爱因斯坦光量子理论
- 格式:ppt
- 大小:544.50 KB
- 文档页数:22
光量子概念
1.光量子就是通常所说“光子”的全称,由爱因斯坦提出的。
爱因斯坦指出,在光的发射、吸收和传播过程中,能量是一份一份的、不连续的,其中的最小能量单元称光量子,简称光子。
一个光子的能量与光的频率成正比,比例系数称普朗克常量。
大小为:6.63*10^(-34)
2.爱因斯坦的光量子理论,虽然能正确地解释光电效应,但
仍然没能广泛承认,就连普朗克这位最早提出量子论的人,也认为爱因斯坦的理论“太过分”了。
3.原因就在于我们前面所说的“途中”。
普朗克只认为电磁
波在发射和吸收能量时是一份一份的,而爱因斯坦认为在传播过程中也具有这样的性质。
4.爱因斯坦理论的提出,使人们对光本质的认识前进了一大
步。
他重新引入微粒观,又肯定了波动的意义。
主要是由于爱因斯坦的工作,使得光的波粒二象性确立,即光有时表现有波动性,有时表现为粒子性。
5.实验中的“斯托克斯定律”是爱因斯坦理论的证明。
斯托
克斯定律是:如果光碰上一块发荧光的平面,那么荧光的频率几乎总是比较低的,决不会高过引发辐射的频率。
如果用波动理论,则无法解释,在光量子的假说中,通过爱因斯坦方程可以看到,打在屏幕上的量子放出一部分能量,因此被反射的量子能量较小,频率也较小。
另外,照相底板受到光照时,即使光线强度极弱,感光层的某些小颗粒也会起变化,而感光层的其他部分则依旧如故。
这证明是光量子命中的部分引起变化。
爱因斯坦对量子理论的贡献正像历史学家认为17世纪下半叶是牛顿(Newton,1642--1727)的时代那样,人们常把20世纪的上半叶看成是爱因斯坦(Einstein,1879-1955)的时代,因为他的相对论开创了物理学的新纪元,正因为爱因斯坦的相对论对物理学的影响非常深远,以至于一谈到爱因斯坦在物理学领域的贡献,人们首先想到的就是他的狭义相对论、广义相对论,而他对量子理论和量子力学的贡献却知之甚少,甚至,由于爱因斯坦始终反对量子力学的哥本哈根诠释而被误认为是量子理论发展中的一个顽固派,事实上,在爱因斯坦一生的科学工作中,量子力学始终是他关注的重要领域,他不仅对早期的量子论,而且对现行的量子力学理论的形成和完善都有过重要贡献。
2爱因斯坦对量子力学的贡献2.1光量子理论量子概念和量子假设起源于普朗克1900年对黑体辐射的础究,他在研究黑体辐射时,获得了一个与实验结果一致的纯粹的经验公式,1900年12月,他提出了量子论假说,普朗克的量子论虽然符合实验结果,但是在相当长的时间内不为人们所理解和重视,连普朗克本人对量子的假设也感到迷惑不解,甚至一再企图把这一概念纳入经典物理学体系,但是,就在这个时候,又发1/ 9现了用经典理论无法解释的新现象——光电效应,把一块擦的很亮的锌板连接在验电器上,用弧光灯照射锌板(如图1),验电器的指针就张开了,这表示锌板带了电,进一步的检查表明锌板带的是正电,这实验表明在弧光灯的照射下,锌板中的一些自由电子从表面飞出来了,这种在光的照射下物体发射电子的现象,叫做光电效应,最初观察到光电效应的时候,物理学家们没有感到惊讶,但是,进一步的研究发现,对各种金属都存在极限频率和极限波长,如果入射光的频率比极限频率低,那么无论光多么强,照射时间多么长,都不会发生光电效应;而如果入射光的频率高于极限频率,即使光不强,当它射到金属表面时也会观察到光电效应,这一点无法用光的波动理论解释,还有一点与光的波动性相矛盾,这就是光电效应的瞬时性,按波动理论:如果入射光比较弱,照射的时间要长一些,金属中的电子才能积累足够的能量,飞出金属表面,可是事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光电子的产生都几乎是瞬时的,不超过10-9s。
第10讲光电效应爱因斯坦光量子理论3. 只有当入射光频率 n 大于截止频率或红限频率 n 0 时,才会产生光电效应;4. 光电效应是瞬时发生的,只要入射光频率 n > n 0,无论光多微弱,驰豫时间不超过 10-9 s 。
2. 截止电压 U c 与入射光频率 n 呈线性关系:一、光电效应的实验规律1. 在频率一定的入射光照射下,饱和光电流强度 i m 与入射光强 I 成正比;U c = K n - U 0KU 00=n二、光电效应实验曲线 i 0 Ui m1 i m2 I1I 2 > I 1 -U c I 2U c —— 截止电压 c 212m eU mv = 4.0 6.0 8.0 10.0 n (1014 Hz ) 0.0 1.0 2.0 U c (V ) Cs Na Ca θ12.0 直线与横坐标的交点就是截止频率或红限频率 n 0。
光是由一束以光速运动的光量子(光子)组成。
mcc h h p ===n λnh =E 光子能量: 光子动量: 光子质量: 三、爱因斯坦光子理论)(0 022===m c h c m n E四、爱因斯坦光电效应方程红限频率(截止频率): 由金属材料的逸出功 A 决定 h A =0n 五、光的波粒二象性光有时表现出波动性的一面,又有时表现出粒子性的一面。
A h νv m -=2m e 21Q3.10.1有人说:“光的强度越大,光子的能量就越大。
”对吗?答:错。
光子的能量由频率决定,与光的强度没有直接关系。
在光电效应实验中,若只是入射光强度增加一倍;对实验结果有什么影响?Q3.10.2(a )答:光强 I = N h n N 为单位时间通过垂直光传播方向单位面积的光子数。
n 不变 , I 增加一倍,N 增加一倍, 饱和光电流强度增加一倍。
以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线如图中虚线所示。
爱因斯坦光量子假说的基本内容一、引言爱因斯坦光量子假说是指物理学家爱因斯坦于1905年提出的关于光的微粒性质的假设。
该假说对于解释光的发射和吸收过程,以及光的粒子性质具有重要意义。
本文将介绍爱因斯坦光量子假说的基本内容。
二、光的粒子性质爱因斯坦提出的光量子假说认为,光以离散的能量粒子形式存在,这些粒子被称为“光量子”或“光子”。
光子的能量由公式E=hf给出,其中h是普朗克常数,f是光的频率。
这意味着光的能量是量子化的,而不是连续的。
三、光的发射和吸收根据爱因斯坦的光量子假说,光的发射和吸收过程可以用光子的概念来解释。
当原子或分子从一个能级跃迁到另一个能级时,会发射或吸收光子。
发射光子时,能级差就等于光子的能量。
而吸收光子时,光子的能量被吸收物体所吸收。
这一观点对于解释电磁辐射和能级跃迁过程具有非常重要的意义。
四、光的波粒二象性光既可以作为波动现象解释,也可以作为粒子现象解释,这是光的波粒二象性。
爱因斯坦的光量子假说揭示了光的粒子性质,补充了电磁波的波动理论。
这一假说对量子力学的发展产生了深远的影响,并为更多微观粒子的波粒二象性研究奠定了基础。
五、光量子假说的应用爱因斯坦的光量子假说在许多领域有广泛的应用。
其中一个重要应用是在激光技术中。
激光是由射出的光子所组成的,光子的特性决定了激光的一些独特性质。
另外,光量子假说也对光电效应的解释提供了重要基础,后来为量子力学的建立做出了重要贡献。
六、总结爱因斯坦光量子假说认为光以离散能量粒子光子的形式存在,且光的发射和吸收过程可以用光子的概念来解释。
这一假说揭示了光的波粒二象性,为量子力学的发展奠定了基础。
光量子假说在激光技术和光电效应等领域有重要应用。
通过对爱因斯坦光量子假说的研究,我们对光的微粒性质有更深入的了解。
光的量子理论光的量子理论是20世纪最伟大的科学发现之一,它改变了公认的物理学观。
它的发现奠定了物理学的新标准,也为更精准的科学分析打开了大门,在其后的几十年中,科学家们建立了量子力学,形成了量子力学的理论。
光的量子理论的提出,是由爱因斯坦在1905年提出的“光的量子”这一观念所引发的。
爱因斯坦指出,光是一种粒子性质的物质,它可以分成许多小粒子,他称之为“光子”。
他认为,光是一种确定的粒子,具有一定的能量,也就是说,光的能量可以分离出来而成为可以被计量的能量块,这一观念称为光的量子理论。
随后,爱因斯坦的观点受到了霍金斯的赞许,他进一步指出,光的量子是一种半波性质的粒子,它具有粒子性和波性的特性,具有一定的水平和垂直原子结构,可以在某种媒介中传播,从而形成光波和激发态。
这就是所谓的量子力学,其主要理论是物质及运动都是有量子化的,以及量子力学能够解释物质在微观和宏观空间内的表现。
光的量子理论改变了人们对物理学的认识。
之前,人们认为光只能按照几何学的原则运动,认为把光作为一种光子的形式是不可能的。
但是爱因斯坦和霍金斯却指出,这种想法是错误的,它们提出了一种新的物理观,认为光可以分解成许多小量子,并在某种媒介中以量子形式传播,这种新的观念也就是所谓的量子力学。
自此以后,量子力学成为科学研究的一个新的领域,它给出了一个更细致的物质解释,在分析物质的性质,相互作用及变化方面,它提供了更精确的结果。
量子力学的发展促进了许多领域的发展,比如量子化学,绝热量子技术,量子计算机等。
总之,光的量子理论改变了人们对物理学的认识,它能够更精准的描述物质的微观表现和相互作用,它为科学家们提供了一个新的框架来描述物质的性质,从而形成各种不同领域的量子理论,在当今仍然是科学发展的基石。