2020届江苏省南通市海安高级中学高三第二次模拟考试数学试题
- 格式:docx
- 大小:1.10 MB
- 文档页数:26
开始输出n 输入p结束n ←1, S ←0S < pn ←n + 1S ←S + 2n NY(第5题)江苏省南通市2020届高三第二学期阶段性模拟考试数 学 试 题2020.05(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,2,3,4A =,{}2log (1)2B x x =-<,则A B =I ▲ . 2.设复数2(2i)z =+(i 为虚数单位),则z 的共轭复数为 ▲ .3.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线2x ﹣y ﹣1=0上方的概率为 .4.在平面直角坐标系xOy 中,若抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为 ▲ . 5.执行右边的程序框图,若p =14,则输出的n 的值为 ▲ .6.函数22log (32)y x x =--的值域为 ▲ .7.等差数列}{n a 中,若100119753=++++a a a a a , 则=-1393a a ▲ .8.现用一半径为10 cm ,面积为80π cm 2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为 ▲ cm 3.9.已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 ▲ .10.已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.在△ABC 中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ . 13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.已知[)0,2θπ∈,若关于k ()33sin cos k θθ-在(],2-∞-上恒成立,则θ的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为梯形,//CD AB ,2AB CD =, AC 交BD 于O ,锐角PAD ∆所在平面PAD ⊥底面ABCD ,PA BD ⊥,点Q 在侧棱PC 上,且2PQ QC =. (1)求证://PA 平面QBD ; (2)求证:BD AD ⊥.17.(本小题满分14分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明.18.(本小题满分16分)如图,有一正三角形铁皮余料,欲利用余料剪裁出一个矩形(矩形的一个边在三角形的边上),并以该矩形制作一铁皮圆柱的侧面。
故答案为:10. 第1页共21页2020届江苏省南通市海安高级中学高三下学期阶段考试数学试题一、填空题1.已知集合 A 1,0,3 , B {1,2,3},则 Al B ________________ 【答案】{3}【解析】由交集的定义AB ⑶,应填答案⑶.【答案】姮2【解析】由已知得 Z 2 1 i ,将其整理成 i1 Z -2 3. -i 2,即可求出模【详解】解:由题意知,Z 2 i2 i 1 i 1 3i 1 3. 1 i1 i 1 i22i 2所以:Z h 23 2尿V 222故答案为:.2【点睛】本题考查了复数的运算,考查了复数的模•本题的易错点在于化简时,错把i2计算• 3.某人5次上班途中所用的时间(单位:分钟)分别为 12, 8, 10, 11, 的平均数为 ________【答案】10【解析】代入求解平均数的公式计算即可 【详解】解:平均数-12 8 10 11 9 10.5【点睛】 2 .已知复数Z 满足1 i Z2 i ,则复数Z 的模为当成了 1来9•则这组数• 2,0【解析】根据流程框图进行循环计算,跳出循环时b 的值即为所求 【详解】解:第一次循环:b 2,a 2;第二次循环:b 4,a 3•此时a 3不成立故答案为:4. 【点睛】本题考查了程序框图•对于循环结构是常考的题型,一般做法为根据框图,计算每次循环 的结果,注意,临界即跳出循环时的计算结果 •通常循环框图常和数列求和综合到一块 • 5 •在平面直角坐标系 XOy 中,已知双曲线χ2y 21的右焦点与抛物线2y 2px p 0的焦点重合,则 P 的值为 ______________ .【答案】2 2【解析】求出双曲线的右焦点2,0 ,令P\ 2即可求出P 的值•2【详解】 解双曲线c21 1 2,即右焦点为^2,0 .即抛物线y2 2px P 0的焦点为本题考查了平均数的计算•易错点为计算出错b 的值为所以^2'2 ,解得P 2丿2 .故答案为:2 2. 【点睛】本题考查了双曲线的标准方程,考查了抛物线的方程•易错点是误把P 当做了抛物线焦 点的横坐标•6.已知一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,则这2只球颜色相同的概率为 ________ . 【答案】0.4【解析】从中一次随机摸2只球,写出基本事件总数 n 和这2只球颜色相同包含的基本 事件数m,由古典概型概率公式计算即可. 【详解】一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,基本事件总数 n= C I = 10, 这2只球颜色相同包含的基本事件个数m= C l C 2 = 4,m 4•••这2只球颜色相同的概率为 P= =0.4.n 10故答案为:0.4. 【点睛】本题考查古典概型概率的求法 ,考查运算求解能力,是基础题. 7 .现有一个橡皮泥制作的圆锥,底面半径为 1 ,高为4.若将它制作成一个总体积不变 的球,则该球的表面积为 ________ . 【答案】44 3 4【解析】 求出圆锥的体积,则由题意,设球的半径为r ,可得一r 3—,求出球的半径,进33而可求球的表面积. 【详解】4 3 4 2则4 r3 ,解得r「所以表面积为4 r 4故答案为:4 【点睛】本题考查了圆锥的体积,考查了球的体积,考查了球的表面积.结合方程的思想,根据题意 第3解:由题意知,圆锥的体积为-3I 2 4 ..设球的半径为r3页共21页求出球的半径•对于球的问题,一般都要首先明确半径的大小8.已知等比数列a n的前n项的和为S n ,aι 16 9®,则a3的值为__________________ .【答案】43【解析】由S6 9S3可得S3 q 1 9S3,进而可求出公比的值,即可求a s的值•【详解】解:S6 a1a2 a3 a°a§a6 d a? a? ^q3 a2q3a3q3S3 q3 1Q S6 9S3S3q3 1 9S3解得,q = 2 .所以a3 a^24.故答案为:4.【点睛】本题考查了等比数列的通项公式,考查了等比数列的前n项和.等比数列问题,一般可采用基本量法进行求解,但是这种方法计算量比较大.因此,对于等比数列的问题,一般首先考虑利用性质简化计算.UiX r IrIJDr IJrill9.已知e ,∈2是夹角为60°的两个单位向量,a 3e∣2e? , b 2e∣ ke? k R ,r r r且a (a b) 8则k的值为___________ .【答案】67【解析】由题意知;;b 3e1 2e23∈r1 2ee2 2e r1 ke r28 ,进而可求k的值.【详解】r r r r r r r r r r r r r解:a a b 3e 2e23e12e22e1ke23e12e2e1 2 k e23e⅛2 3k 8 6 & 2 2+k e2 3 3k 8 cos60o 2 2k 7k 11 8.2解得k 6.7故答案为:6.7【点睛】本题考查了平面向量的数量积.对于向量的数量积问题若题目中无向量的坐标,则在求数量积时,一般套用定义求解;若题目中已知了向量的坐标,求数量积时一般代入数量积的坐标公式.10.在平面直角坐标系XOy中,已知圆C : x2y22x 8 0 ,直线6BC 【解析】由tan BADBC tanDACBAC ,可得BC613 15d 6 BC 1 - 13 15,进而l : y k X 1 ,k R 过定点A ,与圆C 交于点B, D ,过点A 作BC 的平行线交CD 于点E ,则AEC 的周长为 ____________ . 【答案】5【解析】由题意得A(1,0),圆心为C 1,0 ,半径为r 3,由平行可知-EA ED ,化简后CB CD可得EA CE r ,进而可求三角形的周长• 【详解】解:当 X 1 时,y 0 与 k 无关则 A(1,0)∙圆 C :x2y 22x 8 x 1y 29所以,圆的圆心为C 1,0 ,半径为r 3.则由题意知,ED r CE故答案为:5. 【点睛】,考查了圆的标准方程•本题的关键在于,由平行得比例关 系•若联立直线与圆的方程,求解各点的坐标,这种思路也可以求出最后答案 ,但计算量太大•11.如图,已知两座建筑物 AB,CD 的高度分别为15m 和9m,且AB BC CD ,从 建筑物AB 的顶部A 看建筑物CD 的张角为 CAD ,测得tan CAD —,则B,C 间13可求B,C 间的距离.Q EA 与CB 平行EA ED 即EA 』 CB CD r r EA CE r则 AEC 的周长AC AE CEAC r 2 3 5.本题考查了直线过定点的问题 白勺距离 _____ m.【答案】12【详解】BC 解:由题意知tan BAD -AB CDBC~6^tan DAC BACBC 6tan DAC tan BAC 1 tan DAC tan BAC2BC239BC 180 0 ,解得BCBC6 j⅛,整理得1 -13 151512 或BC .Q BC CD 9, BC 122故答案为:12.【点睛】本题考查了三角恒等变换的应用•难点在于已知正切值的使用•有的同学可能由正切值求出正弦和余弦,结合正弦定理和余弦定理列出方程进行求解•由于本题所给的正切值求出的正弦余弦值数比较大,因此这种思路计算量较大,效率不高而且容易做错•m12 •设曲线yx+1m 0在X t,t 1处的切线为I ,则点P 2t, 1 到I的最大距离为【答案】、.2【解析】求出切线方程为mx 2t 1 y 2mt m 0 ,从而则P 2t, 1 到I的距离可用t表示出来,结合基本不等式即可求解【详解】解:y'整理得mxd2 d22mt2mt2mt2则切线方程为0•则P2t,2m2 m2m41的距离2m,当且仅当1 2 即d 2.2m2t 1 2- 2t 1时等号成立【答案】{3,5} 第7页共21页【点睛】本题考查了切线的求解,考查了点到直线的距离,考查了基本不等式•求最值常见的思路 有导数法、函数图像法、函数单调性法、基本不等式法 •本题的难点是对距离进行变形 整理•的取值范围是3【答案】三2【详解】5r ,t的情况•本题的难点是分界点能否取得的判断f k (x) InX 恰有3个不同的零点,贝U k 的取值集合为13.已知函数y c0s(3X) , Xt 5既有最小值也有最大值,则实数t【解析】由诱导公式可知3y cosSin X ,令 mX ,结合函数图像,讨论最大值为1和1两种情况2,进而求出 t的取值范围•解:y 3cos — 2Sin X 令m X •则由X -I t6可得Sin m, m•要使其既有最小值又有最大值若最大值为 13若最大值为 1,则t 2 ,解得t5•综上所述:-2 2故答案为:【点睛】本题考查了诱导公式 ,考查了三角函数最值问题•本题的易错点是漏解,只考虑了最大值14. 已知函数f 1(x)X 1 , f k 1 (X) f 1(f k (X)) , k 5, k N•若函数【解析】由题意写出fι(x), f2(x), f3(x), f4(x), f5(x)的解析式,根据图像的平移变换分别画出它们的图像,判断哪个函数图像与y In X图像有三个交点,即为所求.【详解】解:由题意知f1(x) X 1 , f2(x) IlX 1 I,f3(x) IIX 111,f4(χ) IIIlX 1 1 1 1,f5(χ) IIIlX 1111 1 •则其函数图像为∖r1*. 'I J. * I I i I . I I I I I 鼻⅛ n d I J i 2 ]■⅜ J < β 1 1 ]e4r/fL由图像可知,当k 3或5时,函数y f k(x) InX恰有3个不同的零点•故答案为:{3,5}.【点睛】本题考查了函数的图像变换考查了函数的零点•若函数f(x) g(x) h(x),则函数f(x)的零点个数就等同于函数g(x), h(x)图像的交点个数•本题的难点是画含绝对值的函数图像•对于y f (x),首先画出y f(x)的图像,然后将X轴下方的图像向上翻折即可;对于y f(x)的图像,首先画出y f (x)的图像,然后将y轴右侧向左翻折、解答题15.在平面直角坐标系XOy中,设向量∖ 3sin x,sin X , cosx,sin X , X 0,(1)若a b ,求X的值;(2)求a b的最大值及取得最大值时X的值•5 3【答案】(1)或;(2)最大值一,X .6 6 2 3r r r r 1【解析】⑴求出∣a∣,∣b∣,由IalIbl可得ISi nx∣ ?,结合X [0,]可求出所求•r r 1⑵a b Sin 2x ,结合X [0,]和正弦函数的图像,即可分析出最值及取得6 2最大值时X的值•【详解】解:(1)因为a ( .3 sin x,sin x), b (cosx,sin x)所以∣a∣ 3sin2x sin2x 2∣si nx∣,∣b∣ . CQS X Si nx2 1r r 1因为∣a ∣ ∣b ∣,所以∣ Sinx∣ .因为X [0,],所以SinX 2(2)ab.3sin xcosxSin X Sin2x1 cos2x 1 Sin 2x 12 2 2 6 2因为X [0,],所以2x11, ,于;曰 1 . Sin 2x1 36 6 6 2 6 2 2所以当π π2x ,即X时,a b取最人值 36 2 3 2【点睛】本题考查了向量的模,考查了向量的数量积,考查了三角恒等变换,考查了三角函数的最值•对于y ASin ωxφ型的函数,在求最值、对称轴、对称中心、单调区间时,一般(2)平面EDB i ⊥平面B I BD .【答案】(1)证明见解析;(2)证明见解析.【解析】⑴取B l D的中点F ,连OF l EF通过证明AC//EF从而证明线面平行.⑵通过AC BD ,B i B AC推出EF BB i, EF BD ,从而证明EF 平面B i BD , 进而可证面面垂直 . 【详解】证明:(1)在正方体ABCD A i B i C i D i中,设AC与BD相交于点0 ,则Q为BD的中点1取B i D 的中点F ,连OF, EF 所以QF∕∕BB i,QF -BB v2在正方体ABCD A i B i C i D i中,AA i∕∕BB i, AA i BB i.又点E是A i A的中点所以AE∕∕0F, AE OF .于是四边形AEFO是平行四边形从而AC//EF .又因为AC 平面EDB i ,EF 平面EDB i,所以AC//平面EDB i .A IB lC lD I中,E是棱A l A的中点.求证:都是采取整体的思想进行计算•⑵在正方体ABCD A1B1C1D1中,B1B 平面ABCD ,而AC 平面ABCD ,所以B I B AC.又在正方体ABCD A I B I C I D I中,四边形ABCD为正方形所以AC BD.由⑴知,EF//AC ,于是EF BB-EF BD .又B1B 平面B l BD , BD 平面B1BD, B j B BD B ,所以EF 平面B1BD .又因为EF 平面EDB1 ,所以平面EDB1 平面B1BD .【点睛】本题考查了线面平行的判定,考查了面面垂直的判定•线面平行或者面面平行的判定,一般都归结为证明线线平行;线面垂直或者面面垂直的判定,一般都归结为证明线线垂直•此类问题如果采用逻辑推理的方法无法证明,有时也可以建立空间直角坐标系,运用空间向量证明平行和垂直•2 217 .如图,在平面直角坐标系XOy中,已知代B两点分别为椭圆笃当1,a b 0a b的右顶点和上顶点,且AB , 7 ,右准线I的方程为X 4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P ,交I于点Q若以PQ为直径的圆经过原点,求直线PQ 的方程.2 2 _ _ _ _【答案】⑴仝y1;(2)、.3X y 2 3 0或3x y 2、、3 0.4 3【解析】(1)由右准线I 的方程为X 4以及AB 、、7可列出方程组2—4 Ca 2b 2 C 2解.a 2b 2得即可求出椭圆的方程 ⑵设PQ 的方程为y k(x 2),与椭圆方程联立,求出P 8k 264k 23 12k24k 2 3;联立y k(x 2) UUU 可得Q(4,2k),由OP OQ 可知OP X 4 IujOQ 0 ,从而可求出k,3 ,进而可求直线的方程• 【详解】 解:(1)设椭圆的焦距为 2c(c 0) •由题意得2-4 C2 ,2a b 2 2,解得a 4,b ■, a 2b 2■, 7C 2所以椭圆的标准方程为 (2)由题意得直线 PQ 不垂直于X 轴,设PQ 的方程为y k(x 2) y 联立x 2 4 k(x 2 y 3 2), 2 2 ,消y 得4k 3 X 1, 2 2 16k X 16k 12 0.又直线PQ 过点 A(2,0),则方程必有一根为 2则X P 8k 26 4k 23代入直线y k(x 2),得点 P 8k 26 4k 23 12k 产.联立 y k(xX 42),所以 Q(4,2k).又以PQ 为直径的圆过原点 ,所以OP OQ . IlJU UUir 8k 2 6 则OPOQ 4汁28k 2 24 4k 230 ,解得k 2所以直线PQ 的方程为.3x y 2-、3【点睛】本题考查了椭圆的准线方程,考查了椭圆的性质,考查了直线与椭圆相交问题,考查了向量的数量积•本题第二问的难点在于圆过原点这一条件得运用 •一般若题目中已知圆过某 点,则一般等量关系为:圆心到该点的距离为半径或者圆上两点与已知点的连线垂直 18 •下图是一块平行四边形园地 ABCD ,经测量,EB 2.5m , FC 7.5m 时,EF 最短,其长度为 5. 3 .(3)当0 X 10,由二次函数的性质可求最值 ;当10≤x≤20时,由基本不等式可求最值【详解】1解:⑴当点F 与点C 重合时,由题设知,s BEC - S YABCD .41 1于是一EB h AB h ,其中h 为平行四边形AB 边上的高.2 41得EB -AB ,即点E 是AB 的中点.2⑵因为点E 在线段AB 上,所以0 X 20.当10≤ x≤20时,由(1)知点F 在线段BC 上.因为AB20m, BC 10m, ABC 120 所以 S Y ABCD AB BC SinABC 20 10 —100、3. 2AB 20m,BC 10m, ABC 120o•拟过线段AB 上一点E 设计一条直路EF (点将该园地分为面积之比为 3:1的左,X, EF y (单位:m).(2) 求y 关于X 的函数关系式; (3) 试确定点E,F 的位置,使直路EF 的长度最短.2 X 25x 25【答案】(1) E 是AB 的中点;(2)yχ2 10θ∞ 10010 X10;(3)当201【解析】(I)由S BE C S YABCD 41 1可知-EB h 4AB h,从而证明E 是AB 的中点. ⑵求出平行四边形的面积为 S YABCD100,3,进而可求S EBF 25 3 ,从而用X 可将BF 表示出来,利用余弦定理即可得到y 关于X 的函数关系式.当点F 与点C 重合时,试确定点 E 的位置; (1) F 在四边形ABCD 的边上,不计直路的宽度),1由S EBF X BF sin1202 25 3得,BF .所以EBF中,由余弦定理得X得 CF 10 X .当 BE CF 时,EF .. 102 (2x 10)22 10 (2x 10) cos120当 BE CF 时,EF X 102(10 2x)22 10 (10 2x) cos60本题考查了函数模型的应用 ,考查了余弦定理,考查了基本不等式•本题的易错点是没有 讨论自变量的取值,从而造成了漏解•求最值时,常用的方法有:导数法、函数图像法、函数 单调性法、基本不等式法• 19.已知函数y f (X)的定义域为D ,若满足 X D,x f(x) f(x),则称函数f(χ)为’L 型函数”.(1)判断函数y e x 和y InX 是否为(L 型函数”,并说明理由;(2)设函数 f(x) (X 1)lnx (X 1)lna,a 0 ,记 g(x)为函数 f (x)的导函数• ①若函数 g(x)的最小值为1,求a 的值;②若函数 f(x)为“L 型函数 ”,求a 的取值范围.【答案】 (1) y e x不是,yIn X 是,理由见解析;(2)①a e ;②02a e . 【解析】(1)分别求出两个函数的定义域 ,判断 X D,xf(x) f (x)即可综上: 当E 距点B2.5m , F 距点C7.5m 时,EF 最短,其长度为5、. 3 .2X当且仅当X 2= 10000即X 10时,取等号 【点睛】y EFx 2100 X100.当0 X 10时,点F 在线段CD 上,由S 四边形EBCF-(X CF) 10 Sin60 2 25 3化简均为y EF 2 ∖ X 2 5x25.综上,y⑶当0 曰、【/是当X2 X 25x 2510χ210000100 X 210 X20X 10 时,y2 X 25x 2525 752 时,y min155、3,此时 CF 10 X当 10≤ x ≤20 时,y χ2 10000100 2,.'X 2X 210000100 10、3 X 22x 100 cos12010000所以由零点存在性定理得X 0 (1,a)使g X 00,又g(x)在(1,)上为增函数1⑵①求出g(x) f (x) InX 1 In a, x (O,),再求g (x),通过导数探究当 XX 取何值时,g(χ)取最小值,令最小值为1,即可求出a 的值•②由题意X (0, ),(X 1)f (X) (X 1)[(x 1)lnx (X 1)ln a] 0恒成立,分别讨论当0 a e 2和a e 2时,通过探究f(x)的单调性判断是否使得不等式恒成立,从而求出a 的取值范围.【详解】解:⑴对于函数y e x,定义域为R ,显然0 ee 0不成立,所以y e x 不是’L 型函数 对于函数y Inx ,定义域为(0,).当 0 X Hdlnx 0,所以(X 1)l nx 0,即 xlnx In X ; 当 X 1 时,Inx 0,所以(X 1)l nx 0,即 xl nx ln x . 所以 X (0,),都有xl nx Inx .所以函数y Inx 是型函数”.X 11⑵①因为 g(x) f (x) In XInaInX 1 Ina, x (0,)XX1 1 X 1所以g (x)22.当X (0,1)时,g(χ) 0所以g(x)在(0,1)上为减函数X X X当X (1,)时,g (x) 0,所以g(x)在(1,)上为增函数. 所以 g(x)min g(1) 2 In a .所以 2 In a 1,故 a e . ②因为函数f (x) (X 1)l nx (X 1)l na 为(L 型函数所以 X (0,),(x 1)f (x) (X 1)[(x 1)l nx (X 1)l n a] 0().(i)当 2 In a 0 ,即 0 a e 2时,由①得 g(x) 0,即 f (x) 0.所以f (X)在(0,)上为增函数,又 f (1) 0,当X (0,1)时,f (X) 0所以(X 1)f (X) 0;当 X [1,)时,f (x) 0,所以(X 1)f (X) 0.所以X (0,),适合()式.2 1(ii) 当 2 In a 0,即 a e 2时,g(1) 0,g(a) - 10.第15页共21页所以由零点存在性定理得X0 (1,a)使g X0 0,又g(x)在(1,)上为增函数所以当X 1,X o 时,g(x) 0,所以f (X)在1,X o 上为减函数又f(1) 0,所以当X 1,X o 时,f(x) 0,所以(X 1)f(x) 0,不适合()式. 综上得,实数a 的取值范围为0 a e 2∙ 【点睛】本题考查了不等式的性质,考查了函数的最值,考查了不等式恒成立问题.本题的难点在 于最后一问,学生往往想不起来通过函数的单调性等来判断函数在某一区间的正负问题 20 .已知数列 a n 的首项为1,各项均为正数,其前n 项和为S n ,1设数列 b n 满足 b 1 1 , b n 1b n a n ,求证:- 2.、a n 1 i 1 b【解析】⑴令n 1,n2即可求出a 2 ,a 3的值;1当n 1时,-b 11•从而可证.【详解】【答案】(1)a 22,a 3 3;(2)证明见解析;(3)证明见解析.a n 1 a n ⑵由2 Sn —1 n an 1得2Sm a n a na n an —(n 2)两式相减进行整理可得 an 1 a n 1 a n a n a n 1(n ≥ 2),即可证明 a n 为等差数列. ⑶由⑵可知b n 1b n n , b n b n 1 n1(n 2)两式相减整理得 丄 b n 1 b n 1 (n 2),则b n1 丄丄丄b i b 1 b 2 b 3 1 丄 bib nbl b 2 b n b n 1 ,通过放缩即可证明;解:⑴令n 1得,2S∣a ? a 〔 a 2 a 1,又a 11,解得a 2 2;令n 2得,2S 2a 〔a 2,即 2a 1a 3 a 2a 22a 1a 32 ,从而a3 3.2S na n QnOW n N •(1) 求a 2,a 3的值;(2) 求证:数列 a n 为等差数列;(3)1a ∏ 1a ∏⑵因为2S ∏ a ∏ 1 a∏ ①;所以2S ∏ 1 Jn 2)② a∏ 1 a ∏①-②得,2a ∏ a ∏ 1a∏ a ∏ 1 a∏ a ∏a∏ 1 a ∏ a ∏ .因为数列 a ∏的各项均为正数,所以a ∏ 0.a ∏ 1 a ∏从而2 口 ∏ a ∏ 1 a ∏ a ∏ a ∏ 1去分母得,2 a ∏ 1 a ∏ a ∏ a ∏ a ∏ 1 a ∏ a ∏ 1 a ∏ 1 a∏ 1 a n 化简并整理得,a ∏a ∏1 2a ; a ∏a ∏ 0,即 2a ∏ a ∏ 1 a ∏1(∏ 2),所以 a ∏ 1 a ∏ a ∏ a ∏ι( n ≥ 2).所以数列 a n 为等差数列. (3)由(2)知,b ∏ 1b ∏ ∏ ③.当 ∏ 1 时,b 2b 1 1 ,又 b 1,所以 b 2 1.由③知,b ∏b ∏ 1 ∏ 1(∏ 2) ④.③-④得,b ∏1b ∏ b ∏b ∏ 1 1 (∏ 2)即b ∏b ∏ 1 b∏ 1 1(∏2),依题意,b ∏ 0 ,所以占b ∏ 1 b ∏ b ∏ 1(∏2).b 11 b2 b 3b∏1 b ib 3 b 1 b 4 b 2 b 5 b 3b ∏ b ∏ 2 b ∏ 1 b ∏1 b ibi b 2 b ∏ b ∏ 12.b ∏1b ∏12 a ∏ 1 ,当 ∏ 1时,11 ,原不等式也成立.b 1∏ 1综上得,- i 1 b 2云1 【点睛】 本题考查了由递推公式求项 ,考查了等差数列的定义,考查了放缩法,考查了数列求和.本 题难点在于整理出丄 b ∏ 1 b ∏1(∏ b ∏ 2),从而对所证式子进行化简.涉及到S n 和a ∏的递推公式时,一般代入公式a ∏S nT \进行求解. S n 1, n 2 21•已知 a,b R,若 M= ba3所对应的变换 TM 把直线2x-y=3变换成自身,试3求实数a, b.【答案】户■- J -- 【解析】【详解】 JC R = 十 αυ一 τ, = ⅛x + 3V.L*aμT 2x r-y f= l.∖2(-x+α})- (⅛x + 3y) = 3.即-一一 --_.■此直线即为-'-/ ■ .■- ■二—2 -口二 2.2C 7 — 3 二—1.则.-.22 •在极坐标系中,设P 为曲线C : 2上任意一点,求点P 到直线l : Si n-3的最大距离• 【答案】5【解析】将圆C 和直线l 的极坐标方程化为直角坐标方程, 转化为求圆上的点到直线 I 距 离的最大值,求出圆心到直线 I 距离,即可求出结论. 【详解】 曲线C :2化直角坐标方程为 X 2 y 24表示圆,1 Sin— 3,- Sin 3 OCoS 3 ,322化为直角坐标方程为 ,3x y 6 0,6 圆C 上点P 到直线I 距离的最大值为 .【点睛】想,属于基础题本题考查极坐标方程与直角坐标方程互化、圆上点到直线距离的最值, 考查数形结合思设a b c 6 ,求证:.a bl ',厂2, 3 二.23 .设a, b, C为正实数,【答案】证明见解析2 2 2 2 2 2 2【解析】 根据柯西不等式 Xi% X 2y 2 X 3y 3 % X 2 X 3 y ι y 2 y 3 ,将原式进行配凑并结合已知条件 a b c 6加以计算,即可得证;【详解】证明:因为a, b, C 为正实数,a b c 6,2 2所以,a . b 1 . c 2 .. a 1 ., b 11 . c 2 1a b 1 c 2 1 1 1 27于是λa ..尸 、、厂2, 3.3 ,当且仅当,a 、、L 、、厂2 ,即a 3,b 2,C 1时取等号,所以,a ..尸、、厂2, 3. 3 ,得证; 【点睛】本题考查利用柯西不等式证明不等式,属于中档题 24 •假定某篮球运动员每次投篮命中率均为 P(O P 1).现有3次投篮机会,并规定连续两次投篮均不中即终止投篮 ,已知该运动员不放弃任何一次投篮机会,且恰好用完3次投篮机会的概率是 -25(1)求P 的值;(2)设该运动员投篮命中次数为X ,求X 的概率分布及数学期望E(X).3【答案】(1); (2)分布列见解析,期望为5【解析】 分析:(1)设事件A :恰用完3次投篮机会”则其对立事件 A :前两次投篮均不应概率即可详解:(1)设事件A :恰用完3次投篮机会”则其对立事件 A :前两次投篮均不中解得P 3.5(2)依题意,X 的所有可能值为0,1,2,3,213 125所以,PA 1 P A⑵X 的所有可能值为 250,1,2,3,计算其对依题意,PA 1 P A25,25所以m3 C k c ;k C :k L点睛:利用对立事件计算概率是概率问题中长用的方法,所以出现 关键字眼时要注意利用对立事件的思路解题,往往能够简化计算 25 •设 S 4k a 1 a 2 La 4k ( k N *),其中 ai 0,1( i 1,2,L ,4k ).当S 4k 除以4的余数是b ( b 0,1,2,3)时,数列a 1,a 2丄,a 4k 的个数记为m b .(1) 当k 2时,求m 1的值;(2) 求m3关于k 的表达式,并化简.2k 1【答案】(1) 64; (2)m 3 4【解析】(1) (1)根据定义,确定条件: 8个数的和除以4的余数是1,因此有1个1或5个1,其余为0,从而m C 8 C 564 ;(2)--:个数的和除以4的余数是3,因此有3个1,或7个1,或11个1,∙∙∙,或4k 1 个1 ,其余为0, m 3 C 43k CJ k Cr k L C4k 1,再根据组合数性质即可化简求值• 【详解】(1)当k 2时,数列a 1,a 2,a 3^L ,%中有1个1或5个1,其余为0, 所以 m C 8 C 8564 .(2)依题意,数列a 1, a 2,L ,a 4k 中有3个1,或7个1,或11个1,…, 或4k 1个1 ,其余为0,4k 1C4k第20页共21页X 的概率分布列为 数学期望E X24 ,125兰2竺3空空125 125 125 125至多”至少”等其他同理,得 m 1 C 41k C 45k C49kL C 44k k 3因为 C 4ik C 44k k ii 3,7,11,L ,4k 1 ,所以 m 1 m 31 3 9 4k 3 4k 1 4k 1m 3 C 4kC 4k C 4k L C 4k C 4k 2点睛】 本题考查组合数的性质,组合数的运算,属中档题所以 m 34k 224k 22k 14。
2019-2020学年江苏省南通市海安高中高三(下)第二次检测数学试卷(5月份)一、填空题(共14小题).1.(5分)已知集合M={2,0,x},集合N={0,1},若N⊆M,则x=.2.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.3.(5分)已知复数z满足(3+4i)z=1(i为虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,最后输出的S的值为.5.(5分)现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为.6.(5分)在△ABC中,若AB=1,BC=2,,则的值是.7.(5分)若实数x,y满足约束条件,则目标函数z=2x+y的最小值为.8.(5分)已知sin(15°﹣α)=,则cos(30°﹣2α)的值为.9.(5分)已知等比数列{a n}的前n项和为S n,若a2a8=2a3a6,S5=﹣62,则a1的值是.10.(5分)已知双曲线的一条渐近线与直线x﹣2y+3=0平行,则离心率e =.11.(5分)一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的倍.12.(5分)已知函数f(x)=,则不等式f(x)<(2﹣x)的解集为.13.(5分)已知函数y=a x+b(b>0)的图象经过点P(1,3),如图所示,则+的最小值为.14.(5分)已知直线x﹣y+3=0与圆O:x2+y2=r2(r>0)相交于M,N两点,若,则圆的半径r=.二、解答题(共6小题).15.(14分)设函数x.(1)求f(x)的单调增区间;(2)若x∈(0,4),求y=f(x)的值域.16.(14分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.(1)求证:直线OG∥平面EFCD;(2)求证:直线AC⊥平面ODE.17.(14分)如图,已知椭圆C:+=1(a>b>0),离心率为.过原点的直线与椭圆C交于A、B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB.(1)求椭圆C的右准线方程为:x=4.求椭圆C的方程;(2)设直线BD、AB的斜率分别为k1,k2,求的值.18.(16分)如图,某小区有一矩形地块OABC,其中OC=2,OA=3,单位:百米.已知OEF是一个游泳池,计划在地块OABC内修一条与池边EF相切于点M的直路l (宽度不计),交线段OC于点D,交线段OA于点N.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边EF满足函数y=﹣x2+2()的图象.若点M到y轴距离记为t.(1)当时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值时多少?19.(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知函数f(x)=ax3+3xlnx﹣1(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)在区间(,e)上有且只有一个极值点,求实数a的取值范围.20.(16分)已知数列{a n}的前n项和为S n,且对一切正整数n都有.(Ⅰ)求证:a n+1+a n=4n+2;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)是否存在实数a,使不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.参考答案一、填空题(共14小题).1.(5分)已知集合M={2,0,x},集合N={0,1},若N⊆M,则x=1.【分析】根据条件N⊆M,确定元素关系,进行求解即可,从而得到x的值.解:∵集合M={2,0,x},N={0,1},∴若N⊆M,则集合N中元素均在集合M中,故答案为:1.2.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.3.(5分)已知复数z满足(3+4i)z=1(i为虚数单位),则z的模为.【分析】复数方程两边求模推出结果即可.解:复数z满足(3+4i)z=1(i为虚数单位),可得:|(3+4i)z|=1,可得5|z|=8.故答案为:.4.(5分)根据如图所示的伪代码,最后输出的S的值为55.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1+2+3+4+5+…+10的值,利用等差数列的求和公式计算即可得解.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:由于:S=1+2+3+4+5+…+10=55,故答案为:55;5.(5分)现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为.【分析】利用组合的方法求出甲类试题2道,乙类试题3道,从中随机取2道试题的方法,全是甲类试题,有1种方法,利用对立事件的概率公式求出至少有1道试题是乙类试题的概率.解:甲类试题2道,乙类试题3道,从中随机取2道试题,共有=10种方法,全是甲类试题,有7种方法,故答案为:.6.(5分)在△ABC中,若AB=1,BC=2,,则的值是﹣5.【分析】由已知可得△ABC为直角三角形,以B为坐标原点建系,求出向量的坐标运算.解:由AB=1,BC=2,,可知△ABC为直角三角形,如图,∴=0﹣3﹣1=﹣5.故答案为:﹣5.7.(5分)若实数x,y满足约束条件,则目标函数z=2x+y的最小值为1.【分析】作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最小,由,解得,故答案为:18.(5分)已知sin(15°﹣α)=,则cos(30°﹣2α)的值为.【分析】直接利用二倍角公式化简求解即可.解:,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=1﹣2×=.故答案为:.9.(5分)已知等比数列{a n}的前n项和为S n,若a2a8=2a3a6,S5=﹣62,则a1的值是﹣2.【分析】由题意可知,q≠1,结合等比数列的通项公式及求和公式可得,解方程可求解:∵a2a8=2a3a6,S5=﹣62∴q≠1解方程可得,q=2,a1=﹣2故答案为:﹣210.(5分)已知双曲线的一条渐近线与直线x﹣2y+3=0平行,则离心率e=.【分析】利用双曲线的渐近线方程,求出a,然后求解离心率.解:双曲线的一条渐近线与直线x﹣2y+3=7平行,可得,解得a=,双曲线的离心率为:=.故答案为:.11.(5分)一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的2倍.【分析】根据几何体的性质,公式转化为用r表示的式子判断.解:∵一个圆柱和一个圆锥同底等高∴设底面半径为r,高为h,∴πrl=2πr2,l=2r∴圆柱的侧面积=2πrh=2πr2,∴圆柱的侧面积是其底面积的2倍,故答案为:.12.(5分)已知函数f(x)=,则不等式f(x)<(2﹣x)的解集为(1,+∞).【分析】判断函数f(x)的单调性,利用函数的单调性进行求解即可.解:当x≥0时,f(x)=e x为增函数,且f(x)≥1,当x<0时,f(x)=x+1为增函数,且f(x)<7,则不等式f(x)<f(2﹣x)等价为x<2﹣x,即不等式的解集为(1,+∞),故答案为:(1,+∞).13.(5分)已知函数y=a x+b(b>0)的图象经过点P(1,3),如图所示,则+的最小值为.【分析】函数y=a x+b(b>0)的图象经过点P(1,3),可得3=a+b,a>1,b>0.即(a﹣1)+b=2.再利用“乘1法”与基本不等式的性质即可得出.解:∵函数y=a x+b(b>0)的图象经过点P(1,3),∴3=a+b,a>1,b>4.∴(a﹣1)+b=2.故答案为:.14.(5分)已知直线x﹣y+3=0与圆O:x2+y2=r2(r>0)相交于M,N两点,若,则圆的半径r=.【分析】本题可以利用方程组得到交点间的坐标关系,然后将向量条件坐标化,得到关于半径的方程,求出半径的值.解:设M(x1,y1),N(x2,y2),由直线x﹣y+5=0与圆O:x2+y2=r2(r>0)联立,∴x1+x2=﹣3,x1x5=(9﹣r6).∵,∴(9﹣r3)+(9﹣r2)=3,故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(14分)设函数x.(1)求f(x)的单调增区间;(2)若x∈(0,4),求y=f(x)的值域.【分析】(1)利用三角函数的恒等变换化简函数f(x),再根据正弦函数的单调性求出f(x)的单调增区间;(2)利用x的取值范围求出x﹣的取值范围,从而得出sin(x﹣)的取值范围,即是f(x)的值域.解:(1)函数f(x)=sin(x﹣)﹣cos x=sin x﹣cos x令﹣+8kπ≤x﹣≤+2kπ,k∈Z;∴函数f(x)的单调增区间为:[﹣+8k,+8k],k∈Z;…6分∴0<x<π,∴﹣<sin(x﹣)≤1;即函数f(x)的值域为:(﹣,].…14分.16.(14分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.(1)求证:直线OG∥平面EFCD;(2)求证:直线AC⊥平面ODE.【分析】(1)根据线线平行推出线面平行;(2)根据线面垂直的判定定理进行证明即可.【解答】证明(1)∵四边形ABCD是菱形,AC∩BD=O,∴点O是BD的中点,∵点G为BC的中点∴OG∥CD,…(3分)(8)∵BF=CF,点G为BC的中点,∴FG⊥BC,∵AC⊂平面ABCD∴FG⊥AC,∴四边形EFGO为平行四边形,∴FG∥EO,…(11分)∵AC⊥EO,AC⊥DO,EO∩DO=O,EO、DO在平面ODE内,∴AC⊥平面ODE.…(14分)17.(14分)如图,已知椭圆C:+=1(a>b>0),离心率为.过原点的直线与椭圆C交于A、B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB.(1)求椭圆C的右准线方程为:x=4.求椭圆C的方程;(2)设直线BD、AB的斜率分别为k1,k2,求的值.【分析】(1)运用椭圆的离心率公式和准线方程,及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1),运用直线的斜率公式,由两直线垂直的条件,可得AD的斜率,设直线AD的方程为y=kx+m(k、m≠0),代入椭圆方程,由韦达定理,结合直线的斜率公式可得BD的斜率,进而得到所求值.解:(1)离心率为,即为e==,右准线方程为:x=4,即为=4,则椭圆的方程为+=1;∵k AB=,AD⊥AB,∴直线AD的斜率k=﹣,消去y整理得:(b2+a2k2)x6+2ma2k2x+a7m2﹣a2b2=0,∴y1+y2=k(x2+x2)+2m=,即有的值为.则=,,即的值.18.(16分)如图,某小区有一矩形地块OABC,其中OC=2,OA=3,单位:百米.已知OEF是一个游泳池,计划在地块OABC内修一条与池边EF相切于点M的直路l (宽度不计),交线段OC于点D,交线段OA于点N.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边EF满足函数y=﹣x2+2()的图象.若点M到y轴距离记为t.(1)当时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值时多少?【分析】(1)求当时,代入函数y=﹣x2+2,得M(,),利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<2)上的极值,进而得出地块OABC在直路l不含泳池那侧的面积取到最大值.解:(1)把代入函数y=﹣x2+2,得M(,),∵y'=﹣2x,∴直线方程为y=﹣x+;令y=0,x=(t+),令x=0,y=t2+6,∴2﹣≤t≤1,令g(t)=(t3+4t+),当t=时,g'(t)=7,当t∈(,1)时,g'(t)>0,所以所求面积的最大值为6﹣.19.(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知函数f(x)=ax3+3xlnx﹣1(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)在区间(,e)上有且只有一个极值点,求实数a的取值范围.【分析】(1)当a=0时,化简函数f(x)=3xlnx﹣1并求定义域,再求导数f′(x)=3lnx+3=3(lnx+1),从而由导数确定函数的极值;(2)函数f(x)=ax3+3xlnx﹣1的定义域为(0,+∞),再求导f′(x)=3(ax2+lnx+1),再令g(x)=ax2+lnx+1,再求导g′(x)=2ax+=,从而由导数的正负性分类讨论以确定函数是否有极值点及极值点的个数.解:(1)当a=0时,f(x)=3xlnx﹣1的定义域为(0,+∞),f′(x)=3lnx+8=3(lnx+1),故f(x)在x=时取得极小值f()=﹣7﹣1;f′(x)=3(ax8+lnx+1),当a>0时,g′(x)>0在(8,+∞)恒成立,而f′()=3[a()8+ln+1]=3a()2>0,故f(x)在区间(,e)上单调递增,当a=0时,由(5)知,f(x)在区间(,e)上没有极值点;故g(x)=ax2+lnx+1在(0,)上是增函数,在(,+∞)上是减函数,①当g(e)•g()<0,即﹣<a<0时,g(x)在(,e)上有且只有一个零点,且在该零点两侧异号,②令g()=0得=0,不可能;③令g(e)=6得a=﹣,所以∈(,e),又g()<6,综上所述,实数a的取值范围是[﹣,0).20.(16分)已知数列{a n}的前n项和为S n,且对一切正整数n都有.(Ⅰ)求证:a n+1+a n=4n+2;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)是否存在实数a,使不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.【分析】(I)由,知,由此能够导出.(II)在中,令n=1,得a1=2,代入(I)得a2=4.由a n+1+a n =4n+2,知a n+2+a n+1=4n+6,故a n+2﹣a n=4,由此能导出数列{a n}的通项公式是a n=2n.(III)<等价于,令f(n)=,则f(n)>0,由此能够导出存在实数a,符合题意,并能求出其取值范围.解:(I)∵,∴∴,(II)在中,∵a n+1+a n=4n+4,∴a n+2+a n+1=4n+6,∴数列{a n}的偶数项a2,a8,a6,…,a26,…依次构成一个等差数列,∴当n为偶数时,=,a n=4n+2﹣a n+1=4n+8﹣2(n+1)=2n,(III)<,令f(n)=,∴==.∴n∈N*时,f(n)的最大值为,若存在实数a,符合题意,即,解得,或,其取值范围为.。
江苏省南通市2020届高三数学第二次调研测试一试题江苏省南通市 2020 届高三数学第二次调研测试一试题注意事项考生在答题前请仔细阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(共14 题)、解答题(共 6 题),满分为 160 分,考试时间为 120 分钟。
考试结束后,请将答题卡交回。
2.答题前,请您务势必自己的姓名、考试证号等用书写黑色笔迹的0.5 毫米署名笔填写在答题卡上。
3.作答试题一定用书写黑色笔迹的0.5 毫米署名笔写在答题卡上的指定地点,在其他位置作答一律无效。
若有作图需要,可用2B 铅笔作答,并请加黑、加粗,描绘清楚。
参照公式:柱体的体积公式V柱体Sh ,此中S为柱体的底面积,h为高.一、填空题:本大题共14 小题,每题 5 分,合计 70 分.请把答案填写在答题卡相应地点上.........1.已知会合 U1,0 ,1,2,3 ,A1,0 ,2,则 e U A▲ .2.已知复数 z1a i ,z2z13 4 i ,此中i为虚数单位.若z为纯虚数,则实数a的值为▲ .23.某班 40 名学生参加普法知识比赛,成绩都在区间40,100 上,其频次散布直方图如下图,则成绩不低于60 分的人数为▲.开始S←1频次i ←1组距i← i1S←S× 5i < 4YN40506070 8090100成绩 /分输出 S(第 3题)结束(第4题)4.如图是一个算法流程图,则输出的S的值为▲.5.在长为 12 cm 的线段AB上任取一点C,以线段AC, BC为邻边作矩形,则该矩形的面积大于 32 cm2的概率为▲ .6.在△ABC中,已知 AB1,AC 2 ,B45 ,则BC的长为▲ .江苏省南通市2020届高三数学第二次调研测试一试题27. 在平面直角坐标系xOy 中,已知双曲线C 与双曲线2y有公共的渐近线,且经过点 x13P 2, 3 ,则双曲线 C 的焦距为 ▲ .8. 在平面直角坐标系xOy 中,已知角 , 的始边均为 x 轴的非负半轴,终边分别经过点A (1 ,2 ) ,B ( 5 ,1) ,则 tan() 的值为▲ .9. 设等比数列 a n 的前 n 项和为 S n .若 S 3 ,S 9 ,S 6 成等差数列, 且 a 8 3 ,则a 5 的值为▲ .10.已知 a ,b ,c 均为正数,且 abc 4( a b ) ,则 a b c 的最小值为▲ .x ≤ 3 ,11.在平面直角坐标系xOy 中,若动圆 C 上的点都在不等式组x 3y 3≥ 0 , 表示的平面地区 x3y 3 ≥ 0内,则面积最大的圆C 的标准方程为 ▲ .12.设函数 f ( x)exx31 ,x 0 ,3 个不一样的零点,则实数2(此中 e 为自然对数的底数)有 3mx 2 ,x ≤ 0m 的取值范围是▲ .13.在平面四边形 ABCD 中,已知 AB 1,BC4 ,CD 2 ,DA uuur uuur3,则 AC BD 的值为 ▲ .14.已知 a 为常数,函数x的最小值为2f ( x)23 ,则 a 的全部值为▲ .x 1 x 2a二、解答题: 本大题共 6 小题,合计 90 分.请在答题卡指定地区 内作答. 解答时应写出文字说明、.......证明过程或演算步骤.15.(本小题满分 14 分)在平面直角坐标系xOy 中,设向量acos ,sin,, cos, 1 ,3.bsinc2 2 (1)若 a bc ,求 sin () 的值;(2)设5π, 0 π,且 a //b c,求的值.616.(本小题满分 14 分)如图,在三棱柱111中,AB,点 , F 分别在棱 1,1上(均异于ABC ABCACEBBCC端点),且∠ ABE ∠ ACF , AE ⊥ BB 1, AF ⊥ CC 1. AC求证:( 1)平面 AEF ⊥平面 BBCC ;BF11E(2)BC //平面AEF.17.(本小题满分14 分)如图,在平面直角坐标系xOy中,1, 2 是椭圆x2y21( a b 0 ) 的短轴端点,P是B Bb2a 2椭圆上异于点 B , B 的一动点.当直线PB 的方程为y x 3时,线段 PB 的长为4 2.1211(1)求椭圆的标准方程;(2)设点Q知足:1122.求证:△PB1B2与△QB1B2的面积之比为定值.QB PB, QB PByB1QO xPB2(第 17 题)18.(本小题满分16 分)2将一铁块高温消融后制成一张厚度忽视不计、面积为 100 dm 的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成 A, B,C三个矩形( B,C全等),用来制成一个柱体.现有两种方案:方案①:以l1为母线,将 A 作为圆柱的侧面睁开图,并从B, C中各裁剪出一个圆形作为圆柱的两个底面;方案②:以l1为侧棱,将 A 作为正四棱柱的侧面睁开图,并从B, C中各裁剪出一个正方形(各边分别与l1或 l2垂直)作为正四棱柱的两个底面.(1)设B,C都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;江苏省南通市2020届高三数学第二次调研测试一试题( 2)设 l1的长为x dm,则当 x 为多少时,能使按方案②制成的正四棱柱的体积最大?l1BAl 2C(第 18 题)19.(本小题满分16 分)设等比数列1, 2, 3, 4 的公比为,等差数列b 1,2,3, 4 的公差为,且q 1,d 0.a a a a qb b b d 记c i a i b i(i1,2, 3, 4).( 1)求证:数列c1,c2,c3不是等差数列;( 2)设a11,q 2.若数列,,是等比数列,求b2对于 d 的函数关系式及其定义域;c1 c2c3( 3)数列 c1,c2,c3,c4可否为等比数列?并说明原因.20.(本小题满分16 分)设函数 f ( x )x asin x ( a0 ).(1)若函数y f ( x ) 是R上的单一增函数,务实数a 的取值范围;(2)设a 1 ,g ( x )2f ( x ) b ln x 1 ( b R ,b0 ),g ( x ) 是g( x ) 的导函数.① 若对随意的x0 ,g ( x )0 ,求证:存在x0,使 g( x0)0 ;②若 g ( x1 )g ( x2) ( x1x2),求证:x1 x24b 2.江苏省南通市2020届高三数学第二次调研测试一试题(附带题)注意事项考生在答题前请仔细阅读本注意事项及各题答题要求1. 本试卷共 2 页,均为非选择题(第21~23 题)。
2020届江苏省南通市海安高级中学高三下学期5月二模考试数学试卷★祝考试顺利★(解析版)一、填空题1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = . 【答案】1 试题分析:由题意1M ∈,所以1x =.2.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.【答案】60【解析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++. 故答案为60.3.已知复数z 满足()341(i z i +=为虚数单位),则z 的模为 . 【答案】15试题分析:()134513413425255i i z z z i -+=⇒==⇒==+ 4.根据如图所示的伪代码,最后输出的S 的值为_________.【答案】55【详解】试题分析:由算法伪代码语言所提供的信息可知(110)1001210552S +⨯=+++⋅⋅⋅+==,应填55.5.现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为 . 【答案】910试题分析:从5道试题中随机取2道试题,共有10种基本事件,其中皆不是乙类试题的包含1中基本事件,因此至少有1道试题是乙类试题的概率为1911010-= 考点:古典概型概率 6.在ABC 中,若1AB =,2BC =,CA =AB BC BC CA CA AB ⋅+⋅+⋅的值是______.【答案】5-【解析】利用勾股定理可得知AB BC ⊥,结合平面向量数量积的运算性质可求得AB BC BC CA CA AB ⋅+⋅+⋅的值.【详解】在ABC 中,1AB =,2BC =,CA =222AB BC AC +=, AB BC ∴⊥,则0AB BC ⋅=,因此,()25AB BC BC CA CA AB CA AB BC CA AC AC ⋅+⋅+⋅=⋅+=⋅=-=-.故答案为:5-. 7.若实数,x y 满足约束条件22,{1,1,x y x y x y -≤-≥-+≥则目标函数2z x y =+的最小值为 .【答案】1 【详解】试题分析:可行域为一个三角形ABC 及其内部,其中(3,4),(1,0),(0,1),A B C 直线2z x y =+过点(0,1)C 时取最小值1。
开始输出n 输入p结束n ←1, S ←0S < pn ←n + 1S ←S + 2n NY(第5题)江苏省南通市2020届高三第二学期阶段性模拟考试数 学 试 题2020.05(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,2,3,4A =,{}2log (1)2B x x =-<,则A B =I ▲ . 2.设复数2(2i)z =+(i 为虚数单位),则z 的共轭复数为 ▲ .3.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线2x ﹣y ﹣1=0上方的概率为 .4.在平面直角坐标系xOy 中,若抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为 ▲ . 5.执行右边的程序框图,若p =14,则输出的n 的值为 ▲ .6.函数22log (32)y x x =--的值域为 ▲ .7.等差数列}{n a 中,若100119753=++++a a a a a , 则=-1393a a ▲ .8.现用一半径为10 cm ,面积为80π cm 2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为 ▲ cm 3.9.已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 ▲ .10.已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.在△ABC 中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ . 13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.已知[)0,2θπ∈,若关于k ()33sin cos k θθ-在(],2-∞-上恒成立,则θ的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为梯形,//CD AB ,2AB CD =, AC 交BD 于O ,锐角PAD ∆所在平面PAD ⊥底面ABCD ,PA BD ⊥,点Q 在侧棱PC 上,且2PQ QC =. (1)求证://PA 平面QBD ; (2)求证:BD AD ⊥.17.(本小题满分14分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明.18.(本小题满分16分)如图,有一正三角形铁皮余料,欲利用余料剪裁出一个矩形(矩形的一个边在三角形的边上),并以该矩形制作一铁皮圆柱的侧面。
2020届江苏省南通市海安高级中学高三下学期5月第二次检测数学试题一、填空题1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = . 答案:1试题分析:由题意1M ∈,所以1x =. 【考点】集合间的关系.2.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生. 答案:60采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 解:∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.3.已知复数z 满足()341(i z i +=为虚数单位),则z 的模为 .答案:15试题分析:()13451341||3425255i i z z z i -+=⇒==⇒==+【考点】复数及模的概念与复数的运算4.根据如图所示的伪代码,最后输出的S 的值为_________.答案:55解:试题分析:由算法伪代码语言所提供的信息可知(110)1001210552S +⨯=+++⋅⋅⋅+==,应填55.【考点】伪代码语言的理解和运用.5.现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为 . 答案:910试题分析:从5道试题中随机取2道试题,共有10种基本事件,其中皆不是乙类试题的包含1中基本事件,因此至少有1道试题是乙类试题的概率为1911010-= 【考点】古典概型概率6.在ABC 中,若1AB =,2BC =,5CA =AB BC BC CA CA AB ⋅+⋅+⋅的值是______. 答案:5-利用勾股定理可得知AB BC ⊥,结合平面向量数量积的运算性质可求得AB BC BC CA CA AB ⋅+⋅+⋅的值.解:在ABC 中,1AB =,2BC =,5CA =222AB BC AC +=,AB BC ∴⊥,则0AB BC ⋅=,因此,()25AB BC BC CA CA AB CA AB BC CA AC AC ⋅+⋅+⋅=⋅+=⋅=-=-. 故答案为:5-. 点评:本题考查平面向量数量积的计算,考查平面向量数量积的运算性质,考查计算能力,属于基础题.7.若实数,x y满足约束条件22,{1,1,x yx yx y-≤-≥-+≥则目标函数2z x y=+的最小值为.答案:1解:试题分析:可行域为一个三角形ABC及其内部,其中(3,4),(1,0),(0,1),A B C直线2z x y=+过点(0,1)C时取最小值1【考点】线性规划求最值8.已知()1sin153α︒-=,则()cos302α︒-的值为______.答案:79由题易得3022(15)αα︒︒-=-,然后结合题中条件由余弦的二倍角公式直接计算即可. 解:()()()227cos302cos21512sin15199ααα︒︒︒⎡⎤-=-=--=-=⎣⎦.故答案为:79.点评:本题考查余弦二倍角公式,侧重考查对基础知识的理解和掌握,考查计算能力,属于基础题.9.已知等比数列的前项和为,若,则的值是.答案:-2试题分析:,【考点】等比数列性质及求和公式10.已知双曲线221y x a-=的一条渐近线与直线230x y -+=平行,则离心率e =______.由双曲线方程写出渐近线方程,由平行求得参数a ,然后离心率. 解:由已知双曲线的渐近线方程为0x y =和0x y +=,显然直线0x y =与直线230x y -+=2=,14a =, 即双曲线方程为22114y x -=,实半轴长为1a '=,虚半轴长为12b '=,半焦距为c ==,所以离心率为c e a =='. 点评:本题考查双曲线的离心率,掌握双曲线的渐近线方程与两直线平行的条件是解题关键. 11.一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的_________倍.答案:试题分析:因为一个圆柱和一个圆锥同底等高,所以设底面半径为r ,高为h ,因为圆锥的侧面积是其底面面积的2倍,所以22,2rl r l r ππ==,h =,所以圆柱的侧面积22S rl r π==,其底面积为2r π,所以圆柱的侧面积是底面积的. 【考点】旋转体的侧面积与表面积.【方法点晴】本题主要考查了旋转体的侧面积与表面积的计算,其中解答中涉及到圆柱侧面积、圆锥的侧面积与表面积的计算,圆锥与圆柱的性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及学生的空间想象能力,解答中利用圆柱和圆锥的侧面积公式,准确计算是解答的关键,试题比较基础,属于基础题.12.已知函数()()(),01,0x e x f x x x ⎧≥⎪=⎨+<⎪⎩,则不等式()()22f x f x <-的解集为______.答案:()2,1-先判断函数单调性,再根据单调性化简不等式,解得结果. 解:,1x y e y x ==+都为单调递增函数,且001e =+()f x ∴在R 上单调递增,()()22f x f x <-, 22x x ∴<-,即()()220210x x x x +-<+-<,∴21x -<< 故答案为:()2,1- 点评:本题考查分段函数单调性、利用函数单调性解不等式,考查基本分析求解能力,属基础题.13.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .答案:92试题分析:由图可知,a >1,点(1,3)在函数(0)xy a b b =+>的图象上,所以 a +b =3.1<a <3,0<b <2.4114114114192()[(1)]()(5)12121212b a a b a b a b a b a b -+=⨯+=⨯-++=⨯++≥----当且仅当72,33a b ==时取等号 【考点】指数函数性质及图象,基本不等式,函数的最值14.已知直线30x y -+=与圆222:O x y r +=()0r >相交于,M N 两点,若3OM ON ⋅=,圆的半径r =______.答案:6求出圆心到弦的距离32=d ,利用余弦二倍角公式与向量的数量积公式化简222(21)d OM ON r r⋅=⋅-可得解:圆心(0,0) 到直线30x y -+=的距离2200+332===221+1d -. ()22222cos cos 2cos 1(21)d OM ON OM ON MON r r MON r MOE r r⋅=∠=⋅⋅∠=∠-=⋅-2222292293662d r r r r r ∴-=⋅-=-=⇒=⇒=.6 点评:本题考查直线与圆相交问题.解题关键是掌握垂径定理及向量的数量积公式二、解答题15.设函数()sin cos 464f x x x πππ⎛⎫=--⎪⎝⎭.(1)求()f x 的单调增区间;(2)若()0,4x ∈,求()y f x =的值域. 答案:(1)单调增区间为:()2108,833k k k Z ⎡⎤-++∈⎢⎥⎣⎦;(2)332⎛- ⎝.(1)由两角差正弦公式化函数为一个角的一个三角函数形式,然后利用正弦函数的单调性得增区间; (2)求出43x ππ-的范围,把它作为一个整体,利用正弦函数性质可得()f x 值域.解:解:(1)()33sin cos sin cos 3sin 46442443f x x x x x x πππππππ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭∵222432k x k ππππππ-+≤-≤+,∴2108833k x k -+≤≤+,k Z ∈ ∴()f x 的单调增区间为:()2108,833k k k Z ⎡⎤-++∈⎢⎥⎣⎦(2)∵()0,4x ∈,∴23433x ππππ-<-<∴3sin 143x ππ⎛⎫-<-≤ ⎪⎝⎭ ∴()f x 的值域为:3,32⎛⎤- ⎥⎝⎦. 点评:本题考查正弦型三角函数的单调性,值域问题,考查两角和与差的正弦公式,掌握正弦函数的性质是解题关键.16.如图,在多面体ABCDEF 中,四边形ABCD 是菱形,,AC BD 相交于点O ,//EF AB ,2AB EF =,平面BCF ⊥平面ABCD ,BF CF =,点G 为BC 的中点.(1)求证:直线//OG 平面EFCD ; (2)求证:直线AC ⊥平面ODE . 答案:(1)证明见解析;(2)证明见解析. (1)证明OGCD ,再利用线面平行判定定理,即可证明;(2)证明AC ⊥平面ODE 内的两条相交直线EO 、DO ; 解:证明:(1)∵四边形ABCD 是菱形,AC BD O =,∴点O 是BD 的中点,∵点G 为BC 的中点,∴OGCD ,又∵OG ⊄平面EFCD ,CD ⊂平面EFCD ,∴直线OG ∥平面EFCD . (2)∵BF CF =,点G 为BC 的中点,∴FG BC ⊥. ∵平面BCF ⊥平面ABCD ,平面BCF ⋂平面ABCD BC =,FG ⊂平面BCF ,FG BC ⊥,∴FG ⊥平面ABCD ,∵AC ⊂平面ABCD ,∴FG AC ,∵OGAB ,12OG AB=,EF AB ∥,12BF AB =, ∴OG EF ∥,OG EF =, ∴四边形EFGO 为平行四边形, ∴FG EO ∥, ∵FGAC ,FG EO ∥,∴AC EO ⊥,∵四边形ABCD 是菱形,∴AC DO ⊥,∵AC EO ⊥,AC DO ⊥,EO DO O ⋂=,EO 、DO 在平面ODE 内, ∴AC ⊥平面ODE . 点评:本题考查线面平行判定定理、线面垂直判定定理的运用,考查转化与化归思想,考查空间想象能力,求解时注意条件书写的完整性.17.如图,已知椭圆()2222:10x y C a b a b+=>>,离心率为12,过原点的直线与椭圆C交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥.(1)若椭圆C 的右准线方程为:4x =,求椭圆C 的方程; (2)设直线BD 、AB 的斜率分别为1k 、2k ,求12k k 的值.答案:(1)22143x y +=;(2)1234k k =. (1)根据右准线以及离心率列方程组解得21a c =⎧⎨=⎩,即得23b =,可得椭圆C 的方程; (2)利用点差法得22110AD BD k k a b +⋅=,结合AD AB ⊥转化为1222111()0k a b k +-⋅=再根据离心率可得12k k 的值. 解:(1)2124c e a a c⎧==⎪⎪⎨⎪=⎪⎩,解得:21a c =⎧⎨=⎩,∴23b =,∴椭圆方程为:22143x y +=.(2)设()11,A x y ,()22,D x y ,则()11,B x y --,∴,A D 在椭圆上∴22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,∴()()()()1212121222110x x x x y y y y a b +-++-= ∴22110AD BD k k a b +⋅=,∵12c e a ==,∴2234b a =,∴134AD k k =-∵AD AB ⊥,∴21AD k k =-,∴1234314AD ADk k k k -==- 点评:本题考查椭圆标准方程、点差法,考查综合分析求解能力,属中档题.18.如图,某小区有一块矩形地块OABC ,其中2OC =,3OA =,单位:百米.已知OEF 是一个游泳池,计划在地块OABC 内修一条与池边EF 相切于点M 的直路l (宽度不计),交线段OC 于点D ,交线段OA 于点N .现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立平面直角坐标系,若池边EF满足函数(220y x x =-+≤≤的图象,若点M 到y 轴距离记为t .(1)当23t =时,求直路所在的直线方程; (2)当t 为何值时,地块OABC 在直路l 不含泳池那侧的面积取到最大,最大值时多少?答案:(1)42239y x =-+;(2)6t =866. (1)把23t =代入函数22y x =-+,得M 的坐标,再利用导数求切线的斜率,即可得到答案;(2)先求出面积的表达式为31444OND S t t t ⎛⎫=++ ⎪⎝⎭△,再利用导数求函数的最大值,即可得到答案; 解:解:(1)把23t =代入函数22y x =-+,得214,39M ⎛⎫ ⎪⎝⎭,∵2y x '=-,∴43k =-, ∴直线方程为42239y x =-+;(2)由(1)知,直线的方程为222y tx t =-++,令0y =,122x t t ⎛⎫=+ ⎪⎝⎭,令0x =,22y t =+, ∴1222t t ⎛⎫+≤ ⎪⎝⎭,223t +≤. ∴221t ≤≤, ∴()231121424224OND S t t t t t t ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭△,令()31444g t t t t ⎛⎫=++ ⎪⎝⎭,∴()()()2222324t t g t t+-'=当t =()0g t '=,当2t ⎛∈- ⎝⎭时,()0g t '<,当3t ⎛⎫∈ ⎪ ⎪⎝⎭时,()0g t '>,()39g t g ⎛≥= ⎝⎭,所以所求面积的最大值为69-. 点评:本题考查函数模型解决面积问题、导数几何意义的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19.若函数()y f x =在0x x =处取得极大值或极小值,则称x 为函数()y f x =的极值点.已知函数()()3ln 1f x ax x x a R =+-∈. (1)当0a =时,求()f x 的极值;(2)若()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上有且只有一个极值点,求实数a 的取值范围.答案:(1)极小值31e --;(2)22,0e ⎡⎫-⎪⎢⎣⎭. (1)求出()()3ln 1f x x '=+,令()0f x '=求出方程的解,从而探究()(),f x f x '随x 的变化情况,即可求出极值.(2)求出()()23ln 1f x ax x '=++,令()2ln 1g x ax x =++,分0a >,0a =,0a <三种情况进行讨论,结合零点存在定理求出实数a 的取值范围. 解:解:(1)当0a =时,()3ln 1f x x x =-的定义域为()0,∞+,()()3ln 33ln 1f x x x '=+=+,令()0f x '=,解得1x =,则()(),f x f x '随x 的变化如下表,故()f x 在10,e ⎛⎫ ⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数;故()f x 在1x e=时取得极小值131f e e ⎛⎫=-- ⎪⎝⎭;(2)函数()33ln 1f x ax x x =+-的定义域为()0,∞+,()()23ln 1f x ax x '=++,令()2ln 1g x ax x =++,则()21212ax g x ax x x+'=+=,当0a >时,()0g x '>在()0,∞+恒成立,故()f x '在()0,∞+上是增函数,而2211113ln 130f a a e e e e ⎡⎤⎛⎫⎛⎫⎛⎫'=++=>⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,故当1,x e e ⎛⎫∈ ⎪⎝⎭时,()0f x '>恒成立,故()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上单调递增,故()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上没有极值点;当0a =时,由(1)知,()f x 在区间1e e ⎛⎫ ⎪⎝⎭,上没有极值点;当0a <时,令2210ax x+=,解得x =或;故()2ln 1g x ax x =++在⎛ ⎝上是增函数,在⎫+∞⎪⎪⎭上是减函数, ①当()10g e g e ⎛⎫⋅< ⎪⎝⎭,即220a e-<<时, ()g x 在1e e ⎛⎫⎪⎝⎭,上有且只有一个零点,且在该零点两侧异号,②令10g e ⎛⎫= ⎪⎝⎭得20a e=,不符合题意;③令()0g e =得22a e =-1,e e ⎛⎫ ⎪⎝⎭,而1ln 0222e e g g ⎛⎫==+> ⎪⎝⎭,又10g e ⎛⎫< ⎪⎝⎭, 所以()g x 在1e e ⎛⎫ ⎪⎝⎭,上有且只有一个零点,且在该零点两侧异号,综上所述,实数a 的取值范围是22,0e ⎡⎫-⎪⎢⎣⎭. 点评:本题考查了极值的求解,考查了已知极值点的范围求解参数.20.已知数列{}n a 的前n 项和为n S ,且对一切正整数n 都有212n n S n a =+. (1)求证:()*142n n a a n n N ++=+∈;(2)求数列{}n a 的通项公式;(3)是否存在实数a,使不等式21211111...1n a a a ⎛⎫⎛⎫⎛⎫---<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,对一切正整数n 都成立?若存在,求出a 的取值范围;若不存在,请说明理由. 答案:(1)证明见解析;(2)()*2n a n n N=∈;(3)存在;a的取值范围是()3,2⎛⎫-+∞ ⎪ ⎪⎝⎭.(1)由题得()2*12n n S n a n N =+∈①,()()211112n n S n a n N ++=++∈②,②-①即得142n n a a n ++=+; (2)由题得24n n a a +-=.()*n N ∈,再对n 分奇数和偶数两种情况讨论,求出数列{}n a 的通项公式;(3)令()1211111...1n f n a a a ⎛⎫⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()*n N ∈,判断函数的单调性,求出其最大值,解不等式322a a<-即得解. 解:(1)证明:∵()2*12n n S n a n N =+∈①, ∴()()211112n n S n a n N ++=++∈② 由②-①得()()22*11111111212222n n n n n n S S n a n a n a a n N +++⎡⎤⎛⎫-=++-+=++-∈ ⎪⎢⎥⎣⎦⎝⎭,∴()*142n n a a n n N++=+∈.(2)∵()*142n n a a n n N++=+∈③∴()2146n n a a n n N +++=+∈,④ ④-③,得24n na a +-=.()*n N ∈从而数列{}n a 的奇数项依次成等差数列,且首项为12a =,公差为4; 数列{}n a 的偶数项也依次成等差数列,且首项为2a ,公差为4. 在①中令1n =得211112S a =+,又∵11S a =,∴1111122a a a =+⇒=. 在③中令1n =得2242a +=+,∴24a =. ∴当()*21n k k N =-∈时,12n k +=,()21141422nk a a a k k n -==+-=-=;∴当2n k =()*k N∈时,2nk =,()224142n k a a a k k n ==+-==; 综上所述,()*2n a n n N=∈.(3)令()1211111...1n f n a a a ⎛⎫⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()*n N ∈,则()0f n > 且()()1121111n f n n f n a +++⎛⎫=-==< ⎪⎝⎭ ∴()()1f n f n +<, ∴()f n 单调递减, ∴()()max []1f n f ==.∴不等式21211111...1n a a a ⎛⎫⎛⎫⎛⎫---<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭对一切正整数n 都成立等价于()32f n a a<-对一切正整数n 都成立, 等价于()max f n a <-⎡⎤⎣⎦32a a <-.0<,即(20a a a->,解之得a >02a -<<. 综上所述,存在实数a 的适合题意,a的取值范围是()3,2⎛⎫-+∞ ⎪ ⎪⎝⎭.点评:本题主要考查数列通项的求法,考查数列的单调性的判定和最值的求法,考查数列不等式的恒成立问题的求解,考查不等式的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
2020届高三阶段性检测试题数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上.3.作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效.如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚. 参考公式:锥体的体积公式 13V Sh =锥体,其中S 为锥体的底面积,h 为高.球的体积公式343V R =π球,球的表面积公式24S R π=球,其中R 为球的半径. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.已知集合{}1,0,3A =-,{1,2,3}B =,则A B =_________.【答案】{3} 【解析】由交集的定义{3}A B ⋂=,应填答案{3}.2.已知复数z 满足()12i z i -=+,则复数z 的模为_______.【答案】102【解析】 【分析】由已知得21i z i+=-,将其整理成1322z i =+,即可求出模.【详解】解:由题意知, ()()()()2121313111222i i i i z i i i i ++++====+--+所以223211022z ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭. 故答案为:102. 【点睛】本题考查了复数的运算,考查了复数的模.本题的易错点在于化简时,错把2i 当成了1来计算.3.某人5次上班途中所用的时间(单位:分钟)分别为12,8,10,11,9.则这组数据的平均数为_______. 【答案】10 【解析】 【分析】代入求解平均数的公式计算即可. 【详解】解:平均数()112810119105=⨯++++=. 故答案为:10.【点睛】本题考查了平均数的计算.易错点为计算出错. 4.如图,是一个算法的流程图,则输出的b 的值为_______.【答案】4【解析】 【分析】根据流程框图进行循环计算,跳出循环时b 的值即为所求.【详解】解:第一次循环:2,2b a ==;第二次循环:4,3b a ==.此时3a < 不成立 故答案为:4.【点睛】本题考查了程序框图.对于循环结构是常考的题型,一般做法为根据框图,计算每次循环的结果,注意,临界即跳出循环时的计算结果.通常循环框图常和数列求和综合到一块.5.在平面直角坐标系xOy 中,已知双曲线221x y -=的右焦点与抛物线()220y px p =>的焦点重合,则p 的值为_______.【答案】【解析】 【分析】求出双曲线的右焦点),令2p=即可求出p 的值.【详解】解:双曲线2112c =+=,即右焦点为).即抛物线()220y px p =>的焦点为)所以2p=,解得p =.故答案为: 【点睛】本题考查了双曲线的标准方程,考查了抛物线的方程.易错点是误把p 当做了抛物线焦点的横坐标.6.已知一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,则这2只球颜色相同的概率为____. 【答案】0.4 【解析】 【分析】从中一次随机摸2只球,写出基本事件总数n 和这2只球颜色相同包含的基本事件数m ,由古典概型概率公式计算即可.【详解】一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,基本事件总数n =25C =10,这2只球颜色相同包含的基本事件个数m =2232C C +=4,∴这2只球颜色相同的概率为p =410m n ==0.4. 故答案为0.4.【点睛】本题考查古典概型概率的求法,考查运算求解能力,是基础题.7.现有一个橡皮泥制作的圆锥,底面半径为1,高为4.若将它制作成一个总体积不变的球,则该球的表面积为_______. 【答案】4π 【解析】 【分析】求出圆锥的体积,则由题意,设球的半径为r ,可得34433r π=π,求出球的半径,进而可求球的表面积.【详解】解:由题意知,圆锥的体积为2141433ππ⨯⨯⨯=.设球的半径为r 则34433r π=π,解得1r =.所以表面积244r ππ=.故答案为:4π.【点睛】本题考查了圆锥的体积,考查了球的体积,考查了球的表面积.结合方程的思想,根据题意求出球的半径.对于球的问题,一般都要首先明确半径的大小.8.已知等比数列{}n a 的前n 项的和为n S ,11a =,639S S =,则3a 的值为_______. 【答案】4 【解析】 【分析】由639S S =可得()33319S q S +=,进而可求出公比的值,即可求3a 的值.【详解】解:()3333612345612312331S a a a a a a a a a a q a q a q S q =+++++=+++++=+639S S = ()33319S q S ∴+= 解得,2q.所以2314a a q ==.故答案为:4.【点睛】本题考查了等比数列的通项公式,考查了等比数列的前n 项和.等比数列问题,一般可采用基本量法进行求解,但是这种方法计算量比较大.因此,对于等比数列的问题,一般首先考虑利用性质简化计算.9.已知1e ,2e 是夹角为60的两个单位向量,1232a e e =+,122b e ke =-()k R ∈,且a ⋅()8ab -=则k 的值为_______.【答案】67- 【解析】 【分析】由题意知()()()121212323228a a b e e e e e ke ⋅-=+⋅+-+=,进而可求k 的值.【详解】解:()()()()()121212121232322322a a b e e e e e ke e e e k e ⋅-=+⋅+-+=+⋅++⎡⎤⎣⎦()()()()221122733822+338cos60221182e k e e k e k k k =++⋅+=++++=+=. 解得67k =-. 故答案为:67-. 【点睛】本题考查了平面向量的数量积.对于向量的数量积问题,若题目中无向量的坐标,则在求数量积时,一般套用定义求解;若题目中已知了向量的坐标,求数量积时一般代入数量积的坐标公式.10.在平面直角坐标系xOy 中,已知圆22:280C x y x ++-=,直线():1,l y k x k R =-∈过定点A ,与圆C 交于点,B D ,过点A 作BC 的平行线交CD 于点E ,则AEC ∆的周长为_______. 【答案】5 【解析】 【分析】由题意得1,0A ,圆心为()1,0C -,半径为3r =,由平行可知EA EDCB CD=,化简后可得EA CE r +=,进而可求三角形的周长.【详解】解:当1x = 时,0y = 与k 无关,则1,0A .圆()2222:2819C x y x x y ++-=++=所以,圆的圆心为()1,0C -,半径为3r =.则由题意知,ED r CE =-EA 与CB 平行 EA ED CB CD ∴= 即 EA r CEr r-= EA CE r ∴+= 则AEC ∆的周长235AC AE CE AC r =++=+=+=. 故答案为:5.【点睛】本题考查了直线过定点的问题,考查了圆的标准方程.本题的关键在于,由平行得比例关系.若联立直线与圆的方程,求解各点的坐标,这种思路也可以求出最后答案,但计算量太大.11.如图,已知两座建筑物,AB CD 的高度分别为15m 和9m ,且AB BC CD >>,从建筑物AB 的顶部A 看建筑物CD 的张角为CAD ∠,测得6tan 13CAD ∠=,则,B C 间的距离_______m .【答案】12 【解析】 【分析】由()tan tan 6BC BAD DAC BAC ∠==∠+∠,可得613156611315BC BC BC +=-⨯,进而可求,B C 间的距离.【详解】解:由题意知()tan tan 6BC BCBAD DAC BAC AB CD ∠===∠+∠-6tan tan 1315661tan tan 11315BCBC DAC BACBCDAC BAC +∠+∠==-∠⨯∠-⨯,整理得22391800BC BC -+= ,解得12BC =或152BC =.9BC CD >=,12BC ∴=故答案为:12.【点睛】本题考查了三角恒等变换的应用.难点在于已知正切值的使用.有的同学可能由正切值求出正弦和余弦,结合正弦定理和余弦定理列出方程进行求解.由于本题所给的正切值求出的正弦余弦值数比较大,因此这种思路计算量较大,效率不高而且容易做错. 12.设曲线()0+1my m x =>在,1x t t =≠-处的切线为l ,则点()2,1P t -到l 的最大距离为_______.【解析】 【分析】求出切线方程为()2120mx t y mt m ++--=,从而则()2,1P t - 到l 的距离可用t 表示出来,结合基本不等式即可求解. 【详解】解:()2'1my x =-+ ()21l mk t ∴=-+ 则切线方程为()()211m m y x t t t -=--++ 整理得()2120mx t y mt m ++--=.则()2,1P t - 到l 的距离()()()()()242224222212121111t m m t m d m m t t t ++++===++++++ ()()222121m t m t ++≥+,当且仅当()()22211m t t +=+即1t =± 时等号成立2112d ∴≤+=即d ≤故答案为.【点睛】本题考查了切线的求解,考查了点到直线的距离,考查了基本不等式.求最值常见的思路有导数法、函数图像法、函数单调性法、基本不等式法.本题的难点是对距离进行变形整理. 13.已知函数3cos()2y x ππ=+,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭既有最小值也有最大值,则实数t 的取值范围是_______. 【答案】31326t <≤或52t > 【解析】 【分析】由诱导公式可知3cos sin 2y x x πππ⎛⎫=+=⎪⎝⎭,令m x π=,结合函数图像,讨论最大值为12和1两种情况,进而求出t 的取值范围. 【详解】解:3cos sin 2y x x πππ⎛⎫=+=⎪⎝⎭ 令m x π=.则由55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭可得5,6m t ππ⎡⎫∈⎪⎢⎣⎭则5sin ,,6y m m t ππ⎡⎫=∈⎪⎢⎣⎭.要使其既有最小值又有最大值 若最大值为12 则31326t πππ<≤,解得31326t <≤若最大值为1,则52t ππ>,解得52t >.综上所述: 31326t <≤或52t >. 故答案为:31326t <≤或52t >. 【点睛】本题考查了诱导公式,考查了三角函数最值问题.本题的易错点是漏解,只考虑了最大值为1的情况.本题的难点是分界点能否取得的判断.14.已知函数1()1f x x =-,11()(())k k f x f f x +=,5k ≤,k *∈N .若函数()ln k y f x x =-恰有3个不同的零点,则k 的取值集合为_______. 【答案】{3,5} 【解析】 【分析】由题意写出12345(),(),(),(),()f x f x f x f x f x 的解析式,根据图像的平移变换,分别画出它们的图像,判断哪个函数图像与ln y x = 图像有三个交点,即为所求.【详解】解:由题意知1()1f x x =-,2()11f x x =--,3()111f x x =---,4()1111f x x =----,5()11111f x x =-----.则其函数图像为由图像可知,当3k =或5时, 函数()ln k y f x x =-恰有3个不同的零点. 故答案为: {3,5}.【点睛】本题考查了函数的图像变换,考查了函数的零点.若函数()()()f x g x h x =-,则函数()f x 的零点个数就等同于函数(),()g x h x 图像的交点个数.本题的难点是画含绝对值的函数图像.对于()y f x =,首先画出()y f x = 的图像,然后将x 轴下方的图像向上翻折即可;对于()y f x = 的图像,首先画出()y f x = 的图像,然后将y 轴右侧向左翻折. 二、解答题:本大题共6小题,共计90分. 15.在平面直角坐标系xOy 中,设向量()()[]3sin ,sin ,cos ,sin ,0,a x x b x x x π==∈.(1)若a b =,求x 的值;(2)求a b ⋅的最大值及取得最大值时x 的值. 【答案】(1)6π或56π;(2)最大值32,3x π=. 【解析】 【分析】(1)求出||,||a b ,由||||a b =可得1|sin |2x =,结合[0,]x π∈可求出所求. (2) 1sin 262a b x π⎛⎫⋅=-+ ⎪⎝⎭,结合[0,]x π∈和正弦函数的图像,即可分析出最值及取得最大值时x 的值.【详解】解:(1)因为(3sin ,sin ),(cos ,sin )a x x b x x == 所以2222||3sin sin 2|sin |,||cos sin 1a x x x b x x =+==+=因为||||a b =,所以1|sin |2x =.因为[0,]x π∈,所以1sin 2x =于是6x π=或56π. (2)23sin cos sin a b x x x ⋅=+311sin 2cos 222x x =-+1sin 262x π⎛⎫=-+ ⎪⎝⎭因为[0,]x π∈,所以112,666x πππ⎡⎤-∈-⎢⎥⎣⎦,于是113sin 22622x π⎛⎫-≤-+≤ ⎪⎝⎭. 所以当226x ππ-=,即3x π=时,a b ⋅取最大值32. 【点睛】本题考查了向量的模,考查了向量的数量积,考查了三角恒等变换,考查了三角函数的最值.对于()sin y A ωx φ=+ 型的函数,在求最值、对称轴、对称中心、单调区间时,一般都是采取整体的思想进行计算.16.如图,在正方体1111ABCD A B C D -中,E 是棱1A A 的中点.求证:(1)AC//平面1EDB ; (2)平面1EDB ⊥平面1B BD .【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)取1B D 的中点F ,连,OF EF ,通过证明//AC EF 从而证明线面平行.(2)通过AC BD ⊥,1B B AC ⊥推出1EF BB ⊥,EF BD ⊥,从而证明EF ⊥平面1B BD ,进而可证面面垂直.【详解】证明:(1)在正方体1111ABCD A B C D -中,设AC 与BD 相交于点O ,则O 为BD 的中点取1B D 的中点F ,连,OF EF .所以1OF//BB ,112OF BB =.在正方体1111ABCD A B C D -中,1111,//AA BB AA BB =.又点E 是1A A 的中点 所以,//AE OF AE OF =.于是四边形AEFO 是平行四边形,从而//AC EF . 又因为AC ⊄平面1EDB ,EF ⊂平面1EDB ,所以//AC 平面1EDB .(2)在正方体1111ABCD A B C D -中,1B B ⊥平面ABCD ,而AC ⊂平面ABCD , 所以1B B AC ⊥.又在正方体1111ABCD A B C D -中,四边形ABCD 正方形所以AC BD ⊥.由(1)知,//EF AC ,于是1EF BB ⊥,EF BD ⊥.又1B B ⊂平面1B BD ,BD ⊂平面1B BD ,1B B BD B ⋂=,所以EF ⊥平面1B BD . 又因为EF ⊂平面1EDB ,所以平面1EDB ⊥平面1B BD .【点睛】本题考查了线面平行的判定,考查了面面垂直的判定.线面平行或者面面平行的判定,一般都归结为证明线线平行;线面垂直或者面面垂直的判定,一般都归结为证明线线垂直.此类问题如果采用逻辑推理的方法无法证明,有时也可以建立空间直角坐标系,运用空间向量证明平行和垂直.17.如图,在平面直角坐标系xOy 中,已知,A B 两点分别为椭圆22221,0x y a b a b+=>>的右顶点和上顶点,且7AB =,右准线l 的方程为4x =.(1)求椭圆的标准方程;(2)过点A 的直线交椭圆于另一点P ,交l 于点Q .若以PQ 为直径的圆经过原点,求直线PQ的方程.【答案】(1)22143x y +=0y --=0y +-=.【解析】 【分析】(1)由右准线l 的方程为4x =以及AB =可列出方程组22224a c a b c ⎧=⎪⎪⎪=+⎨=⎩解得即可求出椭圆的方程.(2) 设PQ 的方程为(2)y k x =-,与椭圆方程联立,求出2228612,4343k k P k k ⎛⎫-- ⎪++⎝⎭;联立(2)4y k x x =-⎧⎨=⎩可得(4,2)Q k ,由OP OQ ⊥可知0OP OQ ⋅=,从而可求出k =进而可求直线的方程.【详解】解:(1)设椭圆的焦距为2(0)c c >.由题意得22224a c a b c ⎧=⎪⎪⎪=+⎨=⎩,解得224,3a b ==.所以椭圆的标准方程为:22143x y +=.(2)由题意得直线PQ 不垂直于x 轴,设PQ 的方程为(2)y k x =-联立22(2),1,43y k x x y =-⎧⎪⎨+=⎪⎩,消y 得()2222431616120k x k x k +-+-=.又直线PQ 过点(2,0)A ,则方程必有一根为2,则228643P k x k -=+. 代入直线(2)y k x =-,得点2228612,4343k k P k k ⎛⎫-- ⎪++⎝⎭.联立(2)4y k x x =-⎧⎨=⎩,所以(4,2)Q k .又以PQ 为直径的圆过原点,所以OPOQ ⊥.则222228612824420434343k k k OP OQ k k k k ---⋅=⋅+⋅==+++,解得23k =,所以3k =±. 所以直线PQ 的方程为3230x y --=或3230x y +-=.【点睛】本题考查了椭圆的准线方程,考查了椭圆的性质,考查了直线与椭圆相交问题,考查了向量的数量积.本题第二问的难点在于圆过原点这一条件得运用.一般若题目中已知圆过某点,则一般等量关系为:圆心到该点的距离为半径或者圆上两点与已知点的连线垂直.18.下图是一块平行四边形园地ABCD ,经测量,20,10,AB m BC m ==120ABC ∠=.拟过线段AB 上一点E 设计一条直路EF (点F 在四边形ABCD 的边上,不计直路的宽度),将该园地分为面积之比为3:1的左,右两部分分别种植不同花卉.设,EB x EF y ==(单位:m ).(1)当点F 与点C 重合时,试确定点E 的位置; (2)求y 关于x 的函数关系式;(3)试确定点,E F 的位置,使直路EF 的长度最短.【答案】(1)E 是AB 的中点;(2)2222525010100001001020x x x y x x x ⎧-+≤<⎪=⎨++≤≤⎪⎩;(3) 当2.5EB m =,7.5FC m =时,EF 最短,其长度为53.【解析】 【分析】 (1)由14BEC ABCD S S ∆=可知1124EB h AB h ⋅=⋅,从而证明E 是AB 的中点. (2)求出平行四边形的面积为1003ABCDS=,进而可求253EBF S ∆=从而用x 可将BF表示出来,利用余弦定理即可得到y 关于x 的函数关系式.(3)当 010x ≤<,由二次函数的性质可求最值;当1020x ≤≤时,由基本不等式可求最值. 【详解】解:(1)当点F 与点C 重合时,由题设知,14BEC ABCDS S ∆=.于是1124EB h AB h ⋅=⋅,其中h 为平行四边形AB 边上的高. 得12EB AB =,即点E 是AB 的中点.(2)因为点E 在线段AB 上,所以020x ≤≤.当1020x ≤≤时,由(1)知 点F 在线段BC 上.因为20,10,120AB m BC m ABC ︒==∠=所以sin 20102ABCDSAB BC ABC =⋅⋅∠=⨯⨯=.由1sin1202EBF S x BF ︒∆=⋅⋅=,100BF x=.所以EBF ∆中,由余弦定理得y EF ===当010x ≤<时,点F 在线段CD 上,由1()10sin 602EBCF S x CF ︒=+⨯⨯=四边形得10CF x =-.当BE CF ≥时,EF =当BE CF <时,EF =化简均为y EF ==综上,0101020x y x ⎧≤<=≤≤. (3)当010x ≤<时,y ==于是当52x =时,min y =,此时15102CF x =-=. 当1020x ≤≤时,y =≥=当且仅当22100=00x x ,即10x =时,取等号 综上: 当E 距点 2.5B m ,F 距点7.5C m 时,EF最短,其长度为.【点睛】本题考查了函数模型的应用,考查了余弦定理,考查了基本不等式.本题的易错点是没有讨论自变量的取值,从而造成了漏解.求最值时,常用的方法有:导数法、函数图像法、函数单调性法、基本不等式法.19.已知函数()y f x =的定义域为D ,若满足,()()x D x f x f x ∀∈⋅≥,则称函数()f x 为“L 型函数”.(1)判断函数xy e =和ln y x =是否为“L 型函数”,并说明理由;(2)设函数()(1)ln (1)ln ,0f x x x x a a =+-->,记()g x 为函数()f x 的导函数. ①若函数()g x 的最小值为1,求a 的值; ②若函数()f x 为“L 型函数”,求a 的取值范围.【答案】(1)xy e =不是,ln y x =是,理由见解析;(2)①a e =;②20a e <≤.【解析】 【分析】(1)分别求出两个函数的定义域,判断,()()x D x f x f x ∀∈⋅≥即可. (2) ①求出1()()ln 1ln ,(0,)g x f x x a x x'==++-∈+∞,再求()g x ',通过导数探究当x 取何值时,()g x 取最小值,令最小值为1,即可求出a 的值.②由题意(0,),(1)()(1)[(1)ln (1)ln ]0x x f x x x x x a ∀∈+∞-=-+--≥恒成立,分别讨论当20a e <≤和2a e >时,通过探究()f x 的单调性判断是否使得不等式恒成立,从而求出a 的取值范围.【详解】解:(1)对于函数xy e =,定义域为R ,显然000e e ⋅≥不成立,所以xy e =不是“L 型函数”;对于函数ln y x =,定义域为(0,)+∞.当01x <<时,ln 0x <,所以(1)ln 0x x ->,即ln ln x x x >; 当1x ≥时,ln 0x ≥,所以(1)ln 0x x -≥,即ln ln x x x ≥.所以(0,)x ∀∈+∞,都有ln ln x x x ≥.所以函数ln y x =是“L 型函数”. (2)①因为11()()ln ln ln 1ln ,(0,)x g x f x x a x a x x x+'==+-=++-∈+∞ 所以22111()x g x x x x-'=-=.当(0,1)x ∈时,()0g x '<,所以()g x 在(0,1)上为减函数;当(1,)x ∈+∞时,()0g x '>,所以()g x 在(1,)+∞上为增函数. 所以min ()(1)2ln g x g a ==-.所以2ln 1a -=,故a e =. ②因为函数()(1)ln (1)ln f x x x x a =+--为“L 型函数”,所以(0,),(1)()(1)[(1)ln (1)ln ]0x x f x x x x x a ∀∈+∞-=-+--≥(*). (ⅰ)当2ln 0a -≥,即20a e <≤时,由①得()0g x ≥,即()0f x '≥. 所以()f x 在(0,)+∞上增函数,又(1)0f =,当(0,1)x ∈时,()0f x <所以(1)()0x f x ->;当[1,)x ∈+∞时,()0f x ≥,所以(1)()0x f x -≥. 所以(0,)x ∀∈+∞,适合(*)式.(ⅱ)当2ln 0a -<,即2a e >时,(1)0g <,1()10g a a=+>. 所以由零点存在性定理得0(1,)x a ∃∈,使()00g x =,又()g x 在(1,)+∞上为增函数 所以当()01,x x ∈时,()0<g x ,所以()f x 在()01,x 上为减函数又(1)0f =,所以当()01,x x ∈时,()0f x <,所以(1)()0x f x -<,不适合(*)式. 综上得,实数a 的取值范围为20a e <≤.【点睛】本题考查了不等式的性质,考查了函数的最值,考查了不等式恒成立问题.本题的难点在于最后一问,学生往往想不起来通过函数的单调性等来判断函数在某一区间的正负问题. 20.已知数列{}n a 的首项为1,各项均为正数,其前n 项和为n S ,112n nn n na a S a a ++=-,n *∈N .(1)求2a ,3a 的值;(2)求证:数列{}n a 为等差数列;(3)设数列{}n b 满足11b =,1n n n b b a +=,求证:111ni ib =≥∑. 【答案】(1)22a =,33a =;(2)证明见解析;(3)证明见解析. 【解析】 【分析】(1)令1,2n n == 即可求出2a ,3a 的值; (2)由112n n n n na a S a a ++=-得1112(2)n n n n n a a S n a a ---=≥-两式相减进行整理可得11(2)n n n n a a a a n +--=-≥,即可证明{}n a 为等差数列.(3)由(2)可知1n n b b n +=,11(2)n n b b n n -=-≥两式相减整理得111(2)n n nb b n b +-=-≥,则当2n ≥时,12111231111111nn n i i n b b b b b b b b b b +==++++=--++∑,通过放缩即可证明; 当1n =时,111b ≥.从而可证.【详解】解:(1)令1n =得,211212a a S a a =-,又11a =,解得22a =;令2n =得,122322a a S a a =-,即()1123222a a a a +=-,从而33a =. (2)因为112n n n n na a S a a ++=- ①;所以1112(2)n n n n n a a S n a a ---=≥- ② ①-②得,11112n n n n n n n n n a a a aa a a a a +-+-=---.因为数列{}n a 的各项均为正数,所以0n a >.从而11112n n n n n n a a a a a a +-+-=---.去分母得,()()()()1111112n n n n n n n n n n a a a a a a a a a a +----+--=---化简并整理得,21120n n n n n a a a a a +--+=,即112(2)n n n a a a n --=+≥,所以11(2)n n n n a a a a n +--=-≥.所以数列{}n a 为等差数列.(3)由(2)知,1n n b b n += ③.当1n =时,211b b =,又11b =,所以21b =. 由③知,11(2)n n b b n n -=-≥ ④.③-④得,111(2)n n n n b b b b n +--=≥ 即()111(2)n n n b b b n +--=≥,依题意,0n b ≠,所以111(2)n n nb b n b +-=-≥.当2n ≥时,112311111ni inb b b b b ==++++∑ 31425321111n n n n b b b b b b b b b b b -+-=+-+-+-++-+-12111n n b b b b b +=--++ 121n n b b +≥-21n a =-,当1n =时,111b ≥,原不等式也成立.综上得,1121nn i ia b =≥-∑. 【点睛】本题考查了由递推公式求项,考查了等差数列的定义,考查了放缩法,考查了数列求和.本题难点在于整理出111(2)n n nb b n b +-=-≥,从而对所证式子进行化简.涉及到n S 和n a 的递推公式时,一般代入公式11,1,2n n n a n a S S n -=⎧=⎨-≥⎩ 进行求解.Ⅱ(附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共2页,均为非选择题(第21~23题).本卷满分为40分,考试时间为30分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上,并用2B 铅笔正确填涂考试号.3.作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效.如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚.21.已知a ,b R ∈,若M =13a b -⎡⎤⎢⎥⎣⎦所对应的变换T M 把直线2x-y=3变换成自身,试求实数a ,b . 【答案】【解析】 【详解】设则即此直线即为则..22.在极坐标系中,设P 为曲线C :2ρ=上任意一点,求点P 到直线l :sin 33πρθ⎛⎫-= ⎪⎝⎭的最大距离. 【答案】5 【解析】 【分析】将圆C 和直线l 的极坐标方程化为直角坐标方程,转化为求圆上的点到直线l 距离的最大值,求出圆心到直线l 距离,即可求出结论.【详解】曲线C :2ρ=化直角坐标方程为224x y +=表示圆,13sin 3,sin cos 332πρθρθθ⎛⎫-== ⎪⎝⎭, 360x y -+=,圆C 上点P 到直线l 2225(3)1+=+.【点睛】本题考查极坐标方程与直角坐标方程互化、圆上点到直线距离的最值,考查数形结合思想,属于基础题.23.设a,b,c 为正实数,6a b c ++=1233a b c ++. 【答案】证明见解析 【解析】 【分析】根据柯西不等式()()()2222222112233123123x y x y x y x x x y y y ++≤++++,将原式进行配凑并结合已知条件6a b c ++=加以计算,即可得证;【详解】证明:因为a,b,c 为正实数,6a b c ++=,所以)22111=+ ()()1211127a b c ≤++++++=33,当且仅当==,即3a =,2b =,1c =时取等号,33,得证;【点睛】本题考查利用柯西不等式证明不等式,属于中档题.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.假定某篮球运动员每次投篮命中率均为(01)p p <<.现有3次投篮机会,并规定连续两次投篮均不中即终止投篮,已知该运动员不放弃任何一次投篮机会,且恰好用完3次投篮机会的概率是2125. (1)求p 的值;(2)设该运动员投篮命中次数为X ,求X 的概率分布及数学期望()E X .【答案】(1)35;(2)分布列见解析,期望为213125. 【解析】分析:(1)设事件A :“恰用完3次投篮机会”,则其对立事件A :“前两次投篮均不中”, 所以, ()()1P A P A =- ()2211125p =--=(2) X 的所有可能值为0,1,2,3,计算其对应概率即可.详解:(1)设事件A :“恰用完3次投篮机会”,则其对立事件A :“前两次投篮均不中”, 依题意, ()()1P A P A =- ()2211125p =--=, 解得35p =. (2)依题意, X 的所有可能值为0,1,2,3,且()()240125P X p ==-=, ()()211P X p p ==- ()()2411125p p p +--=, ()3273125P X p ===, 故()()210P X P X ==-= ()()5413125P X P X -=-==. X 的概率分布列为:数学期望()242125E X =+⨯ 54272133125125125+⨯=. 点睛:利用对立事件计算概率是概率问题中长用的方法,所以出现“至多”“至少”等其他关键字眼时要注意利用对立事件的思路解题,往往能够简化计算.25.设4124k k S a a a =+++(*N k ∈),其中{}0,1i a ∈(1,2,,4i k =).当4k S 除以4的余数是b (0,1,2,3b =)时,数列124,,,k a a a 的个数记为()m b . (1)当2k =时,求()1m 的值;(2)求()3m 关于k 的表达式,并化简.【答案】(1)64;(2)()2134k m -=【解析】分析】 (1)(1)根据定义,确定条件:8个数的和除以4的余数是1,因此有1个1或5个1,其余为0,从而158864m C C =+=;(2)个数的和除以4的余数是3,因此有3个1,或7个1,或11个1,…,或()41k -个1 ,其余为0,()37114144443k k k k k m C C C C -=++++,再根据组合数性质即可化简求值. 【详解】(1)当2k =时,数列123,,,,n a a a a 中有1个1或5个1,其余为0,所以158864m C C =+=. (2)依题意,数列124,,,k a a a 中有3个1,或7个1,或11个1,…,或()41k -个1 ,其余为0,所以()37114144443k k k k k m C C C C -=++++.同理,得()1594344441k k k k km C C C C -=++++. 因为()4443,7,11,,41i k i k k C C i k -==-,所以()()13m m =.又()()13943414144444132k k k k k k k km m C C C C C ---+=+++++=, 所以()4221324k k m --==【点睛】本题考查组合数的性质,组合数的运算,属中档题.。
2020届江苏省南通市海安高级中学高三下学期模拟考试数学试题一、填空题1.已知全集2,1,0,1,{}2U =﹣﹣,集合2,,}1,{1A =﹣﹣则UA =_____.【答案】{}0,2【解析】根据补集的定义求解即可. 【详解】解:2,1,0,1,2{}{,2,1,1,}U A =﹣﹣=﹣﹣ {}0,2U A ∴=.故答案为{}0,2. 【点睛】本题主要考查了补集的运算,属于基础题.2.已知复数()()1z i a i =⋅+-(i 为虚数单位)为纯虚数,则实数a 的值为_____. 【答案】1﹣【解析】利用复数的乘法求解z 再根据纯虚数的定义求解即可. 【详解】解:复数()()()111z i a i a a i ⋅+++=﹣=﹣为纯虚数, 10,10,a a ∴+≠=﹣解得1a =﹣. 故答案为:1﹣. 【点睛】本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题. 3.数据1,3,5,7,9的标准差为_____.【答案】【解析】先计算平均数再求解方差与标准差即可. 【详解】解:样本的平均数1357955x ++++==,∴这组数据的方差是()()()()()222222115355575955S ⎡⎤=-+-+-+-+-⎣⎦ 28,S ∴=标准差22S =, 故答案为:22 【点睛】本题主要考查了标准差的计算,属于基础题. 4.函数()12x f x =-的定义域是__________. 【答案】(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.5.在一底面半径和高都是2m 的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的32m 种子,则取出了带麦锈病种子的概率是_____. 【答案】14π【解析】求解32m 占圆柱形容器的的总容积的比例求解即可. 【详解】解:由题意可得:取出了带麦锈病种子的概率221224ππ==⨯⨯.故答案为:14π. 【点睛】本题主要考查了体积类的几何概型问题,属于基础题.6.如图是一个算法伪代码,则输出的i 的值为_______________.【答案】5【解析】执行循环结构流程图,即得结果. 【详解】执行循环结构流程图得9123410S =----=-<,结束循环,输出415i =+=. 【点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.7.在平面直角坐标系xOy 中,若双曲线()22210y x b b-=>经过点(3,4),则该双曲线的准线方程为_____.【答案】3x ±= 【解析】代入()3,4求解得b ,再求准线方程即可. 【详解】解:双曲线()22210y x b b-=>经过点()3,4,221631b∴=﹣,解得22b =,即b .又1,a ∴=c ==故该双曲线的准线方程为:3x ±= .故答案为:3x ±=. 【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.8.设n S 是等比数列{}n a 的前n 项的和,396,,S S S 成等差数列,则258a a a +的值为_____. 【答案】2【解析】设等比数列{}n a 的公比设为,q 再根据396,,S S S 成等差数列利用基本量法求解,q 再根据等比数列各项间的关系求解258a a a +即可. 【详解】解:等比数列{}n a 的公比设为,q396,,S S S 成等差数列,可得9362,S S S +=若1,q =则1111836,a a a += 显然不成立,故1,q ≠则()()()9361111112111a q a q a q qqq---⋅=+---,化为6321,q q +=解得312q =﹣,则43251176811112214a a a q a q qa a q q -+++====故答案为:2. 【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.9.给出下列四个命题,其中正确命题的序号是______.(写出所有正确命题的序号) ①因为当3x π=时,2sin sin 3x x π⎛⎫+≠⎪⎝⎭,所以23π不是函数sin y x =的周期; ②对于定义在R 上的函数()f x ,若()()22f f -≠,则函数()f x 不是偶函数; ③“M N >”是“22log log M N >”成立的充分必要条件; ④若实数a 满足24a <,则2a ≤. 【答案】①②④.【解析】由周期函数的定义判断①;由偶函数的概念判断②;由充分必要条件的判定判断③;求解一元二次不等式判断④. 【详解】 因为当3x π=时,2sin sin 3x x π⎛⎫+≠ ⎪⎝⎭,所以由周期函数的定义知23π不是函数sin y x =的周期,故①正确;对于定义在R 上的函数()f x ,若()()22f f -≠,由偶函数的定义知函数()f x 不是偶函数,故②正确;由M N >,不一定有22log log M N >,反之成立,则“M N >”是“22log log M N >”成立的必要不充分条件,故③错误;若实数a 满足24a <,则22a -≤≤,所以2a ≤成立,故④正确. ∴正确命题的序号是①②④. 故答案为:①②④. 【点睛】本题考查命题的真假判断与应用,考查逻辑思维能力与推理论证能力,是中档题. 10.如图,是一个四棱锥的平面展开图,其中间是边长为2的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.【答案】43【解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可. 【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为2的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,∴此四棱锥S ABCD ﹣中,ABCD 是边长为2的正方形,SAD 是边长为2的等边三角形,故CD AD ⊥,又CD SD ⊥,AD SD D ⋂= 故平面SAD ⊥平面ABCD ,∴SAD 的高SE 是四棱锥S ABCD ﹣的高, ∴此四棱锥的体积为:112233ABCD V S SE ⨯=⨯⨯=正方形=故答案为:3. 【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意11.在平面直角坐标系xOy 中,若函数()f x lnx ax =﹣在1x =处的切线与圆22210C x x y a ++:﹣﹣=存在公共点,则实数a 的取值范围为_____.【答案】(][)0,12,+∞【解析】利用导数的几何意义可求得函数()f x lnx ax =﹣在1x =处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可. 【详解】解:由条件得到()1'f x a x=- 又()()1,'11f a f a =-=-所以函数在1x =处的切线为()()()1111y a x a a x =﹣﹣-=﹣﹣, 即()110a x y ﹣﹣﹣= 圆C 方程整理可得:()221x y a -+= 即有圆心()1,0C 且0a > 所以圆心到直线的距离d ==≤,≤解得2a ≥或01≤<a , 故答案为:(][)0,12,+∞.【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.12.已知函数()32,f x ax bx cx ++=若关于x 的不等式()0f x <的解集是()(),10,2∞⋃﹣﹣,则b ca+的值为_____. 【答案】3-【解析】根据题意可知20ax bx c ++=的两根为1,2-,再根据解集的区间端点得出参数的关系,再求解b ca+即可. 【详解】解:因为函数()()322f x ax bx cx x ax bx c =++=++,关于x 的不等式()0f x <的解集是()(),10,2-∞-⋃20ax bx c ∴++=的两根为:1﹣和2;所以有:()12ba +﹣=-且()12c a⨯﹣=; b a ∴=﹣且2c a =﹣;23b c a aa a+--∴==-; 故答案为:3﹣ 【点睛】本题主要考查了不等式的解集与参数之间的关系,属于基础题.13.在边长为4的菱形ABCD 中,60,A ︒=点P 在菱形ABCD 所在的平面内.若3,PA PC =PB PD ⋅=_____.【答案】1-【解析】以菱形的中心为坐标原点建立平面直角坐标系,再设(),P x y ,根据3,PA PC =P 的坐标,进而求得PB PD ⋅即可.【详解】解:连接,,AC BD 设,AC BD 交于点,O 以点O 为原点, 分别以直线,OC OD 为,x y 轴,建立如图所示的平面直角坐标系,则:()23,23()0202()(),A C B D --,,,,,, 设(),P x y321,PA PC ==,((2222392321x y x y ⎧++=⎪∴⎨⎪-+=⎩①﹣②得,312,x =-解得3x =, 32y ∴=±, 332P ⎛⎫∴- ⎪ ⎪⎝⎭或332P ⎛⎫ ⎪ ⎪⎝⎭,显然得出的PB PD ⋅是定值,∴取332P ⎛⎫ ⎪ ⎪⎝⎭则3731,,,2222PB PD ⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 37144PB PD ∴⋅=-=-. 故答案为:1-. 【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.14.设函数()21722,04,k x x f x x x ⎧+⎛⎫-+≤⎪ ⎪=⎝⎭⎨⎪>⎩,()43g x k x ⎛⎫⎪⎝⎭=-,其中0k >.若存在唯一的整数,x 使得()()f x g x <,则实数k 的取值范围是_____. 【答案】17[3,6] 【解析】根据分段函数的解析式画出图像,再根据存在唯一的整数x 使得()()f x g x <数形结合列出临界条件满足的关系式求解即可. 【详解】解:函数()21722,04,0k x x f x x x ⎧+⎛⎫-+≤⎪ ⎪=⎝⎭⎨⎪>⎩,且0,k > 画出()f x 的图象如下:因为()43g x k x ⎛⎫=-⎪⎝⎭,且存在唯一的整数,x 使得()()f x g x <, 故()g x 与()f x 在0x <时无交点,174k k +∴≥,得173k ≥; 又()43g x k x ⎛⎫=-⎪⎝⎭,()g x ∴过定点4,03⎛⎫⎪⎝⎭又由图像可知,若存在唯一的整数x 使得()()f x g x <时43x >,所以2x ≥ ()()58533939g k f ≥≥==,∴存在唯一的整数3,x =使得()()f x g x <所以()()22243g k f =≤=6k ⇒≤ ()()844163g k f ∴≤==6k ⇒≤.根据图像可知,当4x ≥时, ()()f x g x >恒成立.综上所述, 存在唯一的整数3,x =使得()()f x g x <,此时1763k ≤≤ 故答案为:17[3,6] 【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点4,03⎛⎫ ⎪⎝⎭右边的整数点中3x =为满足条件的唯一整数,再数形结合列出2,4x =时的不等式求k 的范围.属于难题.二、解答题15.如图,四棱锥P ABCD -中,底面ABCD 是菱形,对角线,AC BD 交于点,O M 为棱PD 的中点,MA MC =.求证:(1)//PB 平面AMC ; (2)平面PBD ⊥平面AMC . 【答案】(1)详见解析;(2)详见解析.【解析】(1) 连结,OM 根据中位线的性质证明//PB OM 即可. (2) 证明AC BD ⊥,AC PD ⊥再证明AC ⊥平面PBD 即可.【详解】解:()1证明:连结,OMO 是菱形ABCD 对角线AC BD 、的交点,O ∴为BD 的中点, M 是棱PD 的中点, //,OM PB ∴OM ⊂平面,AMC PB ⊄平面,AMC//PB ∴平面,AMC()2解:在菱形ABCD 中,,AC BD ⊥且O 为AC 的中点,,MA MC =AC OM ∴⊥, OM BD O ⋂=, AC ∴⊥平面,PBD AC ⊂平面AMC ,∴平面PBD ⊥平面AMC .【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.16.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c .已知tan ,tan ,tan A B C 成等差数列,cos cos ,cos A C B 成等比数列. (1)求A 的值;(2)若ABC 的面积为1,求c 的值. 【答案】(1)4A π=;(2)3c =【解析】(1)根据,,tanA tanB tanC 成等差数列与三角形内角和可知()tanC tan A B =-+,再利用两角和的正切公式,代入2,tanB tanA tanC +=化简可得22tan tan tan 3A B A -=,同理根据三角形内角和与余弦的两角和公式与等比数列的性质可求得2tanAtanB =,联立即可求解求A 的值.(2)由(1)可知2,tan 3tanB C ==,再根据同角三角函数的关系与正弦定理可求得b ,再结合ABC 的面积为1,利用面积公式求解即可. 【详解】解:()1,,tanA tanB tanC 成等差数列, 可得2,tanB tanA tanC += 而()1tanA tanB tanC tan A B tanAtanB +=-+-=,即tan tan 2tan tan tan tan 1A BB A A B +-=-,展开化简得222tan tan 2tan tan tan tan A B B A B B --=,因为tan 0B ≠,故 22tan tan tan 3A B A -=①又cosA cosB 成等比数列,可得()cosAcosB cosC cos A B sinAsinB cosAcosB +==-=-, 即2sinAsinB cosAcosB =, 可得2,tanAtanB =②联立①②解得1tanA =(负的舍去), 可得锐角4A π=;()2由()1可得2,3tanB tanC ==,由sin 2cos BtanB B ==22,1,sin B cos B B +=为锐角,解得5sinB =,因为sin 3cos C tanC C ==22,1,sin C cos C C +=为锐角,故可得sinC ,由正弦定理可得sin2253sin10c Bb c cC===,又ABC的面积为1,可得21122212232bcsinA c⋅⋅==,解得3c=.【点睛】本题主要考查了等差等比中项的运用以及正切的和差角公式以及同角三角函数关系等.同时也考查了正弦定理与面积公式在解三角形中的运用,属于中档题.17.某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以AB为直径的圆,且300AB=米,景观湖边界CD与AB平行且它们间的距离为502米.开发商计划从A点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作PQ.设2AOPθ∠=.(1)用θ表示线段,PQ并确定sin2θ的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将PQ的长度设计到最长,求PQ的最大值.【答案】(1)502300sincosPQθθ-=2sin21θ<≤;(2)6.【解析】(1)过点Q作QH AB⊥于点,H再在AOP中利用正弦定理求解AP,再根据sin2QHAQπθ⎛⎫-⎪⎝⎭=求解AQ,进而求得PQ.再根据0PQ>确定sin2θ的范围即可.(2)根据(1)有150232cosPQ sinθθ⎫=-⎪⎭,再设()132cosf sinθθθ=-,求导分析函数的单调性与最值即可. 【详解】 解:()1过点Q 作QH AB ⊥于点,H 则502QH =在AOP 中,150,2OA OP AOP θ∠===,2OAP πθ∴∠-=, 由正弦定理得:sin 2sin 2OP APπθθ=⎛⎫- ⎪⎝⎭,300AP sin θ∴=,502cos sin 2QH AQ πθθ∴=⎛⎫- ⎪⎝⎭=, 502==300cos PQ AP AQ sin θθ∴--, 5023000cos PQ sin θθ->=,因为cos 0θ>, 化简得2sin 213θ<≤ ()2502130050232cos PQ sin sin θθθ⎫=-⎪⎭=, 令()132cos fθθθ=-2sin 21θ<≤,且2(0,)θπ∈, ()22sin tan '32cos 32cos cos f θθθθθθθ⎛⎫=-= ⎪⎝⎭()222sin cos tancoscosθθθθθ⎛⎫+⎪=⎪⎝⎭()()23cos tan1tan cos tan tanθθθθθθ⎡⎤=+=-⎣⎦因为(0,)2πθ∈,故cos0θ>令'()0,fθ=即3tan tan0θθ+-=,230(,)tan tanθθθ∴+=记000,2tanθθπ⎛⎫∈ ⎪⎝⎭,当00θθ<<时,()()'0,f fθθ>单调递增;当02πθθ<<时,()()'0,f fθθ<单调递减,又233sinθ=>,∴当tanθ时,()fθ取最大值,此时33sin cosθθ,1c osPQθθ⎫=-=⎪⎭PQ∴的最大值为【点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.18.在平面直角坐标系xOy中,已知椭圆C的中心为坐标原点,O焦点在x轴上,右顶点()2,0A到右焦点的距离与它到右准线的距离之比为12.(1)求椭圆C的标准方程;(2)若,M N是椭圆C上关于x轴对称的任意两点,设()4,0P-,连接PM交椭圆C 于另一点E.求证:直线NE过定点,B并求出点B的坐标;(3)在(2)的条件下,过点B的直线交椭圆C于,S T两点,求OS OT⋅的取值范围.【答案】(1)22143x y +=;(2)证明详见解析,()1,0B -;(3)54,4⎡⎤--⎢⎥⎣⎦. 【解析】(1)根据题意列出关于,,a b c 的等式求解即可.(2)先根据对称性,直线NE 过的定点B 一定在x 轴上,再设直线PM 的方程为(4)y k x +=,联立直线与椭圆的方程, 进而求得NE 的方程,并代入11(4)y k x +=,22(4)y k x +=化简分析即可.(3)先分析过点B 的直线ST 斜率不存在时OS OT ⋅的值,再分析存在时,设直线ST 的方程为(1)y m x +=,联立直线与椭圆的方程,得出韦达定理再代入3434OS OT x x y y ⋅=+求解出关于k 的解析式,再求解范围即可. 【详解】解:()1设椭圆C 的标准方程()222210,x y a b a b+=>>焦距为2c ,由题意得,2,a =由212a c c a a a c-==-,可得1,c =则2223b a c =﹣=,所以椭圆C 的标准方程为22143x y +=;()2证明:根据对称性,直线NE 过的定点B 一定在x 轴上,由题意可知直线PM 的斜率存在, 设直线PM 的方程为(4)y k x +=,联立22(4)143y k x x y +⎧⎪⎨+=⎪⎩=,消去y 得到()2222433264120k x k x k +++﹣=, 设点1122(,),(,)M x y E x y ,则11(,)N x y ﹣. 所以22121222326412,4343k k x x x x k k -+=-=++,所以NE 的方程为()212221y y y y x x x x +-=--,令0,y =得()221221y x x x x y y -==+,将11(4)y k x +=,22(4)y k x +=代入上式并整理,()121212248x x x x x x x ++=++,整理得()()2222128241281322432k k x k k --==--++,所以,直线NE 与x 轴相交于定点(1,0)B -.()3当过点B 的直线ST 的斜率不存在时,直线ST 的方程为1x =-331,1,22S T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,, 此时54OS OT ⋅=-, 当过点B 的直线ST 斜率存在时,设直线ST 的方程为(1)y m x =+,且3344(,),(,)S x y T x y 在椭圆C 上,联立方程组22(1)143y m x x y +⎧⎪⎨+=⎪⎩=,消去y ,整理得22224384120m x m x m +++()﹣=, 则()()()()22222844341214410mmm m ++=﹣﹣=>.所以223434228412,,4343m m x x x x m m -+=-=++ 所以()()()222343434324439111m y y m x x m x x x m x =++=++=-++, 所以()2342342451253344343m OS OT x x y m m y +⋅=+=-=-++-, 由20,m ≥得54,4OS OT ⎡⎫⋅∈--⎪⎢⎣⎭,综上可得,OS OT ⋅的取值范围是54,4⎡⎤--⎢⎥⎣⎦.【点睛】本题主要考查了椭圆的基本量求解以及定值和范围的问题,需要分析直线的斜率是否存在的情况,再联立直线与椭圆的方程,根据韦达定理以及所求的解析式,结合参数的范围进行求解.属于难题.19.已知函数()212ax f x bx+=,其中0,0a b >>.(1)①求函数()f x 的单调区间; ②若12,x x 满足)1,2i x i =>,且1220,0x x x >+>.求证:()()122f x f x b>+ . (2)函数()2ln 12g x ax x -=.若12,x x ⎛∈ ⎝对任意,12,x x ≠都有()()()()1212||||f x f x g x g x ->-,求b a -的最大值.【答案】(1)①单调递增区间⎛-∞ ⎝,⎫+∞⎪⎭,单调递减区间⎛ ⎝;②详见解析;(2)116. 【解析】(1)①求导可得()221,02ax f x x bx-'=≠,再分别求解()0f x '>与()0f x '<的解集,结合定义域分析函数的单调区间即可.②根据(1)中的结论,求出()()122f x f x +的表达式,再分10x <与1>0x 两种情况,结合函数的单调性分析()()122f x f x +的范围即可.(2)求导分析()2ln 12g x ax x -=的单调性,再结合()f x 单调性,设12,x x <去绝对值化简可得()()()()11220[]f x g x f x g x --->,再构造函数()()()M x f x g x =﹣,x⎛∈ ⎝,根据函数的单调性与恒成立问题可知10≥,再换元表达b a -求解最大值即可. 【详解】解:()()2211,02ax f x x bx -'=≠,由()0f x '>可得x>或x <由()0f x '<可得x<<故函数的单调递增区间⎛-∞ ⎝,⎫+∞⎪⎭,单调递减区间⎛ ⎝;1220,0x x x +②>>,10x ∴>或10x <,若10x >,因为i x ,故1x >2x由①知f x ()在⎫+∞⎪⎭上单调递增,()()1223f x f x f b b +=>>, 若10,x <由1x 可得1x <x 1, 因为1220,0x x x +>>, 所以21x x >﹣, 由f x ①()在⎫+∞⎪⎭上单调递增,()()()()()1211122f x f x f x f x f x ++-->>=综上()()122f x f x +. ()20x<时,()2110axg x ax x x -'=-=<,g x ()在⎛ ⎝上单调递减,不妨设12,x x < 由(1)()f x 在⎛ ⎝上单调递减,由()()()()1212f x f x g x g x ->-, 可得()()()()1212f x f x g x g x ->-, 所以()()()()11220[]f x g x f x g x --->,令()()()M x f x g x =﹣,x ⎛∈ ⎝, 可得M x ()单调递减, 所以()()()222211211022ax bx ax M x ax bx x bx---'=-+=≤在⎛ ⎝上恒成立, 即120bx ≥﹣在⎛ ⎝上恒成立,即10≥,所以b ≤,2111241616b a a ⎫≤-=-+≤⎪⎭﹣ ,所以b a ﹣的最大值116. 【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了利用导数求解函数不等式以及构造函数分析函数的最值解决恒成立的问题.需要根据题意结合定义域与单调性分析函数的取值范围与最值等.属于难题.20.已知{}{}{},,n n n a b c 都是各项不为零的数列,且满足1122,*,n n n n a b a b a b c S n N ⋯+=++∈其中n S 是数列{}n a 的前n 项和,{}n c 是公差为()0d d ≠的等差数列.(1)若数列{}n a 是常数列,2d =,23c =,求数列{}n b 的通项公式; (2)若n a n λ=λ(是不为零的常数),求证:数列{}n b 是等差数列; (3)若11a c d k ===(k 为常数,*k N ∈),()2,*n n k b c n n N +≥∈=.求证:对任意112,*,n n n n b b n n N a a ++≥∈>的恒成立. 【答案】(1)43n b n -=;(2)详见解析;(3)详见解析. 【解析】(1)根据2d =,23c =可求得n c ,再根据{}n a 是常数列代入1122,*,n n n n a b a b a b c S n N ⋯+=++∈根据通项与前n 项和的关系求解{}n b 即可.(2)取1n =,并结合通项与前n 项和的关系可求得11,n n n n n n S c S c a b ﹣﹣﹣=再根据1n n n a S S -=-化简可得1n n n S d nc nb λλ+﹣=,代入()112n n n S λ--=化简即可知()1332n n b n b d --=≥,再证明2132b b d -=也成立即可. (3)由(2) 当2n ≥时,11()n nn n n n n S c c a c a b +﹣﹣﹣=,代入所给的条件化简可得1,n n S ka ﹣=()11n n n n S S a k a ++﹣==,进而证明可得11n n k a a k-+=,即数列{}n a 是等比数列.继而求得21n n k a k -+⎛⎫= ⎪⎝⎭,再根据作商法证明11n n n n b b a a ++>即可. 【详解】()1解:22,3,d c ==21n c n ∴=﹣.{}n a 是各项不为零的常数列,12,n a a a ∴⋯===则1n S na =,则由1122n n n n c S a b a b a b ++⋯+=,及21,n c n=﹣得()1221n n n b b b ++⋯+﹣=, 当2n ≥时,()()121123n n n b b b ++⋯+﹣﹣﹣=,两式作差,可得43n b n=﹣. 当1n =时,11b =满足上式,则43n b n=﹣; ()2证明:1122n n n n a b a b a b c S ++⋯+=,当2n ≥时,11221111n n n n a b a b a b c S ++⋯+﹣﹣﹣﹣=,两式相减得:11,n n n n n n S c S c a b ﹣﹣﹣= 即()()11111,n n n n n n n n n n n n n n S a c S c a b S c c a c a b ++﹣﹣﹣﹣﹣﹣=﹣=.即1n n n S d nc nb λλ+﹣=.又()112n n n S λ--=,()12n n n n d nc nb λλλ-∴+=,即12n n n d c b -+=. ∴当3n ≥时,1122n n n d c b ---+=,两式相减得:()1332n n b n b d --=≥.∴数列{}n b 从第二项起是公差为32d 的等差数列.又当1n =时,由1111,S c a b =得11c b =,当2n =时,由22112113222b d c d c d b d -=+=++=+,得2132b b d -=. 故数列{}n b 是公差为32d 的等差数列;()3证明:由()2,当2n ≥时,()11n n n n n n n S c c a c a b +﹣﹣﹣=,即()1n n nn S d a b c ﹣=﹣, n n k b c +=,n n b c kd ∴+=,即n n b c kd ﹣=, 1•,n n S d a kd ∴﹣=即1n n S ka ﹣=. ()11n n n n S S a k a ∴++﹣==,当3n ≥时,()111,n n n S k a ka +﹣﹣==即11n n k a a k-+=. 故从第二项起数列{}n a 是等比数列,∴当2n ≥时,221n n k a a k -+⎛⎫= ⎪⎝⎭.()()()22111n n k n b c c kd c n k k k n k k k n k +++-+=+-+=+===.另外,由已知条件可得()1221122a a c a b a b ++=, 又()2122,,2c k b k b k k +===,21a ∴=,因而21n n k a k -+⎛⎫= ⎪⎝⎭.令nn nb d a =, 则()()()()()11111111101n n n n n n n k k n k d b a nd a k k b n +++-=++-=-=-+++<+. 故对任意的2,*,n n N ≥∈11n n n n b b a a ++>恒成立. 【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前n 项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.21.已知二阶矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,矩阵A 属于特征值11λ=-的一个特征向量为111α⎡-⎤=⎢⎥⎣⎦,属于特征值24λ=的一个特征向量为232α⎡⎤=⎢⎥⎣⎦.求矩阵A .【答案】2321A ⎡⎤=⎢⎥⎣⎦【解析】运用矩阵定义列出方程组求解矩阵A 【详解】由特征值、特征向量定义可知,111A αλα=,即11111a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得1,1.a b c d -=-⎧⎨-=⎩同理可得3212,328.a b c d +=⎧⎨+=⎩解得2a =,3b =,2c =,1d =.因此矩阵2321A ⎡⎤=⎢⎥⎣⎦ 【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为2cos {sin x y αα== (α为参数).以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()4πρθ-=P 为曲线C 上的动点,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=,4x y +=(2)max 2d = 【解析】【详解】试题分析:利用cos ,sin x y ρθρθ==将极坐标方程化为直角坐标方程:cos()4πρθ-=ρcosθ+ρsinθ=4,即为x +y =4.再利用点到直线距离公式得:设点P 的坐标为(2cosα,sinα),得P 到直线l 的距离2d =≤试题解析:解:cos()4πρθ-=化简为ρcosθ+ρsinθ=4,则直线l 的直角坐标方程为x +y =4.设点P 的坐标为(2cosα,sinα),得P 到直线l 的距离2d =≤,d max =2. 【考点】极坐标方程化为直角坐标方程,点到直线距离公式 23.若正数,,a b c 满足1a b c ++=,求111323232a b c +++++的最小值.【答案】1【解析】试题分析:由柯西不等式得[]111(32)(32)(32)323232a b c a b c ⎛⎫+++++++ ⎪+++⎝⎭9≥=,所以1111323232a b c ++≥+++试题解析:因为,,a b c 均为正数,且1a b c ++=, 所以(32)(32)(32)9a b c +++++=.于是由均值不等式可知[]111(32)(32)(32)323232a b c a b c ⎛⎫+++++++⎪+++⎝⎭33133(32)(32)(32)9(32)(32)(32)a b c a b c ≥⋅+++=+++,当且仅当13a b c ===时,上式等号成立. 从而1111323232a b c ++≥+++. 故111323232a b c +++++的最小值为1.此时13a b c ===.【考点】柯西不等式24.如图,在正四棱锥P ABCD ﹣中,底面正方形的对角线,AC BD 交于点O 且12OP AB =.(1)求直线BP 与平面PCD 所成角的正弦值; (2)求锐二面角B PD C --的大小. 【答案】(16(2)60︒. 【解析】(1) 以,,OE OF OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 设底面正方形边长为2,再求解BP 与平面PCD 的法向量,继而求得直线BP 与平面PCD 所成角的正弦值即可.(2)分别求解平面BPD 与平面PDC 的法向量,再求二面角的余弦值判断二面角大小即可. 【详解】解:()1在正四棱锥P ABCD ﹣中,底面正方形的对角线,AC BD 交于点,O 所以OP ⊥平面,ABCD 取AB 的中点,E BC 的中点,F 所以,,OP OE OF 两两垂直,故以点O 为坐标原点,以,,OE OF OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设底面正方形边长为2, 因为1,2OP AB =所以1,OP =所以()()()()1,1,0,1,1,0,1,1,0,0,0,1B C D P ﹣﹣﹣, 所以()1,1,1BP =﹣﹣,设平面PCD 的法向量是(),,n x y z =,因为()0,2,0CD =-,()1,1,1CP =﹣, 所以20CD n y ⋅=-=,0CP n x y z ⋅+=﹣=,取1,x =则0,1y z ==﹣, 所以()1,0,1n =- 所以6,BP n cos BP n BP n⋅=<>=所以直线BP 与平面PCD 所成角的正弦值为63. ()2设平面BPD 的法向量是(),,n x y z =,因为()1,1,1BP =﹣﹣,()-2,-2,1BD =,所以0,BP n x y z ⋅+=﹣﹣=220BD n x y ⋅=﹣﹣=,取1,x =则1,0,y z =﹣= 所以()1,1,0n =-,由()1知平面PCD 的法向量是()1,0,1n =-,所以12m ncos m n m n ⋅<,>== 所以,60m n ︒<>=,所以锐二面角B PD C ﹣﹣的大小为60︒. 【点睛】本题主要考查了建立平面直角坐标系求解线面夹角以及二面角的问题,属于中档题.25.定义:若数列{}n a 满足所有的项均由1,1﹣构成且其中1﹣有m 个,1有p 个()3m p +≥,则称{}n a 为“(),m p ﹣数列”.(1)(),,i j k a a a i j k <<为“()3,4﹣数列”{}n a 中的任意三项,则使得1i j k a a a =的取法有多少种?(2)(),,i j k a a a i j k <<为“(),m p ﹣数列”{}n a 中的任意三项,则存在多少正整数(),m p 对使得1100,m p ≤≤≤且1i j k a a a =的概率为12. 【答案】(1)16;(2)115.【解析】(1)易得使得1i j k a a a =的情况只有“1,1,1﹣﹣”,“1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“1,1,1﹣﹣”共有21m p C C 种,“1,1,1”共有3P C 种.再根据古典概型的方法可知213312m p pm pC C C C ++=,利用组合数的计算公式可得()()2232320pm p p mp m m +﹣﹣﹣﹣﹣=,当p m =时根据题意有()(),,,2,3,4,{},100m p k k k ∈⋯=,共99个;当2232320p p mp mm +﹣﹣﹣﹣=时求得()232m p +=,再根据1100,m p ≤≤≤换元根据整除的方法求解满足的正整数对即可.【详解】解:(1)三个数乘积为1有两种情况:“1,1,1﹣﹣”,“1,1,1”, 其中“1,1,1﹣﹣”共有:213412C C =种, “1,1,1”共有:344C =种,利用分类计数原理得:(),,i j k a a a i j k <<为“()3,4﹣数列”{}n a 中的任意三项,则使得1i j k a a a =的取法有:12416+=种.(2)与(1)同理,“1,1,1﹣﹣”共有21m p C C 种, “1,1,1”共有3P C 种,而在“(),m p ﹣数列”中任取三项共有3m p C +种,根据古典概型有:213312m p pm pC C C C ++=, 再根据组合数的计算公式能得到:()()2232320pm p p mp m m +﹣﹣﹣﹣﹣=, p m ①=时,应满足11003m p m p p m ≤≤≤⎧⎪+≥⎨⎪=⎩,()(),,,2,3,{,}4,100m p k k k ∴∈⋯=,共99个,2232320p p mp m m +②﹣﹣﹣﹣=时,应满足221100332320m p m p p p mp m m <≤<⎧⎪+≥⎨⎪--+--=⎩,视m 为常数,可解得()232m p +±=,1,m ≥5≥,根据p m ≥可知,()232m p ++=,1m ≥,5≥,根据p m ≥可知,()232m p ++=,(否则1p m≤﹣),下设k则由于p 为正整数知k 必为正整数,1100m ≤≤, 549k ∴≤≤,化简上式关系式可以知道:()()21112424k k k m -+-==, 1,1k k ∴+﹣均为偶数, ∴设()*21,k t t N +∈=,则224,t ≤≤()211246t t k m +-∴==, 由于,1t t +中必存在偶数,∴只需,1t t +中存在数为3的倍数即可,2,3,5,6,8,9,11,,23,24t ∴⋯=, 5,11,13,,47,49k ∴⋯=.检验:()()()23114850100,22424m k k p ++-++=≤== 符合题意,∴共有16个,综上所述:共有115个数对(),m p 符合题意. 【点睛】本题主要考查了排列组合的基本方法,同时也考查了组合数的运算以及整数的分析方法等,需要根据题意。
江苏省海安高级中学2020届高三下学期期初模拟考试数学试卷含附加题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.已知集合A ={﹣1,0,2},B ={x |x =2n ﹣1,n ∈Z },则A ∩B 中元素的个数为 .2.已知复数z 1=1﹣2i ,z 2=a +2i (其中i 是虚数单位,a ∈R ),若z 1•z 2是纯虚数,则a 的值为 .3.从集合{1,2,3}中随机取一个元素,记为a ,从集合{2,3,4}中随机取一个元素,记为b ,则a ≤b 的概率为 .4.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为 .5.如图是一个算法的伪代码,其输出的结果为 .6.若“|x ﹣1|<3”是“(x +2)(x +a )<0”的充分不必要条件,则实数a 的取值范围是 .7.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π).8.函数f (x )=sin 2x +sin x cos x +1的最小正周期是 ,单调递减区间是 .9.在平面直角坐标系xOy 中,已知A (0,﹣1),B (﹣3,﹣4)两点,若点C 在∠AOB 的平分线上,且||OC|=√10,则点C 的坐标是 .9.【详解详析】由题意OA →=(0,﹣1),是一个单位向量,由于OB →=(﹣3,﹣4),故OB →方向上的单位向量e →=(−35,−45),∵点C 在∠AOB 的平分线上,∴存在实数λ使得OC =λ(OA →+e →)=λ(−35,﹣1−45)=λ(−35,−95), ∵||OC|=√10,∴λ2×(925+8125)=10,解得λ=53代入得得OC =(﹣1,﹣3)故答案为:(﹣1,﹣3)10.设S n 为数列{a n }的前n 项和,若S n =na n ﹣3n (n ﹣1)(n ∈N *),且a 2=11,则S 20的值为 .11.在平面四边形ABCD 中,∠A =∠B =∠C =75°.BC =2,则AB 的取值范围是 .11.【详解详析】方法一:如图所示,延长BA ,CD 交于点E ,则在△ADE 中,∠DAE =105°,∠ADE =45°,∠E =30°,∴设AD =12x ,AE =√22x ,DE =√6+√24x ,CD =m , ∵BC =2,∴(√6+√24x +m )sin15°=1, ∴√6+√24x +m =√6+√2,∴0<x <4,而AB =√6+√24x +m −√22x =√6+√2−√22x , ∴AB 的取值范围是(√6−√2,√6+√2).故答案为:(√6−√2,√6+√2).方法二:如下图,作出底边BC =2的等腰三角形EBC ,B =C =75°,倾斜角为150°的直线在平面内移动,分别交EB 、EC 于A 、D ,则四边形ABCD 即为满足题意的四边形; 当直线移动时,运用极限思想,①直线接近点C 时,AB 趋近最小,为√6−√2;②直线接近点E 时,AB 趋近最大值,为√6+√2;故答案为:(√6−√2,√6+√2).12.已知函数f (x )={ x +2,x >−12,−x −12x ,−√22<x ≤−12√2,x ≤−√22.,若f (t )≥f (1t ),则实数t 的取值范围是 . 12.【详解详析】根据函数f (x )的解析式作出其图象,如图所示.①当x >−√22时,f (x )是增函数, 若f(t)≥f(1t ),则{t ≥1t 1t >−√22,解得:﹣1≤t <0或t ≥1;②当x ≤−√22时,t (x )=√2, 若f(t)≥f(1t ),则{a ≤−√221t ≤−√22,解得:−√2≤t ≤−√22; 综上①②所述,实数t 的取值范围是[−√2,0)∪[1,+∞)故答案为:[−√2,0)∪[1,+∞).13.在平面直角坐标系中,点集A ={(x ,y )|x 2+y 2≤1},B ={(x ,y )|x ≤4,y ≥0,3x ﹣4y ≥0},则点集Q ={(x ,y )|x =x 1+x 2,y =y 1+y 2,(x 1,y 1)∈A ,(x 2,y 2)∈B }所表示的区域的面积为 .13.【详解详析】由x =x 1+x 2,y =y 1+y 2,得x 1=x ﹣x 2,y 1=y ﹣y 2,∵(x 1,y 1)∈A ,∴把x 1=x ﹣x 2,y 1=y ﹣y 2,代入x 2+y 2≤1,∴(x ﹣x 2)2+(y ﹣y 2)2≤1点集Q 所表示的区域是以集合B ={(x ,y )|x ≤4,y ≥0,3x ﹣4y ≥0},的区域的边界为圆心轨迹半径为1 的圆内部分,如图其面积为:5+6+4+3+π=18+π故答案为:18+π.14.设函数f(x)=(2x﹣1)e x﹣ax+a,若存在唯一的整数x0使得f(x0)<0,则实数a的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知函数f(x)=2cos x2(√3cos x2−sin x2).(1)设θ∈[0,π],且f(θ)=√3+1,求θ的值;(2)在△ABC中,AB=1,f(C)=√3+1,且△ABC的面积为√32,求sin A+sin B的值.16.(14分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,EF=12AB,平面BCF⊥平面ABCD,BF=CF,G为BC的中点,求证:(1)OG∥平面ABFE;(2)AC⊥平面BDE.17.(14分)某生物探测器在水中逆流行进时,所消耗的能量为E=cv n T,其中v为进行时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km.(1)求T关于v的函数关系式;(2)①当能量次级数为2时,求探测器消耗的最少能量;②当能量次级数为3时,试确定v 的大小,使该探测器消耗的能量最少.18.(16分)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距F 1F 2的长为2,经过第二象限内一点P (m ,n )的直线mx a 2+ny b 2=1与圆x 2+y 2=a 2交于A ,B 两点,且OA =√2.(1)求PF 1+PF 2的值;(2)若AB →•F 1F 2→=83,求m ,n 的值. 19.(16分)已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R .(1)写出函数 f (x )的最小正周期(不必写出过程);(2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N *)上恰有2015个零点,求k 的值.20.(16分)已知正整数λ,μ为常数,且λ≠1,无穷数列{a n }的各项均为正整数,其前n 项和为S n ,且S n =λa n ﹣μ.n ∈N *.记数列{a n }中任意不同两项的和构成的集合为A .(1)求证:数列{a n }为等比数列,并求λ的值;(2)若2015∈A ,求μ的值;(3)已知m ≥1,求集合{x |3μ•2n ﹣1<x <3μ•2n ,x ∈A }的元素个数.【选做题】请选定其中两题,并在相应的答题区域内作答若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.(10分)在平面直角坐标系xOy 中,先对曲线C 作矩阵A =[cosθ−sinθsinθcosθ](0<θ<2π)所对应的变换,再将所得曲线作矩阵B =[100k ](0<k <1)所对应的变换,若连续实施两次变换所对应的矩阵为[0−1120],求k ,θ的值.[选修4-4:坐标系与参数方程]22.(10分)在极坐标系中,已知A (1,π3),B (9,π3),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及△ABC 的面积.[选修4-5:不等式选讲]23.已知实数a ,b 满足|a +b |≤2,求证:|a 2+2a ﹣b 2+2b |≤4(|a |+2).24.(10分)在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.25.(10分)一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望E ξ;(2)求恰好得到n (n ∈N *)分的概率.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.【详解详析】∵A ={﹣1,0,2},B ={x |x =2n ﹣1,n ∈Z },∴A ∩B ={﹣1},∴A ∩B 中元素的个数为1.故答案为:1.2.【详解详析】∵z 1=1﹣2i ,z 2=a +2i ,∴z 1•z 2=(1﹣2i )(a +2i )=a +4+(2﹣2a )i ,又z 1•z 2是纯虚数,∴{a +4=02−2a ≠0,解得:a =﹣4. 故答案为:﹣4.3.【详解详析】从集合{1,2,3}中随机取一个元素,记为a ,从集合{2,3,4}中随机取一个元素,共有3×3=9种,因为a >b 的取法只有一种:a =3,b =2,所以a >b 的概率是19, 所以a ≤b 的概率是1−19=89. 故答案为:89.4.【详解详析】根据频率分布直方图可知,三等品的数量是[(0.0125+0.025+0.0125)×5]×400=100(件). 故答案为:1005.【详解详析】模拟执行伪代码,可得:S =0+11×2+12×3+⋯+110×11=(1−12)+(12−13)+…+(110−111)=1−111=1011.故答案为:1011.6.【详解详析】根据题意,由于命题A :|x ﹣1|<3,得到﹣2<x <4,命题B (x +2)(x +a )<0,A 是B 的充分而不必要条件则说明A 是B 的真子集,那么可知集合B :﹣2<x <﹣a ,则可知参数a <﹣4,故答案为:(﹣∞,﹣4).7.【详解详析】设圆锥的底面半径为r ,母线为l ,高为h∵圆锥的母线长为l =5,侧面积为15π,∴π×l ×r =15π,解之得底面半径r =3因此,圆锥的高h =√l 2−r 2=4∴圆锥的体积为:V =13πr 2h =13×π×9×4=12π故答案为:12π8.【详解详析】化简可得f (x )=sin 2x +sin x cos x +1=12(1﹣cos2x )+12sin2x +1=√22sin (2x −π4)+32, ∴原函数的最小正周期为T =2π2=π, 由2k π+π2≤2x −π4≤2k π+3π2可得k π+3π8≤x ≤k π+7π8, ∴函数的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ) 故答案为:π;[k π+3π8,k π+7π8](k ∈Z ) 9.【详解详析】由题意OA →=(0,﹣1),是一个单位向量,由于OB →=(﹣3,﹣4),故OB →方向上的单位向量e →=(−35,−45), ∵点C 在∠AOB 的平分线上,∴存在实数λ使得OC =λ(OA →+e →)=λ(−35,﹣1−45)=λ(−35,−95), ∵||OC|=√10,∴λ2×(925+8125)=10,解得λ=53代入得得OC =(﹣1,﹣3)故答案为:(﹣1,﹣3)10.【详解详析】由S 2=a 1+a 2=2a 2﹣3×2(2﹣1),a 2=11,可得a 1=5.解法1:当n ≥2时,由a n =S n ﹣S n ﹣1,得a n =na n ﹣3n (n ﹣1)﹣[(n ﹣1)a n ﹣1﹣3(n ﹣1)(n ﹣2)], ∴(n ﹣1)a n ﹣(n ﹣1)a n ﹣1=6(n ﹣1),即a n ﹣a n ﹣1=6(n ≥2,n ∈N *),∴数列{a n }是首项a 1=5,公差为6的等差数列,∴S 20=20×5+20×192×6=1240.解法2:当n ≥2时,由S n =na n ﹣3n (n ﹣1)=n (S n ﹣S n ﹣1)﹣3n (n ﹣1),可得(n ﹣1)S n ﹣nS n ﹣1=3n (n ﹣1),∴S n n −S n−1n−1=3, ∴数列{S n n }是首项S 11=5,公差为3的等差数列,∴S 2020=5+3×19=62,∴S 20=1240.11.【详解详析】方法一:如图所示,延长BA ,CD 交于点E ,则在△ADE 中,∠DAE =105°,∠ADE =45°,∠E =30°,∴设AD =12x ,AE =√22x ,DE =√6+√24x ,CD =m , ∵BC =2,∴(√6+√24x +m )sin15°=1, ∴√6+√24x +m =√6+√2,∴0<x <4,而AB =√6+√24x +m −√22x =√6+√2−√22x , ∴AB 的取值范围是(√6−√2,√6+√2).故答案为:(√6−√2,√6+√2).方法二:如下图,作出底边BC =2的等腰三角形EBC ,B =C =75°,倾斜角为150°的直线在平面内移动,分别交EB 、EC 于A 、D ,则四边形ABCD 即为满足题意的四边形; 当直线移动时,运用极限思想,①直线接近点C 时,AB 趋近最小,为√6−√2;②直线接近点E 时,AB 趋近最大值,为√6+√2;故答案为:(√6−√2,√6+√2).12.【详解详析】根据函数f (x )的解析式作出其图象,如图所示.①当x >−√22时,f (x )是增函数, 若f(t)≥f(1t ),则{t ≥1t 1t >−√22,解得:﹣1≤t <0或t ≥1;②当x ≤−√22时,t (x )=√2, 若f(t)≥f(1t ),则{a ≤−√221t ≤−√22,解得:−√2≤t ≤−√22; 综上①②所述,实数t 的取值范围是[−√2,0)∪[1,+∞)故答案为:[−√2,0)∪[1,+∞).13.【详解详析】由x =x 1+x 2,y =y 1+y 2,得x 1=x ﹣x 2,y 1=y ﹣y 2,∵(x 1,y 1)∈A ,∴把x 1=x ﹣x 2,y 1=y ﹣y 2,代入x 2+y 2≤1,∴(x ﹣x 2)2+(y ﹣y 2)2≤1点集Q 所表示的区域是以集合B ={(x ,y )|x ≤4,y ≥0,3x ﹣4y ≥0},的区域的边界为圆心轨迹半径为1 的圆内部分,如图其面积为:5+6+4+3+π=18+π故答案为:18+π.14.【详解详析】令g (x )=(2x ﹣1)e x ,h (x )=a (x ﹣1),∵g '(x )=(2x ﹣1)e x +2e x =(2x +1)e x ,∴当x <−12时,g '(x )<0,则函数g (x )在(﹣∞,−12)上单调递减;当x >−12时,g '(x )>0,则函数g (x )在(−12,+∞)上单调递增;而g (﹣1)=﹣3e ﹣1,g (0)=﹣1;因为存在唯一的整数x 0使得f (x 0)<0.即(2x 0﹣1)e x <a (x 0﹣1).所以结合图形知:{a >0g(−1)≥ℎ(−1)−1<ℎ(0)<0或{ℎ(2)>g(2)ℎ(3)<g(3) 即:{a >0−3e −1≥−2a −1<−a <0或{a >3e 22a <5e 3 解得32e ≤a <1或3e 2<a <52e 3; 故答案为:[32e ,1)∪(3e 2,52e 3).二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【详解详析】(1)f(x)=√3•2cos2x2−sin x=√3cos x﹣sin x+√3=2cos(x+π6)+√3,由f(θ)=√3+1,∴2cos(θ+π6)+√3=√3+1,∴cos(θ+π6)=12.∵θ∈[0,π],∴(θ+π6)∈[π6,7π6],∴θ=π6.(2)由f(C)=√3+1,C∈(0,π),由(1)可得:C=π6.由△ABC的面积为√32,∴√32=12ab sinπ6,∴ab=2√3.由余弦定理可得:1=a2+b2﹣2ab cosπ6,可得:a2+b2=7,联立解得:a=2,b=√3;或b=2,a=√3.∴a+b=2+√3.∴sinAa =sinBb=sinCc=12.∴sin A+sin B=12(a+b)=1+√32.16.【解答】证明:(1)∵四边形ABCD是菱形,AC,BD相交于点O,∴O是AC中点,∵G为BC的中点,∴OG∥AB,∵OG⊄平面ABFE,AB⊂平面ABFE,∴OG∥平面ABFE.(2)∵四边形ABCD是菱形,AC,BD相交于点O,∴AC⊥BD,O是AC中点,∵G为BC的中点,∵EF∥AB,EF=12AB,平面BCF⊥平面ABCD,BF=CF,∴FG⊥平面ABCD,∴EO⊥平面ABCD,∴EO⊥AC,∵EO ∩BD =O ,∴AC ⊥平面BDE .17.【详解详析】(1)由题意得,该探测器相对于河岸的速度为200T,又该探测器相对于河岸的速度比相对于水的速度小于4km /h ,即为v ﹣4, 则200T=v ﹣4,即T =200v−4,(v >4);(2)①当能量次级数为2时,由(1)知,v >4, E =200c ⋅v 2v−4=200c ⋅[(v−4)+4]2v−4=200c •[(v ﹣4)+16v−4+8]≥200c [2√(v −4)⋅16v−4+8]=3200c ,当且仅当v ﹣4=16v−4,即v =8km /h 时取等号, ②当能量次级数为3时,由(1)知,E =200c •v 3v−4,v >4,则E ′=200c •2v 2(v−6)(v−4)2,由E ′=0,解得v =6,即当v <6时,E ′<0,当v >6时,E ′>0,即当v =6时,函数E 取得最小值为E =21600C . 18.【详解详析】(1)∵OA =√2,∴a =√2. ∵把点P (m ,n )代入直线方程mx a 2+ny b 2=1,可得:m 2a 2+n 2b 2=1,∴点P 在椭圆上, ∴PF 1+PF 2=2a =2√2.(2)由a =√2,c =1,∴b 2=a 2﹣c 2=1. 设A (x 1,y 1),B (x 2,y 2).联立{x 2+y 2=2mx 2+ny =1,化为:(4n 2+m 2)x 2﹣4mx +4﹣8n 2=0,∴x 1+x 2=4m4n 2+m 2,x 1x 2=4−8n 24n 2+m 2.∵AB →•F 1F 2→=83,∴(x 2﹣x 1,y 2﹣y 1)•(2,0)=83, 化为2(x 2﹣x 1)=83,即x 2﹣x 1=43,∴(x 1+x 2)2−4x 1x 2=169,代入可得:16m 2(4n 2+m 2)2−4(4−8n 2)4n 2+m 2=169,化为:56n 4+10n 2m 2﹣36n 2﹣m 4=0, 又m 22+n 2=1,把m 2=2﹣2n 2代入化为8n 4﹣2n 2﹣1=0, 联立解得m 2=1,n 2=12.∵点P 在第二象限, ∴取m =﹣1,n =√22. 19.【详解详析】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R =a √1+|sin2x|−sin2x ﹣1=a √1+|sin2x|−(sin2x +1), 令t =√1+|sin2x|,t ∈[0,√2], ∴y =at ﹣t 2=﹣(t −12a )2+14a 2, ①12a ≤0时,在t =0处,y max =0, ②0<12a <√2时,在t =12a 处,y max =14a 2,③12a ≥√2时,在t =√2处,y max =√2a ﹣2.(3)当a =1时,f (x )=√1+|sin2x|−sin2x ﹣1, ∵当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为π2,π, ∴2015=2×1007+1, ∴k =1008.20.【解答】(1)证明:∵S n =λa n ﹣μ.当n ≥2时,S n ﹣1=λa n ﹣1﹣μ, ∴a n =λa n ﹣λa n ﹣1,λ≠1,∴a na n−1=λλ−1,∴数列{a n }为等比数列,∵各项均为正整数,则公比λλ−1=1+1λ−1为正整数,λ为正整数, ∴λ=2.(2)解:由(1)可得:S n =2a n ﹣μ,当n =1时,a 1=μ,则a n =μ•2n ﹣1,∴A ={μ(2i ﹣1+2j ﹣1)|1≤i <j ,i ,j ∈N *},∵2015∈A ,∴2015=μ(2i ﹣1+2j ﹣1)=μ•2i ﹣1(1+2j ﹣i )=5×13×31, ∵j ﹣i >0,则1+2j ﹣i 必为不小于3的奇数, ∵2i﹣1为偶数时,上式不成立,因此必有2i ﹣1=1,∴i =1,∴μ(1+2j ﹣1)=5×13×31,只有j =3,μ=403或j =7,μ=31时,上式才成立, ∴μ=31或403.(3)解:当n ≥1时,集合B n ={x |3μ•2n ﹣1<x <3μ•2n ,x ∈A }, 即3μ•2n ﹣1<μ(2i ﹣1+2j ﹣1)<3μ•2n ,1≤i <j ,i ,j ∈N *.B n 中元素个数, 等价于满足3×2n <2i +2j <3×2n +1的不同解(i ,j ), 若j >n +2,则2i +2j ≥2i +2n +3=2i +4×2n +1>3×2n +1,矛盾. 若j <n +2,则2i +2j ≤2i +2n +1≤2n +2n +1=3×2n ,矛盾.∴j =n +2,又∵(21+2n +2)﹣3×2n =2+4×2n ﹣3×2n =2+2n >0, ∴3×2n <21+2n +2<22+2n +2<…<2n +1+2n +2=3×2n +1,即i =1,2,…,n 时,共有n 个不同的解(i ,j ),即共有n 个不同的x ∈B n , ∴b n =n (n ∈N *).【选做题】请选定其中两题,并在相应的答题区域内作答若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换] 21.【详解详析】∵A =[cosθ−sinθsinθcosθ](0<θ<2π),B =[100k ](0<k <1),∴由题意可得:BA =[100k ][cosθ−sinθsinθcosθ]=[0−1120],∴[cosθ−sinθksinθkcosθ]=[0−1120],解得:{−sinθ=−1cosθ=0kcosθ=0ksinθ=12, ∵0<θ<2π,0<k <1, ∴解得:k =12,θ=π2. [选修4-4:坐标系与参数方程]22.【详解详析】由题意,线段AB 的中点坐标为(5,π3), 设点P (ρ,θ)为直线l 上任意一点, 在直角三角形OMP 中,ρcos (θ−π3)=5, 所以,l 的极坐标方程为ρcos (θ−π3)=5,(6分)令θ=0,得ρ=10,即C (10,0).(8分)所以,△ABC 的面积为:12×(9﹣1)×10×sin π3=20√3.(10分)[选修4-5:不等式选讲]23.【解答】证明:由|b |﹣|a |≤|a +b |≤2,可得|b |≤|a |+2, |a 2+2a ﹣b 2+2b |=|(a +b )(a ﹣b )+2(a +b )| =|a +b |•|a ﹣b +2|≤2|a ﹣b +2|, 要证|a 2+2a ﹣b 2+2b |≤4(|a |+2), 即证|a ﹣b +2|≤2(|a |+2), 由于|a ﹣b +2|≤|a |+|b |+2, 即证|a |+|b |+2≤2(|a |+2), 即为|b |≤|a |+2,显然成立. 故原不等式成立.24.【解答】解(1)不妨设正方体的棱长为1,以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系D ﹣xyz . 则A (1,0,0),O(12,12,0),C (0,1,0),D 1(0,0,1), E (14,14,12),于是DE →=(14,14,12),CD 1→=(0,−1,1). 由cos 〈DE →,CD 1→>=DE →⋅CD 1→|DE|→⋅|CD 1→|=√36. 所以异面直线AE 与CD 1所成角的余弦值为√36.(2)设平面CD 1O 的向量为m →=(x 1,y 1,z 1),由m →•CO →=0,m →•CD 1→=0得{12x 1−12y 1=0−y 1+z 1=0取x 1=1,得y 1=z 1=1,即m →=(1,1,1).(7分) 由D 1E =λEO ,则E (λ2(1+λ),λ2(1+λ),11+λ),DE →=(λ2(1+λ),λ2(1+λ),11+λ). 又设平面CDE 的法向量为n →=(x 2,y 2,z 2),由n →•CD →=0,n →•DE →=0. 得{y 2=0λx 22(1+λ)+λy 22(1+λ)+z 21+λ=0取x 2=2,得z 2=﹣λ,即n →=(﹣2,0,λ).因为平面CDE ⊥平面CD 1O ,所以m →•n →=0,得λ=2.(10分)25.【详解详析】(1)所抛5次得分ξ的概率为P (ξ=i )=C 5i−5(12)5(i =5,6,7,8,9,10),其分布列如下: ξ 567 8 9 10P132532516516532132E ξ=∑ 10i=5i ⋅C 5i−5(12)5=152(分).(2)令p n 表示恰好得到n 分的概率.不出现n 分的唯一情况是得到n ﹣1分以后再掷出一次反面. 因为“不出现n 分”的概率是1﹣p n ,“恰好得到n ﹣1分”的概率是p n ﹣1, 因为“掷一次出现反面”的概率是12,所以有1﹣p n =12p n ﹣1, 即p n −23=−12(p n−1−23).于是{p n −23}是以p 1−23=12−23=−16为首项,以−12为公比的等比数列.所以p n −23=−16(−12)n−1,即p n =13[2+(−12)n ]. 答:恰好得到n 分的概率是13[2+(−12)n ].。
南通市高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲. 2.已知复数12i34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲.4.如图是一个算法流程图,则输出的S 的值为▲.5.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积 大于32 cm 2的概率为▲.6.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲./分(第3题)8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.9.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲.11.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲.12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数 m 的取值范围是▲.13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.14.已知a为常数,函数()f x =23-,则a 的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于 端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为AA 1B 1C 1B CFE(第16题)(第18题)(1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆 柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形 (各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,.记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由.20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(第17题)0(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市高三第二次调研测试数学Ⅱ(附加题)若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)换1T ,在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变2T 对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)ABDOC(第21—A 题)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张 如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元, 点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖总金额为X 元. (1)求概率(600)P X =;(2)求X 的概率分布及数学期望()E X .23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除.南通市高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲.【答案】{}13,2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 【答案】433.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图 所示,则成绩不低于60分的人数为▲.【答案】304.如图是一个算法流程图,则输出的S 的值为▲. 【答案】1255.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为▲. 【答案】136.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲. 【答案】8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A,,(51)B ,,则tan()αβ-的值为▲./分(第3题)【答案】979.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 【答案】6-10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲. 【答案】811.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲. 【答案】22(1)4x y -+=12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点, 则实数m 的取值范围是▲. 【答案】()1+∞,13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.【答案】1014.已知a为常数,函数()f x =23-,则a 的所有值为▲.【答案】144,二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.解:(1)因为()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . ……3分因为+=a b c ,所以22+=a bc ,即a 2+ 2a ⋅b + b 2= 1,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.……6分(2)因为5π6α=,所以()12=,a .依题意,()1sin cos 2ββ+=--,b c .……8分因为()//+a b c,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ=,所以()π1sin 32β-=.…… 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.…… 14分16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异 于端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .证明:(1)在三棱柱ABC -A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.…… 2分 又AE ⊥BB 1,AE I AF A =,AE ,AF ⊂平面AEF , 所以BB 1⊥平面AEF .…… 5分又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C .…… 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE =∠ACF ,AB = AC , 所以Rt △AEB ≌Rt △AFC . 所以BE = CF .…… 9分 又由(1)知,BE // CF . 所以四边形BEFC 是平行四边形. 从而BC // EF .…… 11分又BC ⊄平面AEF ,EF ⊂平面AEF , 所以BC // 平面AEF .…… 14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为AA 1B 1C 1B CFE (第16题)(1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值. 解:设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b = 3. …… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩,得()222319x x a ++=. 所以20269a x a =-+.…… 4分因为10PB x ==,所以2269a a=+,解得218a =. 所以椭圆的标准方程为221189y x +=.…… 6分 (2)方法一: 直线PB 1的斜率为1003PB y k x -=, 由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033x y x y =-+-. 同理,QB 2的方程为:0033x y x y =--+.…… 8分 联立两直线方程,消去y ,得20109y x x -=.…… 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以012x x =-.…… 12分 所以1212012PB B QB B S xS x ∆∆==.…… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221189y x +=,得()2221120k x kx ++=, (第17题)0(第18题)因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.…… 8分 因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-.…… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x k y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+.…… 12分 所以1212201212212621PB B QB B k S xk S x kk ∆∆-+===+.…… 14分18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿 虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大? 解:(1)设所得圆柱的半径为r dm ,则()2π24100r r r +⨯=, (4)分解得r =6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤, (9)分 方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,,……11分记函数304()400x x p x x x⎧<⎪=⎨⎪>⎩≤,, 则()p x在(0,上单调递增,在)⎡+∞⎣上单调递减,所以当x =max ()p x =所以当x =a =max V=3.…… 14分 方法二:202a x a≤≤,从而a 11分所得正四棱柱的体积()222020V a x a a a ==≤≤.所以当a =x =max V=3.…… 14分答:(1dm ;(2)当x 为 16分 【评分说明】①直接“由()21002xx x ⋅+=得,x=2分;②方法一中的求解过程要体现()p x V ≤≤,凡写成()p x V =≤5分, 其它类似解答参照给分.19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由. 解:(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+.……2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列.……4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,……6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.……8分 (3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,,……10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥……12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠. 由⑤⑥得1q q =,从而11a c =.……14分 代入①得10b =.再代入②,得0d =,与0d ≠矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.……16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c c c c ==.……10分 所以32432132c c c c c c c c --=--,即32432132a a d a a d a a d a a d -+-+=-+-+. 两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+.……12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+. 又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. ……14分这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列.……16分20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f xb x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <. 解:(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤.……3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x '=-+.若0b <,则存在02b ->,使()()11cos 0222b b g '-=---<,不合题意,所以0b >.……5分 取30e bx -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <.……8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-.……10分因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-. 所以212120ln ln x x b x x -->>-.……12分下面证明2121ln ln x x x x ->-1ln t t ->()ln 0t <*.设())ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b ->2124x x b <.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=. 证明:延长AO 交⊙O 于点E ,则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.……5分因为OE OA =,所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=.……10分B .[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩 阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积. 解:依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……5分则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=.……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.解:以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .ABDC(第21—A 题)EO则点P的直角坐标为()1.……2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=.……5分所以()1P 到直线l40y -+=2=.故所求圆的普通方程为()(2214x y -+=.……8分化为极坐标方程得,()π4sin 6ρθ=+.……10分D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2. 证明:因为a ,b ,c 为正实数,=2=(当且仅当a b c ==取“=”).……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元. (1)求概率()600P X =;(2)求X 的概率分布及数学期望()E X .解:(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形. 则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形.所以()3111414439C C C C 560021C P X +⋅⋅===.……3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:……8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). ……10分23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除. 解:由二项式定理,得21C i i n a +=(i =0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=;…… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+-()221C n kn n +=+, …… 4分所以()021nn n k k T k a -==+∑()21021C nn kn k k -+==+∑ ()121021C nn k n k k +++==+∑ ()()12102121C nn k n k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn k n knn k k n n ++++===+-+∑∑()()()2212112212C 21222n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. 因为21C n n *-∈N ,所以n T 能被42n +整除.…… 10分。
江苏省海安高级中学2020届高三数学第二次模拟考试试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上1. 设集合{}1 3A =,,{}2230B x x x =--<,则A B = ▲ . 2. 已知z i 12i ⋅=+(i 为虚数单位),则复数z = ▲ . 3. 命题“20210x x x ∃<-->,”的否定是 ▲ .4. 袋中有形状和大小都相同的4只球,其中1只白球,1只红球,2只黄球.现从中一次随 机摸出两只球,则这两只球颜色不同的概率为 ▲ .5. “sin cos 0αα+=”是“c o s20α=”的 ▲ 条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)6.设等比数列{}n a 的前n 项和为n S .若28365262a a a a S ==-,,则1a 的值为 ▲ . 7. 若幂函数()a f x x =的图象经过点)12,,则其单调递减区间为 ▲ .8. 若函数()sin f x x x ωω=+ (x ∈R ,0ω>)满足()()02f f αβ==,,且|α-β|的最小值等于π2,则ω的值为 ▲ .9. 已知函数()2241020ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点A ,B ,C ,D .若AB =BC ,则实数t 的值为 ▲ . 10. 设集合{}1 A a =-,,e e 2a B ⎧⎫=⎨⎬⎩⎭,(其中e 是自然对数的底数),且A B ≠∅,则满足条件的实数a 的个数为 ▲ .11. 已知过原点O 的直线与函数()3x f x =的图象交于A ,B 两点,点A 在点O ,B 之间,过A作平行于y 轴的直线交函数()9x g x =的图象于C 点,当BC ∥x 轴时,点A 的横坐标 为 ▲ .12. 设点P 在函数()1e 2x f x =的图象上,点Q 在函数()()ln 2g x x =的图象上,则线段PQ 长度的最小值为 ▲ .13.设()f x 为偶函数,且当(]20x ∈-,时,()()2fx x x =-+;当[)2x ∈+∞,时,()()()2fx a x x =--.关于函数()()g x f x m =-的零点,有下列三个命题:①当4a =时,存在实数m ,使函数()g x 恰有5个不同的零点; ②若[]01m ∀∈,,函数()g x 的零点不超过4个,则2a ≤;③对()1m ∀∈+∞,,()4a ∃∈+∞,,函数()g x 恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是 ▲ .14. 已知函数()2211x kx f x x x ++=++,若对于任意正实数x 1,x 2,x 3,均存在以f (x 1),f (x 2),f (x 3)为三边边长的三角形,则实数k 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.解答时写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知集合{}220A x x x =-->,集合(){}222550B x x k x k =+++<,k ∈R . (1)求集合B ;(2)记M A B =,且集合M 中有且仅有一个整数,求实数k 的取值范围.16.(本小题满分14分)已知()π02α∈,,()ππ2β∈,,1cos 3β=-,()7sin 9αβ+=.(1)求sin α的值; (2)求()tan +2βα的值.17.(本小题满分14分)设数列{}n a ,{}n b 的各项都是正数,n S 为数列{}n a 的前n 项和,且对任意n *∈N ,都有 22n n n a S a =-,1e b =,21n n b b +=,ln n n n c a b =⋅(e 是自然对数的底数). (1)求数列{}n a ,{}n b 的通项公式;AMNCDE(2)求数列{}n c 的前n 项和n T .18.(本小题满分16分)已知矩形纸片ABCD 中,AB =6,AD =12,将矩形纸片的右下角沿线段MN 折叠,使矩形的顶点B 落在矩形的边AD 上,记该点为E ,且折痕MN 的两端点M ,N 分别在边AB ,BC 上.设∠MNB =θ,MN =l ,△EMN 的面积为S .(1)将l 表示成θ的函数,并确定θ的取值范围; (2)求l 的最小值及此时sin θ的值;(3)问当θ为何值时,△EMN 的面积S 取得最小值?并求出这个最小值.19.(本小题满分16分)已知函数()y f x =.若在定义域内存在0x ,使得()()00f x f x -=-成立,则称0x 为函数()y f x =的局部对称点.(1)若a ,b ∈R 且a ≠0,证明:函数()2f x ax bx a =+-有局部对称点;(2)若函数()2x g x c =+在定义域[]1 1-,内有局部对称点,求实数c 的取值范围; (3)若函数()12423x x h x m m +=-⋅+-在R 上有局部对称点,求实数m 的取值范围.20.(本小题满分16分)已知函数()ln f x x =.(1)求函数()()1g x f x x =-+的零点;(2)设函数()f x 的图象与函数1a y x x =+-的图象交于()11A x y ,,()()1112B x y x x <,两点,求证:121a x x x <-;(3)若0k >,且不等式()()()2211x f x k x --≥对一切正实数x 恒成立,求k 的取值范围.数学Ⅱ21.本大题共两小题,每小题10分,共计20分.请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1 (k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.C .(选修4—4:坐标系与参数方程)已知曲线C 的极坐标方程为4sin ρθ=.以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正四棱锥P -ABCD 中,PA =AB,点M ,N 分别在线段PA 和BD 上,BN =13BD .(1)若PM =13PA ,求证:MN ⊥AD ;(2)若二面角M -BD -A 的大小为π4,求线段MN 的长度.23.(本小题满分10分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为nS”.(1)当12p q==时,记3Sξ=,求ξ的分布列及数学期望;(2)当13p=,23q=时,求82S=且()01234iS i=≥,,,的概率.。
江苏省南通市2020届高三下学期二模考前综合练习数学试题一、填空题:本大题共14小题,每小题5分,共70分.1.记复数z =a +b i (i 为虚数单位)的共轭复数为()z a bi a b R =-∈,,已知z =2+i ,则2z =_____. 『答案』3﹣4i『解析』∵z =2+i ,∴z 2=(2+i )2=3+4i ,则234z i =-. 故答案为:3﹣4i .2.已知集合U ={1,3,5,9},A ={1,3,9},B ={1,9},则∁U (A ∪B )=________. 『答案』{5}『解析』易得A ∪B =A ={1,3,9},则∁U (A ∪B )={5}.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____. 『答案』30『解析』分层抽样的抽取比例为801160020=,∴抽取学生的人数为600120⨯=30. 故答案为:30.4.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.『答案』5『解析』由题意可得x =1,y =2,r =∴sin α5y r ==,∴sin (π﹣α)=sin α5=.. 5.执行以下语句后,打印纸上打印出的结果应是:_____.『答案』28『解析』程序在运行过程中各变量取值如下所示:是否继续循环 i x 循环前 1 4 第一圈 是 4 4+2 第二圈 是 7 4+2+8 第三圈 是 10 4+2+8+14退出循环,所以打印纸上打印出的结果应是:28 故答案为:28.6.设α、β为互不重合的平面,m ,n 是互不重合的直线,给出下列四个命题: ①若m ∥n ,则m ∥α;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,m ⊂α,n ⊂β,则m ∥n ;④若α⊥β,α∩β=m ,n ⊂α,m ⊥n ,则n ⊥β; 其中正确命题的序号为_____. 『答案』④『解析』对于①,当m ∥n 时,由直线与平面平行的定义和判定定理,不能得出m ∥α,①错误;对于②,当m ⊂α,n ⊂α,且m ∥β,n ∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m ⊂α,n ⊂β时,由两平面平行的性质定理,不能得出m ∥n ,③错误; 对于④,当α⊥β,且α∩β=m ,n ⊂α,m ⊥n 时,由两平面垂直的性质定理,能够得出n ⊥β,④正确;综上知,正确命题的序号是④. 故答案为:④.的7.已知函数f (x )=322{102x x x x ≥,,(-),<<,若关于x 的方程f (x )=kx 有两个不同的实根,则实数k的取值范围是________. 『答案』10,2⎛⎫ ⎪⎝⎭『解析』由图可知,当直线y =kx 在直线OA 与x 轴(不含它们)之间时,y =kx 与y =f (x )的图像有两个不同交点,即方程有两个不相同的实根.8.已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为_____. 『答案』-2『解析』已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0, ①a <0时,『x ﹣(a 4a +)』(x ﹣4)<0,其中a 4a+<0, 故解集为(a 4a+,4), 由于a 4a +=-(﹣a 4a-)≤﹣=-4, 当且仅当﹣a 4a=-,即a =﹣2时取等号, ∴a 4a +的最大值为﹣4,当且仅当a 4a+=-4时,A 中共含有最少个整数,此时实数a 的值为﹣2;②a =0时,﹣4(x ﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a =0不符合条件;③a >0时,『x ﹣(a 4a +)』(x ﹣4)>0,其中a 4a+≥4, ∴故解集为(﹣∞,4)∪(a 4a+,+∞),整数解有无穷多,故a >0不符合条件;综上所述,a =﹣2. 故答案为:﹣2.9.已知双曲线22221x y a b -=(a >0,b >0)的两个焦点为102F ⎛⎫- ⎪ ⎪⎝⎭、202F ⎛⎫ ⎪ ⎪⎝⎭,点P 是第一象限内双曲线上的点,且121tan 2PF F ∠=,tan ∠PF 2F 1=﹣2,则双曲线的离心率为_____.『解析』∵△PF 1F 2中,sin ∠PF 1F 2═5,sin ∠PF 1F 2═5,∴由正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,① 又∵1212tan PF F ∠=,tan ∠PF 2F 1=﹣2, ∴tan ∠F 1PF 2=﹣tan (∠PF 2F 1+∠PF 1F 2)123214122-=-=+⨯,可得cos ∠F 1PF 245=, △PF 1F 2中用余弦定理,得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,②①②联解,得12PF PF ==12PF PF -=∴双曲线的2a =,结合2c =,得离心率22c e a ==.故答案为:5. 10.记S k =1k +2k +3k +……+n k ,当k =1,2,3,……时,观察下列等式:S 112=n 212+n ,S 213=n 312+n 216+n ,S 314=n 412+n 314+n 2,……S 5=An 612+n 5512+n 4+Bn 2,…可以推测,A ﹣B =_____. 『答案』14『解析』根据所给的已知等式得到:各等式右边各项的系数和为1, 最高次项的系数为该项次数的倒数,∴A 16=,A 15212B +++=1,解得B 112=-,所以A ﹣B 1116124=+=. 故答案为:14.11.设函数()f x x x a =-,若对于任意的1x ,2x ∈『2,)+∞,1x ≠2x ,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是 .『答案』2a ≤『解析』由题意得函数()f x x x a =-在『2,)+∞上单调递增,当2a ≤时()()f x x x a =-在『2,)+∞上单调递增;当2a >时()f x x x a =-在[,)a +∞上单调递增;在[2,)a 上单调递减,因此实数a 的取值范围是2a ≤12.已知平面向量a ,b ,c 满足|a |=1,|b |=2,a ,b 的夹角等于3π,且(a c -)•(b c -)=0,则|c |的取值范围是_____.『答案』22⎣⎦, 『解析』由(a c -)•(b c -)=0 可得 2c =(a b +)•c a b -⋅=|a b +|•|c |cosα﹣1×2cos 3π=|a b +|•|c |cosα﹣1,α为a b +与c 的夹角.再由 ()222a ba b +=++2a •b =1+4+2×1×2cos3π=7 可得|a b +|=∴27c =|c |cosα﹣1,解得cosα2c=.∵0≤α≤π,∴﹣1≤cosα≤12c≤1,即27c -|c |+1≤0,解得≤|c|2≤,故答案为⎣⎦. 13.在平面直角坐标系xOy 中,直角三角形ABC 的三个顶点都在椭圆()22211x y a a+=>上,其中A (0,1)为直角顶点.若该三角形的面积的最大值为278,则实数a 的值为_____. 『答案』3『解析』设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k=-x +1,(k ≠0) 由22211y kx x y a=+⎧⎪⎨+=⎪⎩消去y ,得(1+a 2k 2)x 2+2a 2kx =0,所以x =0或x 22221a k a k -=+ ∵A 的坐标(0,1),∴B 的坐标为(22221a k a k -+,k •22221a k a k -++1),即B (22221a k a k -+,222211a k a k-+), 因此AB ==22221a k a k+, 同理可得:AC =•22221a kak+ ∴Rt △ABC 的面积为S 12=AB •AC =44422422*********a k a ka a k a a k k k +=⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ 令t 1k k =+,得S ()4422422222(1)12a t a a a a t a tt==-++-+. ∵t 1k k =+≥2,∴S △ABC442(1)a a a ≤=-.2=t 21a a-=时,△ABC 的面积S 有最大值为4227(1)8a a a =-. 解之得a =3或a 316+=. .∵a =时,t 21a a -=<2不符合题意,∴a =3.故答案为:3.14.设f (x )=e tx (t >0),过点P (t ,0)且平行于y 轴的直线与曲线C :y =f (x )的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,若S (1,f (1)),则△PRS 的面积的最小值是_____. 『答案』2e『解析』∵PQ ∥y 轴,P (t ,0),∴Q (t ,f (t ))即Q (t ,2t e ), 又f (x )=e tx (t >0)的导数f ′(x )=t e tx ,∴过Q 的切线斜率k =t 2t e ,设R (r ,0),则k 220t t e te t r-==-,∴r =t 1t -,即R (t 1t -,0),PR =t ﹣(t 1t -)1t=,又S (1,f (1))即S (1,e t),∴△PRS 的面积为S 2te t=,导数S ′()212t e t t-=,由S ′=0得t =1,当t >1时,S ′>0,当0<t <1时,S ′<0,∴t =1为极小值点,也为最小值点, ∴△PRS 的面积的最小值为2e . 故答案为:2e .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()31sin ,tan 53A AB =-=,角C 为钝角, 5.b = (1)求sin B 的值; (2)求边c 的长.解:(1)因为角C 为钝角,3sin 5A = ,所以4cos 5A == , 又()1tan 3AB -= ,所以02A B π<-< , 且()()sinA B A B -=-= , 所以()()()sin sin sin cos cos sin B A A B A A B A A B ⎡⎤=--=---⎣⎦3455=-=.(2)因为sin sin 5a Ab B ==,且5b = ,所以a =, 又()cos cos cos cos sin sinC A B A B A B =-+=-+= ,则2222cos 952525169c a b ab C ⎛=+-=+-⨯= ⎝ ,所以 13c = .16.如图,四棱锥V ﹣ABCD 中,底面ABCD 是菱形,对角线AC 与BD 交于点O ,VO ⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BD E;(2)求证:平面VAC⊥平面BD E.证明:(1)连结O E.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥O E,又因为O E⊂平面BD E,VA⊄平面BD E,所以VA∥平面BD E;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BD E,所以平面VAC⊥平面BD E.17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.解:(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以42955m-=,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a 2+1)x 2+2(5a ﹣1)x +1=0,由于直线ax ﹣y +5=0交圆于A ,B 两点,故△=4(5a ﹣1)2﹣4(a 2+1)>0,即12a 2﹣5a >0,由于a >0,解得a 512>,所以实数a 的取值范围是(512+∞,).(3)设符合条件的实数a 存在,则直线l 的斜率为1a-,l 的方程为()124y x a=-++,即x +ay +2﹣4a =0,由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上, 所以1+0+2﹣4a =0,解得34a =.由于35412⎛⎫∈+∞ ⎪⎝⎭,,故存在实数34a = 使得过点P (﹣2,4)的直线l 垂直平分弦AB .18.如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m 和20m ,从建筑物AB 的顶部A 看建筑物CD 的视角∠CAD =60°.(1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的视角分别为∠APB =α,∠DPC =β,问点P 在何处时,α+β最小?解:(1)作A E ⊥CD ,垂足为E ,则C E =10,D E =10,设BC =x ,则()22202tan tan tan 21001tan 1CAE x CAD CAE CAE x ∠∠=∠===-∠-2200x --=,解之得,x =x =(舍), (2)设BP =t,则(0CP t t =<<,()101t tan t αβ+===-设()f t =,()2'200f t t =-+-令f '(t)=0,因为0t<<t =,当(0t ∈,时,f '(t )<0,f (t )是减函数;当(t ∈时,f '(t )>0,f (t )是增函数,所以,当t =f (t )取得最小值,即tan (α+β)取得最小值, 因为22000t -+-<恒成立,所以f (t )<0, 所以tan (α+β)<0,2παβπ⎛⎫+∈⎪⎝⎭,, 因为y =tan x 在2ππ⎛⎫⎪⎝⎭,上是增函数,所以当t =α+β取得最小值.19.设首项为1的正项数列{a n }的前n 项和为S n ,数列{}2na 的前n 项和为T n,且()243n n S p T --=,其中p 为常数.(1)求p 的值;(2)求证:数列{a n }为等比数列;(3)证明:“数列a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数”的充要条件是“x =1,且y =2”.(1)解:n =1时,由()24113p --=得p =0或2,若p =0时,243n n S T -=,当n =2时,()22224113a a-++=,解得a 2=0或212a =-, 而a n >0,所以p =0不符合题意,故p =2; (2)证明:当p =2时,241(2)33n n T S =--①,则21141(2)33n n T S ++=--②, ②﹣①并化简得3a n +1=4﹣S n +1﹣S n ③,则3a n +2=4﹣S n +2﹣S n +1④, ④﹣③得2112n n a a ++=(n ∈N *), 又因为2112a a =,所以数列{a n }是等比数列,且112n n a -=; (3)证明:充分性:若x =1,y =2,由112n n a -=知a n ,2x a n +1,2y a n +2依次为112n -,22n ,142n +, 满足112142222n n n -+⨯=+,即a n ,2x a n +1,2y a n +2成等差数列;必要性:假设a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数,又112n n a -=,所以11111222222x yn n n -+⋅⋅=+⋅,化简得2x ﹣2y ﹣2=1,显然x >y ﹣2,设k =x ﹣(y ﹣2),因为x 、y 均为整数,所以当k ≥2时,2x ﹣2y ﹣2>1或2x ﹣2y ﹣2<1, 故当k =1,且当x =1,且y ﹣2=0时上式成立,即证.20.已知函数123()()()()f x x x x x x x =---,123,,x x x R ∈,且123x x x <<. (1)当123012x x x ===,,时,求函数()f x 的减区间; (2)求证:方程()0f x '=有两个不相等的实数根; (3)若方程()0f x '=的两个实数根是()αβαβ<,,试比较122x x +,232x x +与αβ,的大小,并说明理由.解:(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x =---+=-+',由()0f x <得()f x 减区间(1+;(2)因为32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,所以2123122331()32()()f x x x x x x x x x x x x =-+++'++,因为2221223312[()()()]0x x x x x x ∆=-+-+->所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-=-<',22323()()024x x x x f +-=-<',所以231222x x x x αβ++<<< 试题『解析』(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x =---+=-+',由()0f x <得()f x 减区间(1,133-+; (2)法1:32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,2123122331()32()()f x x x x x x x x x x x x =-+++'++2221223312[()()()]0x x x x x x ∆=-+-+->,123x x x <<,所以,方程()0f x '=有两个不相等的实数根;法2:122331()()()()()()()f x x x x x x x x x x x x x =--+---'-+,22321()()()0f x x x x x -'=-<,()f x 是开口向上的二次函数,所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-=-<',22323()()024x x x x f +-=-<',又()f x 在(,)α-∞和(,)β+∞增,()f x 在(,)αβ减,所以231222x x x x αβ++<<<. 本题包括A ,B 共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤. 『选修4-2:矩阵与变换』21.试求曲线y =sin x 在矩阵MN 变换下的函数解析式,其中M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦. 解:∵M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦,∴MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ∴在矩阵MN 变换下,x y ⎡⎤⎢⎥⎣⎦→1'2'2x x y y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦∴曲线y =sin x 在矩阵MN 变换下的函数解析式为y =2sin2x . 『选修4-4:极坐标与参数方程』 22.已知直线l 的极坐标方程为63sin πρθ⎛⎫-= ⎪⎝⎭,圆C 的参数方程为1010x cos y sin θθ=⎧⎨=⎩(θ为参数).(1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长. 解:(1)sin 63πρθ⎛⎫-= ⎪⎝⎭,即1sin 62ρθθ⎛⎫= ⎪ ⎪⎝⎭,即1622y x -=,120y -+=.10cos 10sin x y θθ=⎧⎨=⎩,故22100x y +=. (2)圆心()0,0到直线的距离为1262d ==,故弦长为16=. 『必做题』本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.在如图所示的几何体中,四边形ABCD 为矩形,平面AB E F ⊥平面ABCD ,E F ∥AB ,∠BAF =90°,AD =2,AB =AF =2E F =2,点P 在棱DF 上.(1)若P 是DF 的中点,求异面直线B E 与CP 所成角的余弦值; (2)若二面角D ﹣AP ﹣C,求PF 的长度. 解:(1)∵BAF =90°,∴AF ⊥AB ,又∵平面AB E F ⊥平面ABCD ,且平面AB E F ∩平面ABCD =AB , ∴AF ⊥平面ABCD ,又四边形ABCD矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系, ∵AD =2,AB =AF =2E F =2,P 是DF 的中点,∴B (2,0,0),E (1,0,2),C (2,2,0),P (0,1,1), BE =(﹣1,0,2),CP =(﹣2,﹣1,1), 设异面直线B E 与CP 所成角的平面角为θ, 则cosθ5BE CP BE CP⋅===⋅,∴异面直线B E 与CP (2)A (0,0,0),C (2,2,0),F (0,0,2),D (0,2,0),设P (a ,b ,c ),FP FD λ=,0≤λ≤1,即(a ,b ,c ﹣2)=λ(0,2,﹣2), 解得a =0,b =2λ,c =2﹣2λ,∴P (0,2λ,2﹣2λ), AP =(0,2λ,2﹣2λ),AC =(2,2,0), 设平面APC 的法向量n =(x ,y ,z ),则()2220220n AP y z n AC x y λλ⎧⋅=+-=⎨⋅=+=⎩,取x =1,得n =(1,﹣1,222λλ-),平面ADP 的法向量m =(1,0,0),∵二面角D ﹣AP ﹣C∴|cos m n <,>|2(m n m n⋅===⋅+ 解得12λ=,∴P (0,1,1), ∴PF 的长度|PF |==『必做题』本题满分10分.解答时应写出文字说明、证明过程或演算步骤. 24.甲、乙、丙三名射击运动员射中目标的概率分别为1,,2a a (01)a <<,三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率()P i ξ=(i =0,1,2,3)中, 若(1)P ξ=的值最大, 求实数a 的取值范围. 解:(1)P (ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P (ξ=0)=01C 112⎛⎫-⎪⎝⎭02C (1-a )2=12(1-a )2; P (ξ=1)=11C ·122C (1-a )2+01C 112⎛⎫- ⎪⎝⎭12C a (1-a )=12(1-a 2); P (ξ=2)=11C ·1212C a (1-a )+01C 112⎛⎫- ⎪⎝⎭22C a 2=12(2a -a 2);P (ξ=3)=11C·1222C a 2=22a . 所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a )2+1×12(1-a 2)+2×12(2a -a 2)+3×22a =412a +. (2)P (ξ=1)-P (ξ=0)=12『(1-a 2)-(1-a )2』=a (1-a ); P (ξ=1)-P (ξ=2)=12『(1-a 2)-(2a -a 2)』=122a-;P (ξ=1)-P (ξ=3)=12『(1-a 2)-a 2』=2122a -.由2(1)0,12{0,21202a a a a-≥-≥-≥和0<a <1,得0<a ≤12,即a 的取值范围是10,2⎛⎤⎥⎝⎦.。
2020届江苏省南通市高三下学期二模考前综合练习数学试题一、填空题1.记复数z =a +bi (i 为虚数单位)的共轭复数为()z a bi a b R =-∈,,已知z =2+i ,则2z =_____. 【答案】3﹣4i【解析】计算得到z 2=(2+i )2=3+4i ,再计算2z 得到答案. 【详解】∵z =2+i ,∴z 2=(2+i )2=3+4i ,则234z i =-. 故答案为:3﹣4i . 【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.2.已知集合U ={1,3,5,9},A ={1,3,9},B ={1,9},则∁U (A ∪B)=________. 【答案】{5}【解析】易得A ∪B =A ={1,3,9},则∁U (A ∪B)={5}.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____. 【答案】30【解析】直接根据分层抽样的比例关系得到答案. 【详解】分层抽样的抽取比例为801160020=,∴抽取学生的人数为600120⨯=30. 故答案为:30. 【点睛】本题考查了分层抽样的计算,属于简单题.4.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.【解析】计算sinα25y r ==,再利用诱导公式计算得到答案. 【详解】由题意可得x =1,y =2,r 5=,∴sinα25y r ==,∴sin (π﹣α)=sinα25=. 故答案为:25. 【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力. 5.执行以下语句后,打印纸上打印出的结果应是:_____.【答案】28【解析】根据程序框图直接计算得到答案. 【详解】程序在运行过程中各变量的取值如下所示:是否继续循环 i x 循环前 1 4 第一圈 是 4 4+2 第二圈 是 7 4+2+8 第三圈 是 10 4+2+8+14退出循环,所以打印纸上打印出的结果应是:28 故答案为:28. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.6.设α、β为互不重合的平面,m ,n 是互不重合的直线,给出下列四个命题: ①若m ∥n ,则m ∥α;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,m ⊂α,n ⊂β,则m ∥n ;④若α⊥β,α∩β=m ,n ⊂α,m ⊥n ,则n ⊥β;其中正确命题的序号为_____. 【答案】④【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案. 【详解】对于①,当m ∥n 时,由直线与平面平行的定义和判定定理,不能得出m ∥α,①错误; 对于②,当m ⊂α,n ⊂α,且m ∥β,n ∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m ⊂α,n ⊂β时,由两平面平行的性质定理,不能得出m ∥n ,③错误;对于④,当α⊥β,且α∩β=m ,n ⊂α,m ⊥n 时,由两平面垂直的性质定理,能够得出n ⊥β,④正确;综上知,正确命题的序号是④. 故答案为:④. 【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.7.已知函数f(x)=若关于x 的方程f(x)=kx 有两个不同的实根,则实数k 的取值范围是________. 【答案】【解析】由图可知,当直线y =kx 在直线OA 与x 轴(不含它们)之间时,y =kx 与y =f(x)的图像有两个不同交点,即方程有两个不相同的实根.8.已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为_____. 【答案】-2【解析】讨论0,0,0a a a <=>三种情况,a <0时,根据均值不等式得到a 4a+=-(﹣a 4a-)≤﹣=-4,计算等号成立的条件得到答案. 【详解】已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0, ①a <0时,[x ﹣(a 4a +)](x ﹣4)<0,其中a 4a+<0, 故解集为(a 4a+,4),由于a 4a +=-(﹣a 4a-)≤﹣=-4,当且仅当﹣a 4a=-,即a =﹣2时取等号, ∴a 4a+的最大值为﹣4,当且仅当a 4a +=-4时,A 中共含有最少个整数,此时实数a的值为﹣2;②a =0时,﹣4(x ﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a =0不符合条件;③a >0时,[x ﹣(a 4a+)](x ﹣4)>0,其中a 4a +≥4,∴故解集为(﹣∞,4)∪(a 4a+,+∞),整数解有无穷多,故a >0不符合条件;综上所述,a =﹣2. 故答案为:﹣2. 【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.9.已知双曲线22221x y a b -=(a >0,b >0)的两个焦点为10F ⎛⎫ ⎪ ⎪⎝⎭、20F ⎫⎪⎪⎝⎭,点P 是第一象限内双曲线上的点,且1212tan PF F ∠=,tan ∠PF 2F 1=﹣2,则双曲线的离心率为_____.【解析】根据正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,根据余弦定理得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,联立方程得到1233PF PF ==,计算得到答案. 【详解】∵△PF 1F 2中,sin ∠PF 1F 2sin ∠PF 1F 2∴由正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,① 又∵1212tan PF F ∠=,tan ∠PF 2F 1=﹣2, ∴tan ∠F 1PF 2=﹣tan (∠PF 2F 1+∠PF 1F 2)123214122-=-=+⨯,可得cos ∠F 1PF 245=, △PF 1F 2中用余弦定理,得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,②①②联解,得1233PF PF ==,可得123PF PF -=, ∴双曲线的2a =,结合2c =,得离心率22c e a ==.. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.10.记S k =1k +2k +3k +……+n k ,当k =1,2,3,……时,观察下列等式:S 112=n 212+n ,S 213=n 312+n 216+n ,S 314=n 412+n 314+n 2,……S 5=An 612+n 5512+n 4+Bn 2,…可以推测,A ﹣B =_____. 【答案】14【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案. 【详解】根据所给的已知等式得到:各等式右边各项的系数和为1, 最高次项的系数为该项次数的倒数, ∴A 16=,A 15212B +++=1,解得B 112=-,所以A ﹣B 1116124=+=.故答案为:14. 【点睛】本题考查了归纳推理,意在考查学生的推理能力.11.设函数()||f x x x a =-,若对于任意的1x ,2x ∈[2,)+∞,1x ≠2x ,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是 .【答案】2a ≤【解析】试题分析:由题意得函数()||f x x x a =-在[2,)+∞上单调递增,当2a ≤时()()f x x x a =-在[2,)+∞上单调递增;当2a >时()||f x x x a =-在[,)a +∞上单调递增;在[2,)a 上单调递减,因此实数a 的取值范围是2a ≤ 【考点】函数单调性12.已知平面向量a r,b r,c r 满足|a r|=1,|b r|=2,a r,b r的夹角等于3π,且(a c -r r )•(b c -r r )=0,则|c r|的取值范围是_____.【答案】22⎣⎦, 【解析】计算得到|a b +r r|=2c =r c r |cosα﹣1,解得cosα2=r ,根据三角函数的有界性计算范围得到答案. 【详解】由(a c -r r)•(b c -rr )=0 可得 2c =r (a b +rr)•c a b -⋅=r r |a b +rr|•|c r|cosα﹣1×2cos3π=|a b +r r |•|c r |cosα﹣1,α为a b +r r 与c r 的夹角.再由 ()222a ba b +=++r r r r 2a r •b =r 1+4+2×1×2cos 3π=7 可得|a b +r r|=∴2c =r c r |cosα﹣1,解得cosα2=r .∵0≤α≤π,∴﹣1≤cosα≤1,2≤r 1,即2c -r c r |+1≤0,解得2≤|c r|2≤,故答案为⎣⎦. 【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.13.在平面直角坐标系xOy 中,直角三角形ABC 的三个顶点都在椭圆()22211x y a a+=>上,其中A (0,1)为直角顶点.若该三角形的面积的最大值为278,则实数a 的值为_____. 【答案】3【解析】设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k=-x +1,(k ≠0),联立方程得到B (22221a k a k -+,222211a k a k -+),故S 442221211a k ka a k k +=⎛⎫+++ ⎪⎝⎭,令t 1k k =+,得S 42222(1)a a a t t=-+,利用均值不等式得到答案. 【详解】设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k=-x +1,(k ≠0) 由22211y kx x y a =+⎧⎪⎨+=⎪⎩消去y ,得(1+a 2k 2)x 2+2a 2kx =0,所以x =0或x 22221a k a k -=+ ∵A 的坐标(0,1),∴B 的坐标为(22221a k a k -+,k •22221a k a k -++1),即B (22221a k a k -+,222211a k a k-+), 因此AB ==22221a k a k+, 同理可得:AC =•22221a kak+. ∴Rt △ABC 的面积为S12=AB•AC2212kk=++•44422422221221111a ka ka a k a a kk k+=⎛⎫⎛⎫++++++⎪ ⎪⎝⎭⎝⎭令t1kk=+,得S()4422422222(1)12a t aaa a t a tt==-++-+.∵t1kk=+≥2,∴S△ABC442222(1)(1)2aa aaa tt≤=--⨯.当且仅当2a tt=,即t21aa-=时,△ABC的面积S有最大值为4227(1)8aa a=-. 解之得a=3或a3297+=.∵a3297+=时,t21aa-=<2不符合题意,∴a=3.故答案为:3.【点睛】本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力. 14.设f(x)=e tx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.【答案】2e【解析】计算R(t1t-,0),PR=t﹣(t1t-)1t=,△PRS的面积为S2t et=,导数S ′()212t e t t-=,由S ′=0得t =1,根据函数的单调性得到最值.【详解】∵PQ ∥y 轴,P (t ,0),∴Q (t ,f (t ))即Q (t ,2t e ),又f (x )=e tx (t >0)的导数f ′(x )=te tx ,∴过Q 的切线斜率k =t 2t e ,设R (r ,0),则k 220t t e tet r-==-,∴r =t 1t -, 即R (t 1t -,0),PR =t ﹣(t 1t -)1t=,又S (1,f (1))即S (1,e t),∴△PRS 的面积为S 2te t=,导数S ′()212t e t t-=,由S ′=0得t =1,当t >1时,S ′>0,当0<t <1时,S ′<0,∴t =1为极小值点,也为最小值点, ∴△PRS 的面积的最小值为2e . 故答案为:2e . 【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.二、解答题15.在三角形ABC 中,角A,B,C 的对边分别为a,b,c ,若()31sin ,tan 53A AB =-=,角C 为钝角, 5.b = (1)求sin B 的值; (2)求边c 的长.【答案】(1)10sin 10B =(2)13c = 【解析】(1)由()sin sin B A A B ⎡⎤=--⎣⎦,分别求得sin cos A A ,,()()sin cos A B A B --,得到答案;(2)利用正弦定理sin sin a Ab B=得到 310a =,利用余弦定理解出13c =. 【详解】(1)因为角C 为钝角,3sin 5A = ,所以24cos 1sin 5A A =-= , 又()1tan 3AB -= ,所以02A B π<-< , 且()()sin ,cos 1010A B A B -=-= , 所以()()()sin sin sin cos cos sin B A A B A A B A A B ⎡⎤=--=---⎣⎦3455101010=⨯-⨯= . (2)因为sin 310sin 5a Ab B ==,且5b = ,所以310a = , 又()cos cos cos cos sin sin 510C A B A B A B =-+=-+=-, 则2222cos 952523105169510c a b ab C ⎛=+-=+-⨯⨯-= ⎪⎝⎭ ,所以 13c = .16.如图,四棱锥V ﹣ABCD 中,底面ABCD 是菱形,对角线AC 与BD 交于点O ,VO ⊥平面ABCD ,E 是棱VC 的中点.(1)求证:VA ∥平面BDE ; (2)求证:平面VAC ⊥平面BDE .【答案】(1)见解析(2)见解析【解析】(1)连结OE ,证明VA ∥OE 得到答案.(2)证明VO ⊥BD ,BD ⊥AC ,得到BD ⊥平面VAC ,得到证明. 【详解】(1)连结OE .因为底面ABCD 是菱形,所以O 为AC 的中点,又因为E 是棱VC 的中点,所以VA ∥OE ,又因为OE ⊂平面BDE ,VA ⊄平面BDE , 所以VA ∥平面BDE ;(2)因为VO ⊥平面ABCD ,又BD ⊂平面ABCD ,所以VO ⊥BD ,因为底面ABCD 是菱形,所以BD ⊥AC ,又VO ∩AC =O ,VO ,AC ⊂平面VAC , 所以BD ⊥平面VAC .又因为BD ⊂平面BDE ,所以平面VAC ⊥平面BDE .【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.17.已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y ﹣29=0相切.(1)求圆的方程;(2)设直线ax ﹣y +5=0(a >0)与圆相交于A ,B 两点,求实数a 的取值范围; (3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点P (﹣2,4),若存在,求出实数a 的值;若不存在,请说明理由. 【答案】(1)(x ﹣1)2+y 2=25.(2)(512+∞,).(3)存在,34a = 【解析】(1)设圆心为M (m ,0),根据相切得到42955m -=,计算得到答案.(2)把直线ax ﹣y +5=0,代入圆的方程,计算△=4(5a ﹣1)2﹣4(a 2+1)>0得到答案.(3)l 的方程为()124y x a=-++,即x +ay +2﹣4a =0,过点M (1,0),计算得到答案. 【详解】(1)设圆心为M (m ,0)(m ∈Z ).由于圆与直线4x +3y ﹣29=0相切,且半径为5,所以42955m-=,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+1)x2+2(5a﹣1)x+1=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,由于a>0,解得a512>,所以实数a的取值范围是(512+∞,).(3)设符合条件的实数a存在,则直线l的斜率为1a-,l的方程为()124y xa=-++,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2﹣4a=0,解得34a=.由于35412⎛⎫∈+∞⎪⎝⎭,,故存在实数34a=使得过点P(﹣2,4)的直线l垂直平分弦AB.【点睛】本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.18.如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?【答案】(1)103m;(2)当BP为202103t=时,α+β取得最小值.【解析】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据()2tan CAD tan CAE∠=∠232010030x x--=,解得答案.(2)设BP=t,则(1030103CP t t=<<,故()210103103200ttant tαβ+=-+-,设()f t =,求导得到函数单调性,得到最值.【详解】(1)作AE ⊥CD ,垂足为E ,则CE =10,DE =10,设BC =x ,则()22202210011tan CAEx tan CAD tan CAE tan CAE x ∠∠=∠===-∠-2200x --=,解之得,x =x =(舍), (2)设BP =t,则(0CP t t =<<, ()101t tan t αβ+===-设()f t =,()2'200f t t =-+-,令f '(t )=0,因为0t<<t =,当(0t ∈,时,f '(t )<0,f (t )是减函数;当(t ∈时,f '(t )>0,f (t )是增函数,所以,当t =f (t )取得最小值,即tan (α+β)取得最小值, 因为22000t -+-<恒成立,所以f (t )<0,所以tan (α+β)<0,2παβπ⎛⎫+∈ ⎪⎝⎭,,因为y =tanx 在2ππ⎛⎫⎪⎝⎭,上是增函数,所以当t =时,α+β取得最小值.【点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力. 19.设首项为1的正项数列{a n }的前n 项和为S n ,数列{}2na 的前n 项和为T n,且()243n n S p T --=,其中p 为常数.(1)求p 的值;(2)求证:数列{a n }为等比数列;(3)证明:“数列a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数”的充要条件是“x =1,且y =2”.【答案】(1)p =2;(2)见解析(3)见解析 【解析】(1)取n =1时,由()24113p --=得p =0或2,计算排除p =0的情况得到答案.(2)241(2)33n n T S =--,则21141(2)33n n T S ++=--,相减得到3a n +1=4﹣S n +1﹣S n ,再化简得到2112n n a a ++=,得到证明.(3)分别证明充分性和必要性,假设a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数,计算化简得2x ﹣2y ﹣2=1,设k =x ﹣(y ﹣2),计算得到k =1,得到答案. 【详解】(1)n =1时,由()24113p --=得p =0或2,若p =0时,243n n S T -=,当n =2时,()22224113a a-++=,解得a 2=0或212a =-,而a n >0,所以p =0不符合题意,故p =2; (2)当p =2时,241(2)33n n T S =--①,则21141(2)33n n T S ++=--②, ②﹣①并化简得3a n +1=4﹣S n +1﹣S n ③,则3a n +2=4﹣S n +2﹣S n +1④, ④﹣③得2112n n a a ++=(n ∈N ), 又因为2112a a =,所以数列{a n }是等比数列,且112n n a -=; (3)充分性:若x =1,y =2,由112n n a -=知a n ,2x a n +1,2y a n +2依次为112n -,22n ,142n +, 满足112142222n n n -+⨯=+,即a n ,2x a n +1,2y a n +2成等差数列;必要性:假设a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数,又112n n a -=,所以11111222222x y n n n -+⋅⋅=+⋅,化简得2x ﹣2y ﹣2=1,显然x >y ﹣2,设k =x ﹣(y ﹣2),因为x 、y 均为整数,所以当k ≥2时,2x ﹣2y ﹣2>1或2x ﹣2y ﹣2<1, 故当k =1,且当x =1,且y ﹣2=0时上式成立,即证. 【点睛】本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力. 20.(本小题满分16分)已知函数123()()()()f x x x x x x x =---,123,,x x x ∈R ,且123x x x <<.(1)当123012x x x ===,,时,求函数()f x 的减区间; (2)求证:方程()0f x '=有两个不相等的实数根; (3)若方程()0f x '=的两个实数根是()αβαβ<,,试比较122x x +,232x x +与αβ,的大小,并说明理由.【答案】(1)(1(2)详见解析(3)231222x x x xαβ++<<<【解析】试题分析:(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x '=---+=-+,由()0f x <得()f x 减区间(1;(2)因为32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,所以2123122331()32()()f x x x x x x x x x x x x '=-+++++,因为2221223312[()()()]0x x x x x x ∆=-+-+->所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-'=-<,22323()()024x x x x f +-'=-<,所以231222x x x x αβ++<<<试题解析:(1)()f x减区间(1+; 4分(2)法1:32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-, 6分2123122331()32()()f x x x x x x x x x x x x '=-+++++2221223312[()()()]0x x x x x x ∆=-+-+->,123x x x <<, 8分 所以,方程()0f x '=有两个不相等的实数根; 10分 法2:122331()()()()()()()f x x x x x x x x x x x x x '=--+--+--, 6分 22321()()()0f x x x x x '=--<, 8分()f x 是开口向上的二次函数,所以,方程()0f x '=有两个不相等的实数根; 10分 (3)因为21221()()024x x x x f +-'=-<, 12分 22323()()024x x x x f +-'=-<, 14分又()f x 在(,)α-∞和(,)β+∞增,()f x 在(,)αβ减,所以231222x x x x αβ++<<<. 16分【考点】利用导数求函数减区间,二次函数与二次方程关系21.试求曲线y =sinx 在矩阵MN 变换下的函数解析式,其中M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦. 【答案】y =2sin 2x .【解析】计算MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,计算得到函数表达式. 【详解】∵M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦,∴MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ∴在矩阵MN 变换下,x y ⎡⎤⎢⎥⎣⎦→1'2'2x x y y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦∴曲线y =sinx 在矩阵MN 变换下的函数解析式为y =2sin 2x . 【点睛】本题考查了矩阵变换,意在考查学生的计算能力. 22.已知直线l 的极坐标方程为63sin πρθ⎛⎫-= ⎪⎝⎭,圆C 的参数方程为1010x cos y sin θθ=⎧⎨=⎩(θ为参数).(1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长.【答案】(1120y -+=.x 2+y 2=100.(2)16【解析】(1)直接利用极坐标方程和参数方程公式化简得到答案. (2)圆心()0,0到直线的距离为1262d ==,故弦长为. 【详解】 (1)sin 63πρθ⎛⎫-= ⎪⎝⎭,即1sin cos 622ρθθ⎛⎫-= ⎪ ⎪⎝⎭,即1622y x -=,120y -+=.10cos 10sin x y θθ=⎧⎨=⎩,故22100x y +=. (2)圆心()0,0到直线的距离为1262d ==,故弦长为16=. 【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力. 23.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF ∥AB ,∠BAF =90°,AD =2,AB =AF =2EF =2,点P 在棱DF 上.(1)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (2)若二面角D ﹣AP ﹣C 的正弦值为63,求PF 的长度. 【答案】(1)3015.(22. 【解析】(1)以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系,则BE =u u u r (﹣1,0,2),CP =u u u r(﹣2,﹣1,1),计算夹角得到答案.(2)设FP FD λ=u u u r u u u r,0≤λ≤1,计算P (0,2λ,2﹣2λ),计算平面APC 的法向量n =r(1,﹣1,222λλ-),平面ADF 的法向量m =r(1,0,0),根据夹角公式计算得到答案.【详解】(1)∵BAF =90°,∴AF ⊥AB ,又∵平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD =AB , ∴AF ⊥平面ABCD ,又四边形ABCD 为矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系, ∵AD =2,AB =AF =2EF =2,P 是DF 的中点,∴B (2,0,0),E (1,0,2),C (2,2,0),P (0,1,1),BE =u u u r(﹣1,0,2),CP =u u u r (﹣2,﹣1,1), 设异面直线BE 与CP 所成角的平面角为θ,则cosθ2301556BE CP BE CP⋅===⋅⋅u u u r u u u ru u u r u u u r ,∴异面直线BE 与CP 230(2)A (0,0,0),C (2,2,0),F (0,0,2),D (0,2,0),设P (a ,b ,c ),FP FD λ=u u u r u u u r,0≤λ≤1,即(a ,b ,c ﹣2)=λ(0,2,﹣2), 解得a =0,b =2λ,c =2﹣2λ,∴P (0,2λ,2﹣2λ),AP =u u u r(0,2λ,2﹣2λ),AC =u u u r (2,2,0), 设平面APC 的法向量n =r(x ,y ,z ),则()2220220n AP y z n AC x y λλ⎧⋅=+-=⎨⋅=+=⎩u u uv r u u u v r,取x =1,得n =r(1,﹣1,222λλ-), 平面ADP 的法向量m =r(1,0,0),∵二面角D ﹣AP ﹣C 的正弦值为6, ∴|cos m n r r <,>|2261()322()22m nm nλλ⋅===-⋅+-r r r r , 解得12λ=,∴P (0,1,1), ∴PF 的长度|PF |222(00)(10)(12)2=-+-+-=.【点睛】本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力. 24.甲、乙、丙三名射击运动员射中目标的概率分别为1,,2a a (01)a <<,三人各射击一次,击中目标的次数记为ξ. (1)求ξ的分布列及数学期望;(2)在概率()P i ξ=(i =0,1,2,3)中, 若(1)P ξ=的值最大, 求实数a 的取值范围. 【答案】(1)412a +,ξ的分布列为(2)10,2⎛⎤ ⎥⎝⎦【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=01C 112⎛⎫-⎪⎝⎭02C (1-a)2=12(1-a)2; P(ξ=1)=11C ·1202C (1-a)2+01C 112⎛⎫-⎪⎝⎭12C a(1-a)=12(1-a 2); P(ξ=2)=11C ·1212C a(1-a)+01C 112⎛⎫-⎪⎝⎭22C a 2=12(2a -a 2); P(ξ=3)=11C·1222C a 2=22a . 所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a)2+1×12(1-a 2)+2×12(2a -a 2)+3×22a=412a +.(2)P(ξ=1)-P(ξ=0)=12[(1-a 2)-(1-a)2]=a(1-a); P(ξ=1)-P(ξ=2)=12[(1-a 2)-(2a -a 2)]=122a-;第 21 页 共 21 页 P(ξ=1)-P(ξ=3)=12[(1-a 2)-a 2]=2122a -. 由2(1)0,12{0,21202a a a a -≥-≥-≥和0<a <1,得0<a≤12,即a 的取值范围是10,2⎛⎤ ⎥⎝⎦.。
江苏省南通市海安高级中学高三数学第二次综合检测卷第Ⅰ卷一、选择题(每小题5分,共50分) 1. 函数)13lg(13)(2++-=x xx x f 的定义域是 ( .B ).A ),31(+∞- .B )1,31(- .C )31,31(- .D )31,(--∞2.下列函数中,图象的一部分如右图所示的是 ( .D ).A sin 6y x π⎛⎫=+ ⎪⎝⎭ .B sin 26y x π⎛⎫=- ⎪⎝⎭.C cos 43y x π⎛⎫=- ⎪⎝⎭ .D cos 26y x π⎛⎫=- ⎪⎝⎭3.已知函数()f x 满足22log f x x x x⎛⎫=⋅ ⎪ ⎪+⎝⎭则()f x 的解析式是 ( .A ) .A 2log x - .B 2log x .C 2x - .D 2x -4.在△ABC 中,已知222sin sin sin 1sin sin A B CB C--=,则角A 等于 ( .C ).A 30o.B 60o.C 120o.D 150o5.函数32cos 2y x x =+的图象可以由函数sin 232y x x =-的图象经过怎么样的平移变换得到? ( .A ).A 向左平移4π个单位 .B 向右平移4π个单位 .C 向左平移3π个单位 .D 向右平移3π个单位 6.数列}{n a 中,11a = 且121,(2)n n a a n -=+≥,则数列的前6项的和6S 是 ( .C ).A 528- .B 628- .C 728- .D 626-7.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 ( .C ).A (0,1).B 1(0,)3.C 11[,)73.D 1[,1)78.若()111cos ,cos 2714αβα-==-,并且0,,,022ππαβ⎛⎫⎛⎫∈∈- ⎪ ⎪⎝⎭⎝⎭,那么αβ+等于( .B ) .A 6π .B 3π.C 23π .D 56π9.若()33sin cos cos sin 02θθθθθπ-≥-≤<,则θ的取值范围是 ( .C ).A 0,4π⎡⎤⎢⎥⎣⎦ .B ,4ππ⎡⎤⎢⎥⎣⎦ .C 5,44ππ⎡⎤⎢⎥⎣⎦ .D 3,22ππ⎡⎫⎪⎢⎣⎭10.有下列命题:①若函数()f x 满足()()11f x f x -=+,则()f x 是以2为周期的一个函数;②若函数()f x 满足()()11f x f x -=+,则()f x 是以1x =为对称轴的一个函数; ③若函数()f x 满足()()11f x f x -=-+,则()f x 是以4为周期的一个函数; ④若函数()f x 满足()()11f x f x -=-+,则()f x 是以2x =为对称轴的一个函数。