结构思考题答案—无错版1.高层建造有哪些常用结构体系?试述每种结构体系的优缺点。
1) 框架结构优点:平面布置灵便,可提供较大的室内空间。
缺点:抗侧移刚度较小,主要用在层数不多、水平荷载较小的状况。
2) 剪力墙结构优点:抗侧移刚度较大,可承受较大的水平荷载。
用于层数较多,水平荷载较大的状况。
缺点:墙体多,难于布置面积较大的房间,主要用于住所、公寓、旅馆等对室内面积要求不大的建造物。
3) 框架-剪力墙结构优点:综合了框架和剪力墙结构的优点,既具有较大的抗水平力能力,又可提供较大的室内空间和较灵便的平面布置。
4) 筒体结构优点:具有更大的抗侧移刚度。
缺点:框筒体系在水平荷载下外框筒的剪力滞后效应较大,结构的潜能和空间效应发挥较差。
2.高层建造的结构平面布置原则?结构平面外形宜容易、规章,质量、刚度和承载力分布宜匀称。
不应采纳严峻不规章的平面布置。
否则会产生过大的偏心,导致扭转过大。
3.分离讲述何时需设防震缝、伸缩缝和沉降缝?缝宽如何确定?伸缩缝:高层建造结构未实行牢靠的构造或施工措施来防止建造物在温度变化过程中产生的温度应力时,需设伸缩缝。
沉降缝:在高层建造中,当建造物相邻部位层数或荷载相差悬殊或地基土层压缩性变化过大,从而造成较大差异沉降时,宜设沉降缝将结构划分为自立单元。
防震缝:当建造物平面外形复杂而又无法调节其平面外形和结构布置使之成为较规章的结构时,宜设防震缝将其划分为较容易的几个结构单元。
伸缩缝宽度由线膨胀系数经计算求得。
沉降缝宽度由沉降转角计算后,建造顶部不接触求得。
防震缝的最小宽度是按照地震中缝两侧的房屋不发生碰撞的条件确定的。
框架,当H≤15m时,δ=100mm设防烈度为6 7 8 9度H每增强5m 4m 3m 2m防震缝宽度增强20mm框架--剪力墙,缝宽为框架的70%,剪力墙,缝宽为框架的50%,缝宽均应≥100mm两侧房屋高度不同时,按较低的房屋高度确定;当两侧结构体系不同时,按不利的不利体系确定。
浅谈超高层建筑结构的超限设计摘要:由于社会发展的需要,建筑物高度日渐增高,体型日渐复杂,结构设计的难度也越来越大。
本文通过一个工程实例,介绍一下超高层建筑结构超限设计的处理方法及思路,以供其他设计参考。
关键词:超高层建筑;结构设计;超限设计;一、前言随着城市化进程的加快,土地资源日益紧张,为了充分利用有限的土地资源,建筑物的层数及高度只能不断增加,越来越多的超高层建筑拔地而起,并且建筑为了兼顾美观及使用,往往体型也伴随着较多的不规则性。
对于超高层建筑结构设计,需针对超限情况采取对应的补充计算分析,并采取一定的加强措施,来保证建筑物的安全性。
二、工程实例1.工程概况本工程为超高层住宅小区,总建筑面积30.2万㎡,地上22.4万㎡,地下7.8万㎡。
由9栋塔楼组成,设2层地下室,塔楼高度为148.75m~158.95m,地下室高度为10.48m。
本文主要介绍其中1栋塔楼结构超限情况及处理方法。
本工程基本地震设防烈度为7度,设计基本地震加速度为0.10g,设计地震分组为第一组,场地类别为Ⅱ类。
50年重现期的基本风压为Wo=0.5kN/㎡,承载力计算时按基本风压的1.1倍采用,地面粗糙度类别为C类。
塔楼主体采用现浇钢筋混凝土剪力墙结构体系,隔墙采用蒸压加气混凝土砌块,塔楼外墙采用铝模砼墙。
墙混凝土强度等级为 C60~C30,梁板为C30;钢筋采用HRB400;嵌固端为基础面。
各楼层构件主要截面分别如下:地下室底板采用平板结构,塔楼底板1500mm,塔楼外底板厚度500mm;地下室顶板,塔楼范围外采用无梁楼盖体系,板厚400mm,塔楼范围内梁板结构,板厚160mm;塔楼标准层楼板厚度为 100~150mm。
剪力墙厚 450mm ~200mm;框架梁截面200mm×400mm~250mm×1595mm,次梁为200mm×300mm~200mm×605mm。
基础采用直径1.1m直径钻(冲)孔灌注桩,有效桩长约30~35m,单桩竖向承载力特征值12000kN,桩身混凝土强度C45,持力层为<4-4>微风化花岗岩层。
超高层建筑结构设计关键技术应用与分析发布时间:2022-08-24T01:35:52.512Z 来源:《建筑创作》2022年1月1期作者:杨臻[导读] 伴随着高层建筑的发展,超高层建筑渐渐备受人们的关注,已不再是大都市的唯一标志。
充分运用有限杨臻中国电建集团华东勘测设计研究院有限公司浙江杭州 310000摘要:伴随着高层建筑的发展,超高层建筑渐渐备受人们的关注,已不再是大都市的唯一标志。
充分运用有限的土地资源,充分发挥建筑的纵向作用,提升城市规划建设水平。
超高层建筑结构设计已变成一个具体的研究领域。
超高层建筑结构设计需要使用各类专业的知识和技术,设计者需要有专业的设计理念和扎实的理论基础。
设计者需要充分考虑安全问题和实用价值。
其具体功能为商务宾馆、企业办公、餐饮业、旅游行业等,人员流动相对密集,需要选用合理的设计方法,确保超高层建筑的正常使用。
关键词:超高层建筑;结构设计;关键问题超高层建筑的施工要求越来越高,而超高层施工难度又在不断增加,下文针对超高层结构设计中技术要点进行探讨,以降低因结构设计问题带来的建筑物安全风险性。
对于高耸的建筑物,必须根据其所能承受的不同强度来设计结构。
1超高层建筑结构设计的主要特点超高层建筑整体结构设计的特点主要体现在:与高层建筑相比,水平荷载较大,会产生相应的竖向轴向应力,水平面受自然、风向、风向等因素的影响。
因此,超高层建筑的整体结构设计时,不但要考虑到建筑物的垂直荷载,还需要考虑水平荷载,超高层建筑的垂直压力也特别大。
工程竣工交付使用时,会发生垂直轴向变形,并对结构梁弯矩形成影响。
怎样保证超高层建筑的安全在结构设计中需要考虑到梁的弯矩,超高层建筑结构设计应注重结构延性,以保证超高层建筑抗地震灾害的水平,保证人们的生命和财产安全。
2超高层建筑结构与结构体系类别2.1超高层建筑结构设计特性由于超高层建筑的高度远远高于传统的建筑,设计时需要考虑到承载力、抗震水平和稳定性能,保证建筑物不但能承受水平方向的荷载,并且能承受垂直方向的荷载。
关于高层住宅结构设计与施工图审查常见问题分析摘要:高层住宅结构设计与施工图审查是确保建筑质量和安全的重要环节。
然而,目前在高层住宅结构设计与施工图审查中存在一些问题,包括结构设计不符合规范标准、施工图纰漏和错误、结构设计与实际施工存在差异以及施工图审查不严格导致质量问题等。
为了解决这些问题,建议加强对结构设计规范的培训和宣传、完善施工图审查机制、强化结构设计与实际施工的衔接以及提高施工图审查的准确性和严谨性。
关键词:高层住宅;结构设计;施工图审查;问题解决;建议措施引言:在高层住宅结构设计与施工图审查中,常见的问题包括但不限于:设计方案不符合相关标准和规范要求、施工图纸不完整或存在错误、结构安全性评估不充分、材料选用不合理等。
这些问题可能导致建筑结构的稳定性和安全性存在隐患,甚至可能引发严重的事故。
因此,对于高层住宅的结构设计与施工图审查,需要严格按照相关规定进行,确保设计方案的合理性和施工图的准确性,以保障居民的人身安全和财产安全。
1、高层住宅结构设计与施工图审查概述高层住宅结构设计的重要性在于确保建筑的安全性。
高层住宅一般具有较高的高度和复杂的结构,其承载能力和抗震性能要求较高。
因此,结构设计必须经过严格的审查和验证,以确保建筑在遭受自然灾害或其他外部力量时能够保持稳定和安全。
结构设计的不合理或缺陷可能会导致建筑结构的失稳或倒塌,给居民和周围环境带来严重的危险和损失。
高层住宅结构设计的重要性还在于提高建筑的使用寿命。
良好的结构设计可以有效地分担和传递建筑所承受的荷载,减少结构的变形和破坏。
通过合理的设计和施工图审查,可以确保结构的稳定性和耐久性,延长建筑的使用寿命。
2、高层住宅结构设计与施工图审查存在的问题2.1 结构设计不符合相关规范标准高层住宅的结构设计是保证建筑安全和稳定的关键因素之一。
然而,在审查高层住宅结构设计与施工图时,经常发现设计不符合相关规范标准的问题。
这些问题包括但不限于设计荷载计算不准确、抗震设计不合理、结构材料选择不当等。
高层建筑的设计规范要求在高层建筑的设计中,设计规范是至关重要的,它们确保了高层建筑的安全性、可持续性以及良好的使用体验。
本文将介绍高层建筑设计规范的一些重要要求,并分析其对建筑设计的影响。
1. 结构设计规范要求高层建筑的结构设计是其安全性的基础。
设计规范要求在结构设计中考虑地震、风力等自然灾害因素,确保建筑在恶劣环境下的抗震和抗风性能。
此外,设计规范还要求结构设计中采用适当的构造材料,如高强度混凝土、钢材等,以提供足够的结构强度和稳定性。
2. 空间布局规范要求高层建筑的空间布局需要考虑人们的舒适度和使用需求。
设计规范要求在空间布局中遵循人体工程学原理,合理划分不同功能区域,保证每个区域的通风、采光和视野等条件良好。
此外,规范要求高层建筑内部的交通布局合理,可以有效地减少人员流动的冲突和拥堵。
3. 建筑外立面设计规范要求高层建筑的外立面设计在城市景观中起到重要的作用。
设计规范要求外立面设计符合建筑风格和城市规划要求,同时考虑材料的可持续性和抗气候性能。
规范要求外立面设计具有良好的保温隔热性能,减少能源消耗,并且要能够适应不同的气候条件。
4. 安全规范要求高层建筑的安全无疑是最为重要的。
设计规范要求在建筑设计中考虑火灾安全、疏散通道和应急设备等方面的需求。
规范要求建筑内部设置合理的消防设施,如自动喷水灭火系统、疏散楼梯等,以保障人员的安全疏散和灭火救援效率。
5. 环境保护规范要求高层建筑的设计不仅要满足人们的生活需求,还要对周围环境负责。
设计规范要求建筑材料使用环保且可再生的材料,减少对环境的污染。
规范要求高层建筑具备节能性能,如利用自然光和天然通风,减少对空调和人工照明的依赖。
总结起来,高层建筑的设计规范要求包括结构设计、空间布局、建筑外立面设计、安全和环境保护等方面。
这些规范不仅保证了建筑本身的安全和可持续性,也提升了建筑的舒适性和使用体验。
对于设计师和建筑师来说,熟悉并遵守这些规范是保证高层建筑设计成功的基础。
高层结构复习思考题及答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第1章绪论1.我国对高层建筑结构是如何定义的?《高规》将10层及10层以上或房屋高度大于28m的住宅建筑,以及房屋高度大于24m的其他高层民用建筑混凝土结构房屋,称之为高层。
2.高层建筑结构的受力及变形特点是什么设计时应考虑哪些问题(1)水平荷载对结构的影响大,侧移成为结构设计的主要控制目标之一;(2)楼盖结构整体性要求高;(3)高层建筑结构中的构建的多种变形影响大;(4)结构受到动力荷载作用时的动力效应大;(5)扭转效应大;(6)必须重视结构的整体稳定和抗倾覆问题;(7)当建筑物高度很大时,结构内外与上下温差过大而产生的温度内力和温度位移也是高层建筑结构的一种特点。
4.为什么要限制结构在正常情况下的侧移?何谓舒适度高规采用何种限制来满足舒适度要求限制侧移主要原因:防止主题结构及填充墙、装修等非结构构件的开裂与损坏;同时过大的侧向变形会使人有不舒适感,影响正常使用;过大的侧移还会使结构产生较大的附加内力。
人体对居住在高楼内的舒适程度。
通过限制振动加速度满足舒适度要求。
5.什么是结构的重力二阶效应高层建筑为什么要进行稳定性验算如何进行框架结构的整体稳定验算?框架结构在水平荷载作用下将产生侧移,如果侧移量比较大,由结构重力荷载产生的附加弯矩也将较大,危及结构的安全与稳定。
这个附加弯矩称之为重力二阶效应。
有侧移时,水平荷载会产生重力二阶效应,重力二阶效应过大会导致结构发生整体失稳破坏。
故要进行稳定性验算。
满足下式要求,式中n为结构总层数,否则将认为结构不满足整体稳定性要求。
第2章高层建筑结构体系与布置1.何为结构体系高层建筑结构体系大致有哪几类选定结构体系主要考虑的因素有哪些所谓高层建筑建筑的结构体系是指结构抵抗外部作用的构件类型及组成方式。
框架结构;剪力墙结构;框架-剪力墙结构;筒体结构;巨体结构。
第1章绪论1.我国对高层建筑结构是如何定义的?答:我国规定:10层及10层以上或高度超过28m的住宅以及房屋高度大于24m的其他民用建筑为高层建筑。
2.高层建筑结构的受力及变形特点是什么?设计时应考虑哪些问题?答:特点:水平荷载对结构影响大,随高度的增加除轴力与高度成正比外,弯矩和位移呈指数曲线上升,并且动力荷载作用下,动力效应大,扭转效应大。
考虑:结构侧移,整体稳定性和抗倾覆问题,承载力问题。
3.从结构材料方面来分,高层建筑结构有哪些类型?各有何特点?答:相应的结构分类(以材料分类):砌体结构、钢结构、钢筋混凝土结构、钢-混凝土混合结构特点:(1)砌体结构具有取材容易、施工简便、造价低廉等优点,但其抗拉、抗弯、抗剪强度均较低,抗震性能较差。
(2)钢结构具有强度高,自重轻(有利于基础),延性好,变形能力大,有利于抗震,可以工厂预制,现场拼装,交叉作业但价格高,防火材料(增加造价),侧向刚度小。
(3)钢筋混凝土具有价格低,可浇筑成任何形状,不需要防火,刚度大。
但强度低,构件截面大占用空间大,自重大,不利于基础、抗震,延性不如钢结构。
(4)混合结构与钢构件比:用钢少,刚度大,防火、防锈;与混凝土构件比:重量轻,承载力大,抗震性能好。
第2章高层建筑结构体系与布置1. 高层结构体系大致有哪几类?各种结构体系优缺点和受力特点如何?答:高层结构体系类型:框架结构体系剪力墙结构体系框架—剪力墙结构体系筒中筒结构体系多筒体系巨型结构体系框架结构:受力变形特点:框架结构的侧移一般由两部分组成:1)水平力引起的楼层剪力,使梁、柱构件产生弯曲变形,形成框架结构的整体剪切变形Us;2)由水平力引起的倾覆力矩,使框架柱产生轴向变形(一侧柱拉伸,另一侧柱压缩)形成框架结构的整体弯曲变形Ub;3)当框架结构房屋的层数不多时,其侧移主要表现为整体剪切变形,整体弯曲变形的影响很小。
注:框架结构属于柔性结构,侧移主要表现为整体剪切变形。
某高层建筑结构设计实例分析随着城市的快速发展,高层建筑如雨后春笋般涌现。
高层建筑的结构设计不仅关系到建筑的安全性和稳定性,还影响着建筑的使用功能和经济性。
本文将通过一个具体的高层建筑结构设计实例,对其进行详细的分析,以期为相关设计提供参考。
一、工程概况该高层建筑位于城市中心商务区,总建筑面积为_____平方米,地上_____层,地下_____层。
建筑高度为_____米,主要用途为商业和办公。
二、结构选型根据建筑的功能和高度要求,本工程采用了框架核心筒结构体系。
框架柱采用钢筋混凝土柱,核心筒采用钢筋混凝土剪力墙。
这种结构体系能够有效地抵抗水平荷载,保证结构的稳定性。
框架柱的布置充分考虑了建筑的平面布局和受力要求,柱距均匀合理,既满足了建筑使用功能的要求,又保证了结构的受力性能。
核心筒位于建筑的中心部位,其剪力墙的厚度和配筋根据不同楼层的受力情况进行了优化设计。
三、荷载取值在结构设计中,准确的荷载取值是至关重要的。
本工程考虑的荷载主要包括恒载、活载、风荷载和地震作用。
恒载包括结构自重、建筑装修和设备重量等。
活载根据不同的使用功能,按照相关规范进行取值。
风荷载根据当地的气象资料和建筑的体型系数进行计算。
地震作用根据抗震设防烈度和场地类别,采用反应谱法进行计算。
四、结构分析采用专业的结构分析软件对结构进行了整体计算分析。
分析结果表明,结构的各项指标均满足规范要求。
在水平荷载作用下,框架和核心筒协同工作,有效地抵抗了风荷载和地震作用。
结构的位移比、周期比、层间位移角等指标均在规范允许的范围内。
五、构件设计(一)框架柱根据计算结果,框架柱的截面尺寸和配筋进行了合理设计。
柱的纵筋采用高强度钢筋,箍筋采用复合箍筋,以保证柱的承载能力和延性。
(二)核心筒剪力墙剪力墙的厚度和配筋根据不同楼层的受力情况进行变化。
底部加强区的剪力墙厚度较大,配筋率较高,以提高其抗震性能。
(三)梁梁的截面尺寸和配筋根据跨度和受力情况进行设计。
Ch1 绪论1.高层建筑与多层建筑如何界定?我国《民用建筑设计通则》(JGJ37-87)规定,10层及10层以上的住宅建筑以及高度超过28m的公共建筑和综合性建筑为高层建筑;高度超过100m时,不论是住宅建筑还是公共建筑,一律称为超高层建筑。
我国《高层建筑混凝土结构技术规程》规定:≥10层或H>28m的建筑物为高层;H>100m 的建筑物均为超高层。
4.谈谈你对高层建筑的发展趋势有何见解?1).新材料的开发和应用:高强度混凝土(C100);高强、可焊性好的厚钢板;耐火钢材;FR钢(耐候钢)*耐候钢是指在恶劣环境条件下(主要是指腐蚀较强的环境),具有较强工作性能的钢材。
2).高度会突破:超过1000m的超高层钢材建筑已成为反映一个国家或城市科技实力和建设水平的指标之一。
3).组合结构增多:钢和混凝土的组合结构抗震性能好、耐火耐蚀,优于全钢、全混凝土结构。
钢筋混凝土结构:高层建筑的主要结构体系组合结构:超高层建筑的主要结构体系/4)..新型结构形式应用增多巨型框架、桁架筒体、多束筒体……5). 耗能减震技术发展减震技术有被动耗能减震和主动减震两种。
前者有耗能支撑,带竖缝耗能剪力墙,被动调谐质量阻尼器以及安装各种被动耗能的油阻尼器等;后者是计算机控制的,通过安装在结构上的各种驱动装置和传感器,与计算机系统相连接,对结构反应进行实时分析,发出信号驱动装置对结构施加作用,减小结构反应。
Ch2 高层结构体系与结构布置1.高层建筑中常用的结构体系有哪些?各有何适用范围?答:高层建筑中常用的结构体系有框架、剪力墙、框架-剪力墙、筒体以及它们的组合。
(1)框架结构体系是由梁、柱构件通过节点连接构成,既承受竖向荷载,也承受水平荷载的结构体系。
这种体系适用于非抗震区多层建筑及高度不大的高层建筑。
(2)剪力墙结构体系剪力墙结构体系是利用建筑物墙体承受竖向与水平荷载,并作为建筑物的围护及房间分隔构件的结构体系。
适用于开间较小、墙体较多、房间面积不太大的住宅和旅馆。
浅谈大底盘多塔高层建筑结构设计问题摘要:多塔大底盘建筑因其基础设计的复杂性,对设计人员提出了更高的要求如何做到安全性和经济性的统一,是每一个设计人员应该思考的问题。
本文介绍了地下室结构抗震构造设计和后浇带、膨胀加强带的布置等裂缝控制方法,通过整体计算及分塔计算结果的数据比较,总结了多塔大底盘结构设计方法。
关键词:民用建筑;多塔大底盘;后浇带;膨胀加强带;多塔定义;分塔计算Abstract: many big chassis construction because of the tower of the complexity of the foundation design, design personnel to put forward the higher requirements for how to do it safe and economical unification, is each design personnel should be thinking about. This paper introduces the design of structure and basement structure seismic pouring belt, expansion strengthening belt arrangement of crack control method, through the whole calculation and points the calculation results of the tower data comparison were summarized, many big chassis design method of tower.Keywords: civil building construction; Many big chassis tower; Of the pouring belt; Expansion strengthening belt; Many definition tower; Points tower calculation 中图分类号:S611文献标识码:A 文章编号:随着房地产建设的高度发展,多塔大底盘结构的应用越来越广泛,尤其是在住宅小区的建设中大量应用。
凹凸不规则平面高层建筑结构设计的思考摘要:凹凸不规则平面高层建筑扭转效应明显,建筑结构扭转反应是地震灾害的主要因素之一。
基于充分利用地形、获取良好的采光与通风、设计共享大厅等建筑功能最大化的目的,我国大量高层住宅平面采用凹凸不规则平面,也称多头形凹凸平面。
本文对此类平面高层建筑结构设计超限判断、参数调控、加强措施等进行研究、探讨。
关键词:凹凸不规则;超限高层;结构设计随着城市化进程的不断推进,我国城市土地资源紧缺问题正日益严峻,在此背景下,城市中的建筑正越来越多的趋向高层建筑发展。
高层建筑将大部分建筑空间延伸到了上层,从而大大节省了土地资源,但同时其对结构设计的难度也更高。
特别是现代有很多高层建筑都采用了凹凸不规则结构,其一方面可以更好的满足人们的视觉需求,另一方面可以解决很多现实问题,但高层建筑凹凸不规则结构设计难度却较大。
本文主要对高层建筑凹凸不规则结构设计进行了研究。
1平面不规则结构平面不规则结构可以分为三种类型,分别是:平面不规则扭转结构、楼板缺乏连续性的结构以及楼板凹凸不规则结构。
首先来说平面不规则扭转结构:平面不规则扭转结构是指立足于每层楼房结构的两端存在的弹性水平位移量进行判断,如果楼层水平位移量为平均值的1.2倍或者是以上,则楼层结构便会出现不规则扭转的情况。
其次来说楼板缺乏连续性的结构:楼板缺乏连续性的结构是指楼板结构缺乏连续性,其主要原因在于楼板面积、建筑结构平面发生剧烈变化。
最后来说楼板凹凸不规则结构:楼板凹凸不规则结构是指在结构投影尺寸上,若平面凹进面积超过30%,则为凹凸不规则。
2高层建筑不规则结构设计的意义当今时代,在城市化建设进程不断加快、建筑行业迅速发展的同时,人们的生活水平、生活质量得到了显著提高,在此背景下,也对建筑设计表现出了多样化、个性化的需求,这无疑给建筑设计工作带来了更大的难度。
现代建筑设计不仅要确保建筑的安全性,还要提高建筑的美观度及注重建筑的节能性。
高层建筑结构设计规范思考分析
自2002年开始,建筑结构设计方面的新规范全面颁布实施已有六年多时间。
规范条文本身应当只是做一些原则性的规定,让设计人员根据自己的理解和经验来掌握应用,但是规范中某些条文过于笼统,设计人员也难以把握。
目前我国实行施工图审查制度,由于设计人员与审查人员对规范一些不够具体的条文规定的理解不同,常常会引起争议,而且少数设计人员或审查人员不考虑工程的实际情况,机械地执行规范。
下面就高层建筑设计过程中遇到的一些问题,与同行们进行探讨。
关键词:结构设计;短肢剪力墙;新规范;《高规》;设计建议1 关于高层建筑高宽比
《高层建筑混凝土结构技术规程》(以下简称《高规》)对高层建筑适用的最大高宽比有明确要求,但在计算高宽比时,对建筑宽度的取法却无明确规定,在第4.2.3条的条文说明中指出“一般场合,可按所考虑方向的最小投影宽度计算高宽比……对于不宜采用最小投影宽度
计算高宽比的情况,应由设计人员根据实际情况确定合理的计算方法”,对设计人员来说,
难以确定何为合理的计算方法,而且这是一个涉及建筑是否为超限高层建筑的敏感问题,应该有一个较为明确的取法,以便设计及审查人员掌握。
2 关于剪力墙的高厚比
新的《抗震规范》及《高规》对剪力墙高厚比的要求较“89规范”更高。
通常在底部加强区,由于底部层高相对较高,剪力墙的厚度往往由高厚比确定,而不是由承载力或结构刚度确定,按《高规》第7.2.2条第4款的规定,当高厚比不满足要求时,如剪力墙所承受的竖向力不大,验算墙体稳定一般都能通过,因为剪力墙主要作为抗侧力构件使用。
在按《高规》附录D计算墙体稳定时,规程列出了单片墙及T形、工字形剪力墙的计算方法,有些设计人员对在工程设计中常遇到的L形及I形剪力墙是否可按T形及工字形墙的公式进行计算拿不准。
从原理分析,T形及工字形墙的稳定计算,考虑了一侧墙肢对另一向墙肢的支承作用,所以L形及I形墙,只要墙肢具有一定的长度,其作用是和T型及工字形墙完全相同的。
但对于多长的墙肢才可视为有翼缘的问题,规程并没有明确规定,参照约束边缘构件的规定,翼墙长度小于其厚度3倍或端柱截面边长小于墙厚2倍时,视为无翼墙或无端柱。
当按层高计算墙体稳定时,视其为支承边时,此规定可参考执行,但对较厚墙体,又不太合理,比如-300厚剪力墙,翼墙长度要大于900才可视为有支承,对一般层高而言,900墙肢在肢长方向有足够的刚度,完全可视为另一向墙肢的支承,因此,如果规定按一定的层高与肢长比来确定是否可视为支承应该更为合理,而不是肢长与肢厚比。
在计算剪力墙高厚比时,新规范对于层高的取值也不够明确,对有地下室的结构,底层层高取为±0.00地面到一层楼面间的高度,而对于无地下室的小高层建筑,由于基础有一定的埋深要求,如果计算高度取基础至二层楼板面的高度,则计算高度一般达到3.0+0.6(高差)+1.4(基顶埋深)=5.0m,如果底层为商场,则计算高度更大,这样势必会增加剪力墙的厚度,特别是对一字形墙,能否考虑
首层刚性地面对墙体稳定的有利影响,譬如可否取到刚性地面以下500mm,这是一个值得探讨的问题。
3 关于计算方法及参数取值
建筑结构在进行内力和位移计算时,除了选择合理的结构分析模型和适用的结构计算程序外,对计算方法、参数取值也要准确把握。
计算程序中的各种参数在应用时只要理解程序说明,一般比较容易掌握,而计算方法的选择,则要充分理解规范条文,并结合工程实际,灵活运用。
《抗震规范》第5.1.1条的第2、3款规定“有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。
”对第2款而言,按笔者理解,这类所谓的斜交抗
侧力构件,不应指个别构件,而是主要的抗侧力构件,例如对于框架-剪力墙结构,其中有一两榀框架是斜交的,而剪力墙均为正交,由于程序处理剪力墙时在某一定角度范围外不再计入其在该方向的抗侧刚度,此时如果按斜角度计算,会导致不合理的结果。
而对第3款而言,系指质量和刚度分布明显不对称,而不是其中某一项不对称,也就是说在结构的刚心和质心相距较大时,才进行双向地震作用计算,否则计算结果也会产生较大的差异。
《抗震规范》第5.2.3条规定,在计算水平地震作用扭转影响时,规则结构可不进行扭转耦联计算,对边榀框架乘以地震作用效应增大系数,对不规则结构则按扭转耦联振型分解法计算,设计人员往往对结构规则不规则难以准确界定,于是在计算时就干脆都选择耦联计算。
对长宽比较大的结构,如果质心有一些偏移,耦联计算时会产生“甩尾效应”,各榀框架内力会沿长向依次递增或递减,首尾相差可达一倍以上,所以采用耦联计算也要根据结构特点,不能一概而论。
4 关于抗震构造措施
新的《高规》较“89规范”增加了有关短肢剪力墙的规定,但有些条文在设计应用时,尚不尽完善,且规程对短肢剪力墙的纵向钢筋配筋率要求偏高。
短肢剪力墙原来系用于高层点式筒体的结构,近年来大量应用于10~16层的小高层商住楼,对这种高度一般不超过50m的建筑,是否应当采取如此严格的构造措施,是值得商榷的。
例如,《高规》第7.1.2条第2款规定“筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的50%”,相比于框剪结构中的框架而言,短肢墙的抗侧刚度要大的多,这样势必增加长墙的数量,进而增大地震作用。
而有些地方在审查剪力墙结构时,对少数的短墙甚至对长墙中的短墙肢,也要求按短肢墙的规定来设计,应属对规程的理解偏差。
关于短肢剪力墙抗震等级的规定不尽合理,《高规》第7.1.2条第3款规定“短肢剪力墙的抗震等级应比本规程表4.8.2规定的抗震等级提高一级采用”,在短肢剪力墙结构中,既然规定了一般墙或筒体承受的倾覆力矩大于50%,则筒体或一般墙为主要抗侧力构件,应提高筒体或一般墙的抗震等级才合理,就如框-剪结构中的剪力墙抗震等级高于或等于框架抗震等级。
在约束边缘构件设置上,对于设防烈度Ⅶ度、高度小于80m的短肢剪力墙结构,根据《高规》要求,主要承担地震倾覆力矩的长墙的抗震等级为Ⅲ级,无须设置约束边缘构件,反而承担倾覆力矩较少的短墙却需要设置约束边缘构件,这是不合理的,因为长墙承担的倾覆力矩更大,边缘构件由倾覆力矩所引起的附加应力也更大,更应设置约束边缘构件。
《高规》第7.1.8条规定,当连梁跨高比不小于5时,宜按框架梁进行设计。
连梁主要承受水平荷载带来的剪力和弯矩,容易出现剪切裂缝,其抗剪计算式与框架梁不一样(见《高规》第7.2.24条),箍筋间距要求要严。
连梁抗震设计时,对配筋率没有特殊要求,其最小配筋率同非抗震设计,最大配筋率则通过截面条件来控制。
而框架梁则要满足截面条件及配筋等多项构造要求。
在设计此类连梁时应注意,在计算时要设为非连梁,否则程序对其刚度不乘考虑楼板作用的增大系数,还要按连梁折减。
对跨高比小于5,但对在较大集中荷载作用下(集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况)的连梁,也应按框架梁进行抗剪承载力计算。