八年级数学不等关系
- 格式:pdf
- 大小:1.15 MB
- 文档页数:10
《三角形中边与角之间的不等关系》教学设计一.内容和内容解析1.内容:三角形中边与角之间的不等关系:大边对大角,大角对大边2.内容解析:本节内容是八年级上册数学教科书第十三章《轴对称》这一章章末的“实验与探究”材料。
它是在学生学习了三角形中“等边对等角”和“等角对等边”的性质后提出来的反思:如果三角形的边(角)不相等,那么它们所对的角(边)的大小关系怎样大边所对的角也大吗从“等角对等边”到“大角对大边”,从“等边对等角”到“大边对大角”,至此,教材将三角形中的“相等”与“不等”关系演绎的淋漓尽致。
针对学生的认知水平,课本利用了轴对称的方法来解决问题,借助于轴对称,解决了上述疑问,也获得了添加辅助线证明性质的方法。
在此探索与证明的过程中,体现了转化的思想。
基于以上分析,确定本节课的教学重点,探索并证明三角形中边与角之间的不等关系。
二.目标与目标解析1.目标(1)探索并证明三角形中边与角的不等关系(2)能利用三角形中边与角的不等关系来比较边或角的大小(3)结合上述性子和探索的证明过程,体会轴对称在研究几何问题中的桥梁作用,以及在此过程中作辅助线的方法。
2.目标解析达成目标(1)的标志是学生能借助实验探究发现在一个三角形中边与角之间的不等关系,并能推理论证出来,能正确理解其中的含义,能用数学语言准确表述性质的含义。
达成目标(2)的标志是:学生能解决相关应用问题。
达成目标(3)的标志是:学生获得添加辅助线证明几何题的方法。
三.教学重难点教学重点:三角形中边与角之间的不等关系的探究过程。
教学难点:折纸的无意操作与辅助线的有意添加结合,即如何从实验操作中得到启示,写成几何证明的表达。
教具准备:三角形纸片数张、剪刀、圆规、三角板等。
四.教学过程一、课题引入我们知道,在一个三角形中,如果有两条边相等,那么它们所对的角也相等(等边对等角)。
在一个三角形中,如果两条边不相等,这两条边所对的角是否相等呢二、探究“大边对大角”(一)观察图形,提出猜想观察你手边的不等边三角形纸片,能得到你的猜想吗(在△ABC中,边AC对∠B,边AB对∠C,同学们通过肉眼观察可得到∠C大于∠B,故猜想大边对大角)综上,我们提出猜想:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大(简写成"大边对大角")(二)小组讨论,验证猜想1量角器测量:通过几何画板演示验证2折纸活动:A B CED A B C 我们在探究“等边对等角”时,采用将三角形对折的方式,发现了“等边对等角”,从而利用三角形的全等证明了这些性质。
北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
八年级不等关系知识点总结关于八年级不等关系的知识点总结
八年级是初中学习中一个重要的环节,也是学生初步接触不等关系的年级。
不等关系能够培养学生善于观察与思考的能力,同时也能够提升学生的逻辑思维和数学技巧。
因此,对于八年级的学生来说,掌握不等关系的知识点是至关重要的。
下面就来总结一下八年级不等关系的重点知识。
一、不等式的基本性质
1.1 传递性质
不等式的传递性是指,若a<b,b<c,则a<c。
1.2 对称性质
不等式的对称性是指,若a<b,则b>a。
1.3 反称性质
不等式的反称性是指,若a<b,则不可能有b<=a。
二、不等式的解法
2.1 联立法
联立法是指,将不等关系联立到一起,通过消元的方法求出不
等式的解。
2.2 分类讨论法
分类讨论法是指,将不等式中的未知数按照大小关系分成几类,分别讨论每一类的解法,最后将结果合并起来。
2.3 取绝对值法
取绝对值法是指,将不等式中的未知数都取绝对值,通过比较
绝对值之间的大小关系来判断不等式的解。
三、不等式的应用
3.1 引理
引理是指,通过不等关系的性质,推导出一些结论,可以用来
简化不等式的求解。
3.2 应用
在生活中,不等关系也有着广泛的应用,如货币兑换、失业率、贷款等方面。
综上所述,不等关系的知识点对于八年级学生来说是至关重要的。
通过深入理解不等关系的基本性质、掌握不等式的解法和应用,可以提升学生的数学思维和问题解决能力。
第01讲不等关系、不等式的基本性质、不等式的解集(5类热点题型讲练)1.了解不等式的概念;将自然语言转化为符号语言.2.经历不等式基本性质的探索过程,初步体会不等式与等式的异同.3.掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式.4.理解不等式的解与解集的意义.知识点01不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.特别说明:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等即“不小于”,表示左边的量不小于右边的量于”(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x >5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.知识点02不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<).特别说明:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.知识点03不等式的解与解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.注意:不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立;②能够使不等式成立的所有数值都在解集中题型01不等式的定义【例题】(2023下·辽宁抚顺·七年级统考期末)下列数学式子:①30-<;②230x y +≥;③1x =;④222x xy y -+;⑤13x +≠;其中是不等式的有()A .5个B .4个C .3个D .2个【答案】C【分析】根据不等式的定义:用不等号连接的式子是不等式,逐个进行判断即可.【详解】解:①30-<,是不等式,符合题意;②230x y +≥,是不等式,符合题意;③1x =,是等式,不符合题意;④222x xy y -+,是多项式,不符合题意;⑤13x +≠,是不等式,符合题意;综上:是不等式的有①②⑤,共3个,故选:C .【点睛】本题主要考查了不等式的定义,解题的关键是掌握用不等号连接的式子是不等式.【变式训练】1.(2023下·全国·八年级假期作业)有下列式子:①30-<;②350+>x ;③26x -;④2x =-;⑤0y ≠;⑥220x +≥.其中不等式的个数是()A .2B .3C .4D .5【答案】C 【解析】略2.(2023下·河北保定·八年级统考阶段练习)下列各式:①8x -;②523x -≤;③3x >;④3210x x -+=,不等式的个数是()A .1B .2C .3D .4【答案】B【分析】运用不等式的定义进行判断.【详解】解:①8x -没有不等号,不是不等式;②523x -≤是不等式;③3x >是不等式;④3210x x -+=是等式;∴不等式的个数是2个,故选:B .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.题型02列不等式【详解】解:根据题意得,326x +≥,故答案为:326x +≥.【点睛】本题主要考查运用字母表示数(或数量关系),不等式的概念,掌握其书写规程,数量关系,不等式的概念的知识是解题的关键.【变式训练】题型03不等式的基本性质【例题】(2023上·湖南永州·八年级校考阶段练习)下列判断不正确的是()A .若a b >,则44a b -<-B .若23a a >,则0a <C .若a b >,则22ac bc >D .若22ac bc >,则a b>【答案】C【分析】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质即可得到答案.【详解】解:若a b >,则44a b -<-,故选项A 正确;若23a a >,则0a <,故选项B 正确;若a b >,则22(0)ac bc c >≠,故选项C 不正确;若22ac bc >,则a b >,故选项D 正确.故选C .【变式训练】题型04利用不等式的基本性质解不等式【例题】(2023下·湖南衡阳·七年级校考期中)下列说法中,正确的是()A .不等式28x <-的解集是4x <B .5x =是不等式28x <-的一个解C .不等式28x <-的整数解有无数个D .不等式28x <-的正整数解有4个【答案】C【分析】先求出不等式的解集,再依次判断解的情况.【详解】解:A 、该不等式的解集为4x <-,故错误,不符合题意;B 、∵258⨯>-,故错误,不符合题意;C 、正确,符合题意;D 、因为该不等式的解集为4x <-,所以无正整数解,故错误,不符合题意;故选:C .【点睛】本题考查了不等式的性质和不等式的解集的理解,解题关键是根据解集正确判断解的情况.【变式训练】1.(2023下·八年级课时练习)下列说法错误的是()A .5是不等式26+>x 的解B .2是不等式350x ->的解C .284x -<的解集是6x <D .3x <的解集就是1、2、3【答案】D【分析】根据不等式的性质即可求解.【详解】解:A 选项,5是不等式26+>x 的解,把5x =代入不等式,不等式成立,故正确;B 选项,2是不等式350x ->的解,把2x =代入不等式,不等式成立,故正确;C 选项,284x -<的解集是6x <,解不等式284x -<得6x <,故正确;D 选项,3x <的解集就是1、2、3,3x =不是不等式的解,故错误.故选:D .【点睛】本题主要考查不等式的性质解一元一次不等式,掌握不等式的性质是解题的关键.2.(2023下·七年级课时练习)下列说法错误的是()A .不等式5100x ->的解是3B .3是不等式5100x ->的解C .不等式5100x ->的解集是2x >D .2x >是不等式5100x ->的解集【答案】A【分析】使不等式成立的未知数的值叫做不等式的解,能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集,结合各选项进行判断即可.【详解】解∶A 、3是不等式5100x ->的解,但是不等式5100x ->的解集不是3,故本选项错误,符合题意;B 、3是不等式5100x ->的解,说法正确,故本选项不符合题意;C 、不等式5100x ->的解集是2x >,说法正确,故本选项不符合题意;D 、2x >是不等式5100x ->的解集,说法正确,故本选项不符合题意.故选∶A .【点睛】本题考查了不等式的解及解集,注意区分不等式的解与解集是解题的关键.题型05不等式的解集【例题】(2023下·河南周口·八年级校联考阶段练习)将下列不等式化成“x a >”或“x a <”的形式:(1)541x x >-;(2)27x --<.【答案】(1)1x >-(2)9x >-【分析】(1)利用不等式的性质求解即可;(2)利用不等式的性质求解即可.【详解】(1)解:两边同时减去4x ,,得54414x x x x ->--,即1x >-;(2)解:两边同时加上2,得9x -<,两边同时乘1-,得9x >-.【点睛】本题考查不等式的性质,解答关键是熟知不等式的基本性质:不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.【变式训练】一、单选题1.(2023下·山东淄博·七年级统考期末)在下列数学表达式中,不等式的个数是()①30-<;②430x y +>;③3x =;④5x ≠;⑤23x y +>+.A .2个B .3个C .4个D .5个【答案】C【分析】由不等号(>,<,≥,≤,≠)连接的式子叫不等式,据此进行判断.【详解】不等式有:①30-<;②430x y +>;④5x ≠;⑤23x y +>+.所以共有4个故选择:C .【点睛】本题考查来了不等式的定义,熟练掌握不等式的定义是解题的关键.2.(2021下·全国·八年级专题练习)下列说法中,正确的是()A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集【答案】A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3.(2023下·河北石家庄·七年级统考期末)下列表示的不等关系中,正确的是()A .a 不是负数,表示为0a >B .m 比3至少多1,表示为31m -≥C .x 与1的和是非负数,表示为10x +>D .x 不大于3,表示为3x <【答案】B【分析】由不是负数即为正数或0可判断A ,由至少表示大于或等于可判断B ,由非负数表示正数或0可判断C ,由不大于即小于或等于可判断D ,从而可得答案.【详解】解:a 不是负数,表示为0a ≥,故A 不符合题意;m 比3至少多1,表示为31m -≥,表示正确,故B 符合题意;x 与1的和是非负数,表示为10x +≥,故C 不符合题意;x 不大于3,表示为3x ≤,故D 不符合题意;故选:B .【点睛】本题考查的是根据语句的描述列不等式,理解语句的含义是解本题的关键.4.(2023上·浙江·八年级校考期中)下列不等式的变形正确的是()A .由a b <,得ac bc <B .由ac bc <,得a b <C .由a b <,得22ac bc <D .由22ac bc <,得a b<【答案】D【分析】本题主要考查了不等式的性质,解题的关键是熟练掌握不等式的基本性质,“不等式的性质1:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式的性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变”.【详解】解:A .当0c >时,a b < ,ac bc ∴<,故选项错误,不符合题意;B .当0c >,ac bc < ,a b ∴<,故选项错误,不符合题意;C .当20c >,由a b <,得22ac bc <,故选项错误,不符合题意;D .由22ac bc <,得a b <,故选项正确,符合题意.故选:D .二、填空题三、解答题9.(2023下·全国·七年级假期作业)下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.【答案】(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可【详解】(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.解:因为a b >,①所以2017>2017a b --,②所以20171>20171a b -+-+.③问:(1)上述解题过程中,从第________步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.【答案】(1)②;(2)错误地运用了不等式的基本性质3(3)见解析【分析】(1)由不等式的性质可得第②步开始出现错误;(2)由不等式的两边都乘以同一个负数,不等号的方向要改变可得错误原因;(3)正确的运用不等式的性质解题即可得到答案.【详解】(1)解:上述解题过程中,从第②步开始出现错误;(2)错误地运用了不等式的基本性质3,即不等式两边都乘以同一个负数,不等号的方向没有改变;(3)∵a b >,∴20172017a b -<-,∴2017120171a b -+<-+;【点睛】本题考查的是不等式的基本性质的应用,熟记不等式的基本性质是解本题的关键.14.(2023上·黑龙江哈尔滨·八年级哈尔滨市第十七中学校校考开学考试)(1)如果0a b -<,那么a ______b ;如果0a b -=,那么a ______b ;如果0a b ->,那么a ______b .(填“<”、“>”或“=”)(2)试用(1)提供的方法比较2327x x -+与2427x x -+的大小.【答案】(1)<,=,>(2)22327427x x x x -+≤-+【分析】(1)分别将b -移项,即可求解;(2)作差:()()22327427x x x x -+--+,判断结果,即可求解.【详解】解:(1) 0a b -<,∴a b <,0a b -=,∴a b =,0a b ->,∴a b >,故答案:<,=,>;(2)由题意得()()22327427x x x x -+--+22327427x x x x =-+-+-2x =-,20Q,x≥20∴-≤,x()()22∴-+--+≤,3274270x x x x22-+≤-+∴.x x x x327427【点睛】本题考查了作差法比较大小,整式加减,掌握比较方法是解题的关键.。
北师大版数学八年级下册2.1《不等关系3》说课稿一. 教材分析北师大版数学八年级下册2.1《不等关系3》这一节内容,是在学生已经掌握了不等式的概念、不等式的性质、不等式的解法等基础知识的基础上进行讲解的。
本节课的主要内容是让学生了解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
在教材中,通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
然后,通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
最后,通过练习题,让学生巩固所学的不等关系知识。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于不等式的概念和性质有一定的了解。
但是,学生对于不等关系的理解和应用还比较模糊,需要通过实例和练习来加深理解。
同时,学生对于实际问题中的不等关系还没有直观的认识,需要通过生活中的实例和问题来引导学生理解不等关系。
此外,学生在这一阶段的学习中,需要培养分析问题和解决问题的能力,因此,在教学过程中,需要注重学生的参与和实践。
三. 说教学目标1.知识与技能目标:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
2.过程与方法目标:通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。
四. 说教学重难点1.教学重点:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系。
2.教学难点:让学生理解实际问题中的不等关系,并能够用不等号表示出来。
五. 说教学方法与手段在教学过程中,我将采用讲授法、实例分析法、小组讨论法等教学方法,结合多媒体课件和黑板等教学手段,引导学生理解和掌握不等关系。
六. 说教学过程1.引入新课:通过一个实际问题,引导学生用不等号表示问题中的不等关系,从而引出不等关系的概念。
一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
初二第二学期第七周周测《不等关系》初二( )班 姓名 学号 得分一.选择题:(每小题3分,共30分)1、下列属于不等式的是( )A 、5k ≤-B 、5k =C 、5k -D 、5k +2、下列属于一元一次不等式的是( )A 、0x >B 、10x >C 、20x ≥D 、1x x +>3、已知a b >,则下列一定成立的是( )A 、am bm >B 、a m b m ->-C 、b m a m ->-D 、m a m b ->-4、不等式:12x ->-的解集是( )A 、3x >-B 、1x >-C 、3x <-D 、1x <-5、如图,数轴所表示的不等式是(A 、2x ≤- B 、2x ≥- C 、2x <- D 、2x >-6、已知代数式:2k -的值不小于-3,则k 的取值范围是( )A 、5k ≤-B 、1k ≥-C 、5k ≥-D 、1k ≤-7、若关于x 的方程1x a +=的解是非正数,则a 的取值范围是( )A 、1a <B 、1a >C 、1a ≤D 、1a ≥8、不等式11x +≥-的负整数解共有( )A 、1个B 、2个C 、3个D 、4个9、若关于x 的不等式(1)1m x m ->-的解为1x <,则m 的取值范围是( )A 、1m ≤B 、1m >C 、1m <D 、0m <10、已知等边∆ABC 和正方形DEFG 的周长都是a (cm ),面积分别是2212(),()S cm S cm ,则( )A 、12S S <B 、12S S >C 、12S S =D 、无法确定二、填空题:(每小题3分,共30分)11、不等式:302x ->的解集是_______________.12、当x___________时,代数式3x -的值是正数.13、 “m 与3的和的平方是非负数”, 用适当的不等式表示是:_______ ______.14、请填上正确的不等号:已知a b >,则2am 2bm15、小明说:“如果a c b c +>+,那么a c b c ->-”,小明说的正确吗?答:_______________.16、不等式230x -->的解集是______________ _ __.17、不等式30x +≥的负整数解是_______________ __.18、将不等式“2500x +>”化为“x a >”是_________________.19、 “x 的平方与y 的平方之和超过2016”,用适当的不等式表示是:___ .20、观察下列不等式:(1)11x +>;(2)34x +>;(3)59x +>;(4)716x +>;……则第(n )条不等式是: _______ _______.三.解答题(每小题10分,共40分)解下列不等式,并把解在数轴上表示出来.。
北师大版八年级下册数学《2.1 不等关系》教案一. 教材分析北师大版八年级下册数学《2.1 不等关系》这一节主要介绍不等式的概念和基本性质。
通过这一节的学习,使学生了解不等式的定义,理解不等式中的基本概念如解、解集等,掌握不等式的基本性质,为后续的不等式计算和应用打下基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数、方程等基础知识,具备一定的逻辑思维能力和运算能力。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.了解不等式的定义,理解不等式中的基本概念。
2.掌握不等式的基本性质,能运用不等式解决实际问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.不等式的定义和基本性质。
2.如何运用不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实例和练习引导学生理解和掌握不等式的概念和性质,培养学生运用不等式解决实际问题的能力。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,如“小明比小红高,请问小明和小红的身高关系是什么?”引导学生思考和表达不等式。
2.呈现(10分钟)呈现不等式的定义和基本性质,通过课件和讲解使学生理解和掌握。
同时,给出相关的实例和练习题,让学生巩固所学知识。
3.操练(10分钟)让学生分组进行练习,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些选择题和填空题,检验学生对不等式的理解和掌握程度。
5.拓展(5分钟)引导学生思考和探讨不等式在实际生活中的应用,如比较物品的价格、判断比赛的名次等。
6.小结(5分钟)对本节课的主要内容进行总结,强调不等式的定义和基本性质。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
学生做题前请先回答以下问题问题1:遇到高次不等式求解集的处理方法是什么?问题2:如何把一元二次不等式转化成一元一次不等式(组)?不等关系综合应用(含参不等式、高次不等式)一、单选题(共6道,每道16分)1.若关于的不等式组有解,则的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:含参不等式(组)2.若关于的不等式恰好只有三个正整数解,则的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)3.已知,为实数,则解集可以为的不等式组是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:不等式的基本性质4.王老师给学生示范了一道题的过程,让学生按照这个思路解决同类型的问题.请你也来参与一下.例题:解一元二次不等式.解:把因式分解,得,又∵,∴,由有理数的乘法法则“两数相乘,同号得正”得,①或②解不等式组①得,解不等式组②得,∴的解集为或,∴原不等式的解集为或.按照上述解法,则的解集是( )A. B.无解C. D.答案:A解题思路:试题难度:三颗星知识点:高次不等式5.解一元二次不等式的思路是把一元二次不等式转化为一元一次不等式来解决,那么的解集是( )A.或B.无解C.或D.答案:C解题思路:试题难度:三颗星知识点:高次不等式6.(上接第5题)那么的解集是( )A. B.无解C. D.答案:C解题思路:试题难度:三颗星知识点:高次不等式学生做题后建议通过以下问题总结反思问题1:高次不等式求范围的题目的本质是什么?。
初中数学《不等关系》教案第一章一元一次不等式和一元一次不等式组1.不等关系一、学生知识状况分析学生的知识技能基础:学生在小学差不多学习过一些不等式的相关知识,了解“大于”、“小于”等符号的用法和意义;在本章学习的前面,学生差不多能比较两数的大小,并能用数学的语言表达;学生活动体会基础:在相关的知识学习过程中,学生差不多经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积存了解决实际问题的数学体会的基础,同时在往常的学习中学生差不多有了专门多合作的过程。
具备了一定的合作交流能力,为本章的学习奠定了知识与体会的基础。
二、教学任务分析(一)教学目标:1、知识与技能目标①明白得不等式的意义.②能依照条件列出不等式.2、过程与方法目标通过认识实际问题中的不等式关系,训练学生的分析判定能力和逻辑推理能力。
3、情感与态度目标通过用不等式解决实际问题,使学生认识数学与人类生活的紧密联系以及对人类历史进展的作用,并激发学生学习数学的信心和爱好。
(二)教学重点:通过探寻实际问题中的不等式关系,认识不等式。
三、教学过程分析本节分为七个教学环节:第一环节引入新课、第二环节问题提出、第三环节活动探究、第四环节猜想归纳、第五环节运用巩固、第六环节课时小结、第七环节课后作业。
第一环节:创设问题情形,引入新课活动内容:查找相等的量和不等的量师:我们学过等式,明白利用等式能够解决许多问题,同时,我们也明白现实生活中还存在许多不等关系,利用不等关系同样能够解决实际问题,本章我们就来了解不等式有关的内容。
师:既然不等式关系在实际生活中并许多见,大伙儿确信能举出许多例子。
生:能够,比如每天我都比他早起5分钟师:专门好,还有其他例子吗?(同学们各抒己见)师:我那个地点也有一些例子。
拿出给同学们参考一下。
展现投影片活动目的:通过这一活动,期望学生体会不等关系如相等关系一样处处存在,培养学生观看生活、乐于探究的品质。
活动成效:学生举出了许多不等的例子,不仅能从数字上,还能从现象、感受上去体会不等关系。
八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为a bx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集 图示叙述语言表达⎩⎨⎧>>b x ax x>bba 两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找 ⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
八年级不等关系知识点在数学学科的学习中,不等关系是十分重要的一个知识点。
在八年级的数学课程中,学生们需要学会理解和应用不等关系的基本概念和方法,以便在日常生活、学术研究和职业发展中得到更好的应用。
一、不等关系的基本概念不等关系是指两个数、两个量或两个代数式之间的大小或大小关系不同的关系。
在不等关系中,有等于、大于、小于、大于等于和小于等于五个常用的运算符号。
以数的不等关系为例,对于两个数 a 和 b,如果 a > b,则说明a 大于 b;如果 a < b,则说明 a 小于 b;如果a ≥ b,则说明 a 大于或等于 b;如果a ≤ b,则说明 a 小于或等于 b;如果 a = b,则说明 a 等于 b。
二、不等关系的性质除了运算符号的含义外,不等关系还有一些重要的基本性质,对于学生们的学习和理解也是十分关键的。
1. 对称性。
不等关系的对称性是指,如果 a > b,则 b < a;如果 a < b,则 b > a。
2. 传递性。
不等关系的传递性是指,如果 a > b,b > c,则 a > c;如果 a < b,b < c,则 a < c。
3. 反对称性。
不等关系的反对称性是指,如果a ≥ b,b ≥ a,则a = b。
三、不等关系的应用不等关系不仅仅是理论知识,还具有实际应用。
在日常生活和工作中,人们常常需要应用不等关系来进行量化和比较。
1. 应用于数学领域。
不等关系在代数学、函数学、几何学等学科中有广泛的应用,帮助研究人员更好地理解数学基础理论的构建和发展。
2. 应用于物理学领域。
在物理学中,不等关系用于物体的质量、速度、角度等多种因素的比较和分析中。
3. 应用于经济学领域。
不等关系在经济学中常用于分析收入、财富等经济因素的差异和不平等现象,并提出相应的政策建议和措施。
总结在八年级的数学学习中,透彻理解不等关系的基本概念、性质和应用是至关重要的。