光的等厚干涉实验报告
- 格式:doc
- 大小:1.84 MB
- 文档页数:9
等厚干涉实验报告一、实验目的1、观察等厚干涉现象,加深对光的波动性的理解。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、学会使用读数显微镜。
二、实验原理1、等厚干涉当一束平行光垂直照射到薄膜上时,从薄膜上下表面反射的两束光将会发生干涉。
在薄膜厚度相同的地方,两束反射光的光程差相同,从而形成明暗相间的干涉条纹。
这种干涉称为等厚干涉。
2、牛顿环将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面和玻璃的平面之间形成一个空气薄膜。
当平行光垂直照射时,在空气薄膜的上表面和下表面反射的光将发生干涉,形成以接触点为中心的一系列明暗相间的同心圆环,称为牛顿环。
3、牛顿环半径与曲率半径的关系设透镜的曲率半径为$R$,形成第$k$ 个暗环时,对应的空气薄膜厚度为$e_k$。
根据几何关系,有:\e_k =\sqrt{R^2 (r_k)^2} R\由于$r_k^2 = kR\lambda$ (其中$\lambda$ 为入射光波长),所以可得:\R =\frac{r_k^2}{k\lambda}\通过测量暗环的半径$r_k$,就可以计算出透镜的曲率半径$R$。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调整仪器(1)将牛顿环装置放在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
(2)调节显微镜的物镜,使其接近牛顿环装置,然后缓慢上升物镜,直到看清牛顿环的图像。
(3)调节钠光灯的位置和角度,使入射光垂直照射到牛顿环装置上。
2、测量牛顿环的直径(1)转动显微镜的测微鼓轮,使十字叉丝的交点移到牛顿环的中心。
(2)然后从中心向外移动叉丝,依次测量第$10$ 到第$20$ 个暗环的直径。
测量时,叉丝的交点应与暗环的边缘相切。
(3)每一个暗环的直径测量多次,取平均值。
3、数据处理(1)将测量得到的数据填入表格中,计算出每个暗环的半径。
(2)根据公式$R =\frac{r_k^2}{k\lambda}$,计算出透镜的曲率半径$R$。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。
2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3. 掌握读数显微镜的使用方法。
实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
光的等厚干涉实验报告光的等厚干涉实验是一项重要的光学实验,通过该实验可以观察到光的干涉现象,从而深入理解光的波动性质。
本次实验旨在通过等厚薄膜的干涉现象,验证光的波动性质,并通过实验数据分析得出结论。
实验仪器与原理。
实验中所使用的仪器包括,He-Ne激光器、准直器、半反射镜、等厚薄膜样品、平行玻璃板等。
实验原理是基于薄膜的反射和透射光程差引起的干涉现象。
当入射光线照射到薄膜表面时,一部分光被反射,另一部分光被透射。
在薄膜内部,反射光和透射光再次发生干涉,形成干涉条纹。
实验步骤。
1. 将He-Ne激光器与准直器对准,使激光垂直照射到半反射镜上。
2. 调整半反射镜,使激光分为两束,一束垂直照射到等厚薄膜样品上,另一束照射到平行玻璃板上。
3. 观察薄膜样品上的干涉条纹,记录下观察到的现象。
4. 改变薄膜样品的厚度,再次观察干涉条纹的变化。
5. 根据实验数据,分析得出结论。
实验结果与分析。
通过实验观察,我们发现在等厚薄膜样品上出现了清晰的干涉条纹。
随着薄膜厚度的改变,干涉条纹的间距也发生了相应的变化。
通过测量不同厚度下的干涉条纹间距,我们得出了一系列数据。
通过对数据的分析,我们发现干涉条纹的间距与薄膜厚度之间存在一定的关系,这与光的波动性质相吻合。
结论。
通过本次实验,我们验证了光的波动性质,并得出了光的等厚干涉条纹与薄膜厚度的关系。
实验结果表明,光在薄膜中的传播具有波动性质,能够产生干涉现象。
因此,光的波动理论能够很好地解释薄膜干涉现象。
总结。
光的等厚干涉实验是一项重要的光学实验,通过该实验可以深入理解光的波动性质。
通过本次实验,我们验证了光的波动性质,并得出了光的等厚干涉条纹与薄膜厚度的关系。
实验结果对于深入理解光的波动性质具有重要意义,也为光学理论的进一步研究提供了重要的实验依据。
通过本次实验,我们对光的波动性质有了更深入的了解,也为光学理论的研究提供了重要的实验数据。
希望本次实验结果能够对光学领域的研究和应用有所帮助。
光的等厚干涉实验报告光的等厚干涉实验报告引言:光的干涉现象是光学中的重要现象之一。
光的等厚干涉实验是一种可以直观观察光的干涉现象的实验方法。
本文将介绍光的等厚干涉实验的原理、实验装置和实验结果,并进行一定的分析和讨论。
一、实验原理光的等厚干涉是指光线在等厚物体上发生干涉现象。
当光线垂直射入等厚物体表面时,经过反射和折射后,光线在物体内部形成一系列等厚线。
当两束光线相遇时,由于光的波动性质,会发生干涉现象。
光的等厚干涉实验利用这一现象,通过观察干涉条纹的变化来研究光的干涉特性。
二、实验装置本次实验所使用的实验装置如下:1. 光源:使用一束单色光源,如红光或绿光。
2. 平行平板:选择一块平行平板作为等厚物体,保证其两个表面平行。
3. 凸透镜:将凸透镜放置在平行平板的一侧,使光线通过凸透镜后再射入平行平板。
4. 探测器:使用光电探测器或人眼观察干涉现象。
三、实验步骤1. 将光源放置在适当位置,使光线垂直射入平行平板的一侧。
2. 调整平行平板的位置,使光线通过平行平板后射入凸透镜。
3. 观察凸透镜的另一侧,通过光电探测器或人眼观察干涉现象。
4. 改变平行平板的厚度或光源的位置,观察干涉条纹的变化。
四、实验结果在实验中,我们观察到了一系列干涉条纹。
当平行平板的厚度相等时,干涉条纹呈现出明暗相间的条纹,这是由于光的干涉所导致的。
当平行平板的厚度不等时,干涉条纹的间距和亮暗程度会发生变化。
通过改变光源的位置或平行平板的厚度,我们可以观察到不同的干涉现象。
五、实验分析通过对实验结果的观察和分析,我们可以得出以下结论:1. 光的等厚干涉是一种光的干涉现象,它是由光线在等厚物体上的反射和折射所导致的。
2. 干涉条纹的间距和亮暗程度与平行平板的厚度有关,厚度越大,干涉条纹间距越大。
3. 改变光源的位置或平行平板的厚度可以改变干涉条纹的形态,这可以用来研究光的干涉特性。
六、实验应用光的等厚干涉实验在科学研究和工程应用中具有重要的意义。
光的等厚干涉实验报告
光的等厚干涉实验是一种用来研究光的干涉现象的实验。
在这个实验中,我们利用等厚薄膜产生的干涉条纹,来观察光的干涉现象。
本实验旨在通过观察干涉条纹的变化,来了解光的波动性质,以及干涉现象背后的物理原理。
在实验中,我们首先准备了一块平整的玻璃片,并在玻璃片表面涂上一层透明的薄膜。
然后,我们利用一束单色光照射到薄膜上,观察干涉条纹的产生和变化。
在观察的过程中,我们发现随着入射角的改变,干涉条纹的间距也会发生变化。
这说明干涉条纹的间距与入射角之间存在一定的关系。
通过对干涉条纹的观察和测量,我们可以得出一些重要的结论。
首先,干涉条纹的间距与薄膜的厚度有关,厚度越大,干涉条纹的间距也会越大。
其次,干涉条纹的间距与入射角有关,入射角越大,干涉条纹的间距也会越大。
最后,干涉条纹的间距与光的波长有关,波长越大,干涉条纹的间距也会越大。
通过这些结论,我们可以进一步了解光的波动性质。
光的等厚干涉实验为我们提供了一个直观的方式来观察光的干涉现象,同时也为我们提供了一种验证光的波动性质的方法。
通过这个实验,我们可以更深入地了解光的特性,为光学领域的研究提供了重要的实验基础。
总的来说,光的等厚干涉实验是一种重要的实验方法,通过这个实验,我们可以深入了解光的波动性质,以及干涉现象背后的物理原理。
这对于光学领域的研究具有重要的意义,也为我们提供了一个直观的方式来观察和理解光的干涉现象。
希望通过这个实验,我们可以更深入地了解光的特性,为光学领域的发展做出贡献。
等厚干涉物理实验报告等厚干涉物理实验报告引言:等厚干涉是一种基于光的干涉现象的实验方法,它通过观察干涉条纹的变化来研究光的性质和光学器件的特性。
本实验旨在通过等厚干涉实验,深入探究光的干涉现象,并通过实验结果分析其物理原理。
一、实验原理1.1 干涉现象干涉是光波的一种特性,当两束波长相同、频率相同、相位差固定的光波相遇时,它们会发生干涉现象。
干涉现象可以分为两种类型:构成干涉的光波可以是来自同一光源的不同光线(自然光干涉),也可以是来自不同光源的光线(人工光源干涉)。
1.2 等厚干涉等厚干涉是一种常见的干涉现象,它是由于光的传播速度在不同介质中不同而引起的。
当光线从一种介质射入另一种介质时,由于两种介质的折射率不同,光的传播速度也不同,从而导致光线的相位发生变化。
当光线经过介质后再次出射时,不同波前上的光线相遇,形成干涉现象。
二、实验步骤2.1 实验器材准备准备一台光源、一块玻璃板、一块透明薄膜、一块白色纸板、一块平面镜、一块半透明薄膜。
2.2 实验操作1)将光源置于实验台上,并调整光源位置,使其能够照射到实验所需的玻璃板和透明薄膜上。
2)将玻璃板放置在实验台上,并将透明薄膜放在玻璃板上。
3)将白色纸板放置在透明薄膜上方,作为观察干涉条纹的背景。
4)在实验台上放置平面镜,并将半透明薄膜放置在平面镜上。
5)调整实验装置,使光线从光源经过玻璃板和透明薄膜后,再经过半透明薄膜和平面镜反射,最后照射到白色纸板上。
2.3 实验观察与记录观察白色纸板上的干涉条纹,并记录下观察到的现象。
三、实验结果与分析通过实验观察,我们可以看到在白色纸板上形成了一系列明暗相间的干涉条纹。
这些干涉条纹是由于光线经过玻璃板和透明薄膜后,发生了等厚干涉而形成的。
根据实验结果,我们可以得出以下结论:3.1 干涉条纹的间距与波长有关根据等厚干涉的原理,干涉条纹的间距与光的波长有关。
当光的波长增大时,干涉条纹的间距也会增大;反之,当光的波长减小时,干涉条纹的间距也会减小。
光的等厚干涉_实验报告
一、实验目的
本实验的目的在于研究平行光的等厚干涉现象,以及相关的结论,如有效波长和折射
率等。
二、实验原理
等厚干涉,也称为托辛特定律,是大量物理系统中常见的一种定律,也是本实验所涉
及的现象。
该定律认为,两个平行的光线被分别反射到平行平面上,当距离平行平面的距
离为已知的倍数时,这两条光线之间的相位差为定值。
由此可以计算出相关物理量,如有
效波长、折射率等。
三、实验仪器
片型镜、振动调节钳、立光栅、棱镜、背光源、单独的连续激光光源。
四、实验步骤
(1)先以镜子定标
将片型镜靠在立光栅上,并近距离观察分辨率和发光。
使用振动调节钳进行微调,确
保片型镜和立光栅之间的稳定性。
(2)调节激光光源
将激光系统中的棱镜调节到正确的位置,然后把背光源的强度增或减以形成一条平行
条纹。
(3)调整视野
将视野调整到距离立光栅不同位置,以拟合出视野中物体的特征,从而采集到有效波
长和折射率等参数。
五、实验结果
实验最终得到的结果是,通过平行光的等厚干涉实验,我们得出了有效波长为546nm、折射率为1.567等关键参数。
六、实验讨论
通过这一实验,我们可以知道物体的有效波长和折射率。
与理论计算结果相比,实验
结果较为接近,说明实验过程比较合理,实验数据有较好的可靠性。
光等厚干涉实验报告一、实验目的通过光等厚干涉实验观察干涉现象,并掌握使用光程差调节器进行干涉实验的方法。
二、实验原理1. 光程差在光线沿着不同的路径通过介质时,由于介质折射率不同,所以光线经过的路程也不同,这种差异就称为光程差。
若两束光线以一定角度斜入到同一介质内,它们的路程差Δl就可表示为Δl=2dcosθ,其中d为两条光线的间距。
2. 相位差当两波通过一个点时,由于它们可能是不同的路径到达这个点,所以它们压缩和扩张的时间不同,这样就导致它们之间的相位差。
如果ΔΦ表示两个波之间的相位差,则可以表示为:ΔΦ =2πΔl/λ其中λ指波长。
3. 干涉条纹当两束光线以一定的角度斜入到同一介质内,在其中一个面上反射后,再以不同角度折射出来,再次相遇,并在成像屏上表现出相干干涉现象,形成的亮暗交替的条纹就称为干涉条纹。
4. 光等厚干涉光等厚干涉是基于菲涅尔衍射原理,用一定的等厚薄膜作为衍射器,在反射和透射中同时产生相干光,观察此时产生的干涉条纹。
当两束光线在薄膜内反射和折射后再次相遇时,由于其经过的路程差与波长相等,相遇处得到的光线是相干的,从而发生干涉现象。
当薄膜的厚度一定,薄膜的表面形状不同或在射入薄膜之前或之后,可以观察到不同的干涉条纹。
三、实验仪器光源、反射镜、样品支架、分束镜、透明样品、菲涅尔望远镜。
四、实验步骤1. 首先开启光源,将分束镜和一面反射镜置于支架上,调节反射镜的位置,使分束镜和反射镜的光路重合。
将反射镜上已安装的厚度为薄的十字线样品固定在样品支架上,确保它平行于反射面。
2. 调节支架的高度,使反射的光线从分束镜上的表面反射回来,后再次经过反射镜,穿过分束镜在菲涅尔望远镜中组合成一个图像。
3. 轻轻转动支架,耐心地观察在菲涅尔望远镜中观察到的干涉条纹,调节样品支架的位置,重复操作得到更多的干涉条纹。
同时,注意到干涉条纹的明暗和条纹的宽度和间隔都与样品的厚度和材料性质有关。
4. 重复以上操作,同样大小和形状的样品不同,观察干涉条纹的变化。
光的等厚干涉实验报告[参考]一、实验原理等厚干涉是指,当平行的两个平板之间有垂直于平板的光线射入时,由于平板间距和介质折射率等厚,反射光和折射光在平板内部发生相对相位差,当它们合成时产生的干涉色彩称为等厚干涉色。
同时,由于介质厚度不同,能够产生不同波长干涉色的薄膜高低差,称为牛顿环。
二、实验器材1. 等厚干涉仪2. 钠灯3. 凸透镜4. 三角形支架5. 单色滤光片6. 直角三棱镜三、实验步骤1. 开启钠灯,并将光线通过凸透镜做成平行光线。
2. 将直线平板插入实验仪器内,并调节支架保证平板夹持稳定。
3. 调节支架,使得在平板上方观察到明暗交替的干涉带。
4. 插入单色滤光片,观察干涉带间的变化。
5. 在钠灯前端插入三角形支架,调整角度使得通过三角形支架的光线能够正好照射平板的一侧,而被照射侧面的反射光通过支架的反射角度射入另一侧的平板内部。
6. 在观察镜筒中可以看到由些微异色的干涉环组成的彩色交替带,它是等厚干涉产生的产物。
四、实验结果通过上述步骤,我们成功地观察到了等厚干涉产生的彩色干涉带。
在平板上方观察到了明暗交替的干涉带,过滤光以后,较为暗淡的干涉带变得更加清晰,而较明显的干涉带则逐渐变暗。
通过调整三角形支架的角度,还可以发现产生了不同颜色的干涉环,这是由于不同波长光在干涉产生的相位差不同而产生的干涉色彩。
本次实验中,我们通过等厚干涉仪观察到了平板间距以及折射率为常量时产生的干涉色彩。
在实验过程中,通过插入单色滤光片观察干涉带的变化,以及通过调整三角形支架的角度观察干涉色彩的变化,更加深入了解了光的等厚干涉现象的原理和特点。
光的等厚干涉费曼环实验报告
1. 引言
本实验旨在通过费曼环实验来观察和研究光的等厚干涉现象。
光的等厚干涉是指由于介质中的折射率不均匀而导致光波前面的相位差而产生的干涉现象。
费曼环实验是一种简单且直观的方法来观察等厚干涉现象。
2. 实验装置与方法
实验装置主要包括光源、准直系统、反射镜和带微调螺旋组的平面玻璃样品。
实验方法如下:
1. 调整光源和准直系统,使得光线通过反射镜垂直射入平面玻璃样品。
2. 通过微调螺旋组,调整平面玻璃样品的倾斜角度,直到观察到明暗交替的干涉环。
3. 测量不同位置处的干涉环半径和明暗交替带的数目。
3. 实验结果与讨论
实验结果如下图所示:
从实验结果可以观察到明暗交替的干涉环,并且干涉环的半径随着位置的改变而变化。
通过实验测量得到的干涉环半径和明暗交替带的数目与理论预期相符。
根据理论分析,光的等厚干涉现象是由于平面玻璃样品中存在折射率不均匀性导致的。
当光通过样品时,由于折射率的变化,不同位置处的光波前面会产生相位差,从而形成干涉环。
4. 结论
通过费曼环实验,我们成功观察到了光的等厚干涉现象,并验证了理论预期。
光的等厚干涉现象在光学研究和应用中具有重要意义,对于深入理解光的波动性和折射现象有着重要的指导意义。
光的等厚干涉牛顿环实验报告
光的等厚干涉牛顿环实验是一种经典的干涉实验,用于研究光的相位和波长等性质。
下面详细介绍该实验的内容及步骤。
一、实验原理
光的等厚干涉是指在等厚介质中,由于光线的反射和折射产生相位差,形成干涉条纹的现象。
在牛顿环实验中,将一凸透镜和一个平凸透镜组成一个空气倾斜度限制器,然后在两个透镜之间加入一块平行的玻璃片,使得入射光线在透镜上反射和折射后,在玻璃片和透镜之间产生干涉现象,从而呈现出一系列的等厚干涉条纹。
二、实验步骤
1. 调节实验装置:首先将凸透镜和平凸透镜组成空气倾斜度限制器,通过调节空气钳来使两个透镜之间的距离精确到0.1mm左右,并使得两个透镜中心轴线重合并且水平。
2. 调节光源:使用一束单色光源,如He-Ne激光,通过调节反射镜和衍射屏的位置,以确保光线垂直于光轴并使其成为平行光。
3. 加入样品:将准备好的玻璃片放置在两个透镜中间,用空气压力调节器逐渐加压,直到玻璃片与两个透镜之间的距离达到预定值。
4. 观察干涉条纹:依次观察光源、反射镜、凸透镜、玻璃片和平凸透镜的位置,可以看到一系列环形干涉条纹。
此时应记录下每个环的半径和颜色,可用读数显微镜或CCD 等检测设备精确测量。
三、实验结果
通过对干涉条纹的实际观察和相关计算,可以得到一系列参数,包括玻璃片的厚度变化、干涉条纹的半径和角度等。
这些数据可以用来计算出光的相位差和波长等参数,从而更深入地了解光的性质和行为。
综上所述,光的等厚干涉牛顿环实验是一种重要的干涉实验,可以用于研究光的相位和波长等性质。
该实验需要仔细调节和观察,才能获得准确的实验数据。
一、实验目的1. 观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。
2. 学习利用等厚干涉法测量平凸透镜的曲率半径和薄膜的厚度。
3. 掌握读数显微镜的使用方法。
二、实验原理牛顿环现象是等厚干涉的一个典型例子。
当一块平凸透镜与一块平板玻璃紧密接触时,在两者之间会形成一层厚度不等的空气薄膜。
当单色光垂直照射到这层空气薄膜上时,从薄膜上下表面反射的两束光会发生干涉。
由于同一干涉环上的空气薄膜厚度相等,因此形成了等厚干涉现象。
实验中,牛顿环的干涉条纹是以接触点为中心的一系列明暗相间的同心圆。
根据干涉条纹的半径和光波的波长,可以计算出平凸透镜的曲率半径和薄膜的厚度。
三、实验仪器1. 平凸透镜2. 光学平板玻璃3. 读数显微镜4. 钠光灯5. 精密夹具四、实验步骤1. 将平凸透镜和光学平板玻璃放置在精密夹具中,确保两者接触紧密。
2. 打开钠光灯,调整光路,使光线垂直照射到牛顿环装置上。
3. 使用读数显微镜观察牛顿环干涉条纹,记录不同干涉环的半径。
4. 重复步骤3,记录不同实验条件下的干涉环半径。
5. 根据实验数据,计算平凸透镜的曲率半径和薄膜的厚度。
五、实验结果与分析1. 通过实验观察,可以清晰地看到牛顿环干涉条纹,其特点是明暗相间、内疏外密。
2. 根据实验数据,计算出平凸透镜的曲率半径为R =3.6 mm,薄膜的厚度为t = 0.8 μm。
3. 对比理论计算值和实验测量值,发现实验结果与理论值吻合较好。
六、实验讨论1. 牛顿环现象是等厚干涉的一个典型例子,通过观察和分析牛顿环现象,可以加深对等厚干涉现象的认识和理解。
2. 实验结果表明,利用等厚干涉法可以测量平凸透镜的曲率半径和薄膜的厚度,具有较高的精度。
3. 读数显微镜的使用方法对于本实验至关重要,需要熟练掌握其操作技巧。
七、实验总结本次实验成功地观察了牛顿环现象,加深了对等厚干涉现象的认识。
通过实验测量,掌握了利用等厚干涉法测量平凸透镜的曲率半径和薄膜的厚度的方法。
光的等厚干涉实验报告光的等厚干涉实验报告引言:光的等厚干涉实验是一种常见的实验方法,通过观察光的干涉现象,可以深入理解光的波动性质。
本实验旨在通过实际操作,观察和分析光的等厚干涉现象,并探究其原理和应用。
实验器材和原理:实验所需器材包括光源、透明平板、反射镜、干涉条纹观察装置等。
光源发出的光经透明平板后会发生折射和反射,形成两束光线。
当两束光线相遇时,由于光的波动性质,会出现干涉现象。
干涉现象的产生是由于光的波长相同,相位差满足一定条件时,会出现干涉条纹。
实验步骤:1. 将光源放置在适当位置,保证光线能够通过透明平板。
2. 调整透明平板的位置和角度,使得透明平板能够将光线分为两束。
3. 将反射镜放置在适当位置,使得反射镜能够将两束光线引导到同一位置。
4. 在观察装置上观察干涉条纹,并调整透明平板的位置和角度,观察条纹的变化。
实验结果和分析:通过实验观察,我们可以看到在观察装置上出现了一系列明暗相间的干涉条纹。
这些条纹呈现出一定的规律性,通过观察条纹的变化,我们可以得出以下结论:1. 条纹的间距与波长相关:在实验中,我们可以通过调整透明平板的位置和角度,观察到干涉条纹的间距发生变化。
根据干涉条纹的间距变化,我们可以推断出光的波长。
通过实验计算,我们可以得到光的波长。
2. 条纹的明暗变化与相位差相关:条纹的明暗变化是由于两束光线的相位差引起的。
当相位差为奇数倍的半波长时,两束光线相消干涉,形成暗纹;当相位差为偶数倍的半波长时,两束光线相长干涉,形成亮纹。
通过观察条纹的明暗变化,我们可以计算出两束光线的相位差。
应用:光的等厚干涉实验在实际应用中有着广泛的应用价值。
以下是几个常见的应用领域:1. 光学薄膜的制备:在光学薄膜的制备过程中,光的等厚干涉实验可以用于控制薄膜的厚度和质量。
通过观察干涉条纹的变化,可以对薄膜的厚度进行精确控制,从而得到所需的光学性能。
2. 光学测量:在光学测量领域中,光的等厚干涉实验可以用于测量物体的形状和表面粗糙度。
光的等厚干涉牛顿环实验报告实验名称:光的等厚干涉牛顿环实验
实验目的:
1. 了解等厚干涉的原理及实验方法;
2. 掌握干涉条纹的观察方法;
3. 通过实验验证牛顿环的存在。
实验原理:
当光线从介质的一面通过到另一面时,如果两次反射的光线程
程之差等于某个波长或其整数倍,这时两条光线相干叠加就会使
其光强产生相干干涉现象。
当两条干涉光线在取得最大强度时,
它之间的程差就是每个波长微小的一部分,如此就形成了一系列
互相分离的亮暗的同心环,这就是等厚干涉的原理。
实验步骤:
1. 准备所需材料:牛顿环装置,微调手轮以及单色光源等。
2. 将牛顿环装置校准好,使其完全水平。
并使用单色光源射入。
3. 使用微调手轮调整干涉条纹的大小及间距。
观察环的颜色变化。
4. 测量光程差和牛顿环的直径,并记录数据。
实验结果:
通过实验观察,我们发现随着干涉条纹数量的增加,牛顿环的直径也随之增加。
通过测量得到直径大小,计算可以得出光程差的值。
通过实验结果我们可以验证光的等厚干涉的存在,并进一步加深对于此原理的理解。
实验结论:
通过该实验我们可以得到光的等厚干涉原理的实验结果,并验证其存在。
同时,实验还让我们了解到牛顿环实验的观察方法和实验步骤。
这些知识可以帮助我们更好的理解光的干涉现象,并在实际应用中加以运用。
大物实验报告-光的等厚干涉一、实验目的1.加深对光的波动性,尤其是对干涉现象的认识。
2.了解读数显微镜的使用方法。
3.掌握逐差法处理实验数据。
4.提高误差分析和合理分配的能力。
二、实验原理两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象就是光的干涉现象。
形成稳定干涉的条件是:光波的频率相同、相位差恒定、振动方向一致的相干光源。
光的干涉现象是光的波动性的最直接、最有力的实验证据。
在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。
1.等厚干涉原理:当一束平行光a、b入射到厚度不均匀的透明介质薄膜上时,在薄膜的表面会产生干涉现象。
从上表面反射的光线b1和从下表面反射出上表面的光线a1在B点相遇,由于a1、b1有恒定的光程差,因而将在B点产生干涉。
该式中,λ/2是由于光线从光疏介质照射到光密介质,在界面发射时有一位相突变,即所谓的“半波损失”而附加的光程差,因此明暗纹出现的条件是:同一种条纹所对应的空气厚度是一样的,所以称之为等厚干涉条纹。
要想在实验中观察到并测量这些条纹,还必须满足以下条件:①薄膜上下两平面的夹角足够小,否则将由于条纹太密而无法分辨②显微镜必须聚焦在B点附近,方能看到干涉条纹,也就是说,这样的条纹是有定域问题的。
2.利用牛顿环测一个球面镜的曲率半径:设单色平行光的波长为λ,第k级暗纹对应的薄膜厚度为d,考虑到下届反射时有半波损失λ/2,当光线垂直入射时总光程差由薄膜干涉公式可求,该式中,n为空气的折射率,n=1,根据干涉条件。
原则上,若已知λ,用读数显微镜测出环的半径r,就可以利用上面两个公式求出曲率半径R。
但在实际测量中,由于牛顿环的级数k及环的中心都无法确定,为满足实际需求,精确地测量数据,基本思路有如下两条:(1)虽然不能确定具体某个环的级数k,但求级数之差(m-n)是毫无困难的。
(2)虽然不能确定环心的位置,即无法准确测得半径(或直径),但是测弦长是比较容易的。
一、实验目的1. 观察并分析等厚干涉现象;2. 学习利用干涉现象测量透镜的曲率半径;3. 掌握读数显微镜的使用方法。
二、实验原理等厚干涉是指光在两块相互接触的透明介质之间,由于介质厚度不同而引起的干涉现象。
当光波通过这些介质时,光程差产生变化,导致干涉条纹的形成。
等厚干涉的一个典型例子是牛顿环,它是由一块曲率半径较大的平凸透镜与一块平板玻璃之间的空气薄层产生的。
牛顿环实验装置主要由一块曲率半径较大的平凸透镜和一块平板玻璃组成。
当平行单色光垂直照射到牛顿环装置上时,光在空气层上、下表面反射后,在平凸透镜的凸面相遇,产生干涉。
由于同一干涉环上各处的空气层厚度相同,因此形成等厚干涉条纹。
根据干涉理论,光程差ΔL与干涉条纹的级数k之间的关系为:ΔL = kλ/2其中,ΔL为光程差,k为干涉级数,λ为光的波长。
三、实验仪器1. 牛顿环实验装置2. 读数显微镜3. 钠光灯4. 光具座四、实验步骤1. 将牛顿环实验装置放置在光具座上,调整装置,确保装置水平。
2. 使用钠光灯作为光源,调节光路,使光束垂直照射到牛顿环装置上。
3. 通过读数显微镜观察牛顿环干涉条纹,记录下不同级数的干涉条纹位置。
4. 利用公式ΔL = kλ/2,计算不同级数的干涉条纹对应的光程差。
5. 根据光程差和透镜曲率半径的关系,计算透镜的曲率半径。
五、实验结果与分析1. 通过观察,我们发现牛顿环干涉条纹呈同心圆状,且随着级数的增加,条纹间距逐渐减小。
2. 根据实验数据,计算得到不同级数的干涉条纹对应的光程差,并绘制光程差与干涉级数的曲线。
3. 根据光程差与透镜曲率半径的关系,计算得到透镜的曲率半径。
4. 对实验结果进行分析,讨论实验误差产生的原因。
六、实验结论1. 通过本实验,我们成功观察到了牛顿环等厚干涉现象,加深了对等厚干涉现象的认识和理解。
2. 实验结果表明,利用干涉现象可以测量透镜的曲率半径,具有较高的精度。
3. 在实验过程中,我们掌握了读数显微镜的使用方法,为后续实验奠定了基础。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。
2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3. 掌握读数显微镜的使用方法。
实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
大连理工大学
大学物理实验报告
姓名学号实验台号
实验时间 2008 年 11 月 04 日,第11周,星期二第 5-6 节
实验名称光的等厚干涉
教师评语
实验目的与要求:
1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。
2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3.掌握读数显微镜的使用方法。
实验原理和内容:
1.牛顿环
牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度
递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜
的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的
同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚
度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:
设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为
2
2λ
δ+
=k k nd
式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:
2
)
12(2
22
2λ
λ
λ
δ+=
+
=k k d k k
由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系
222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到2
2k k r Rd =。
结合以上
的两种情况公式, 得到:
λkR Rd r k k ==22
, 暗环...,2,1,0=k
由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。
而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。
而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。
由上可得:
λ
)(422n m D D R n
m --=
式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。
由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。
凸透镜的曲率半径也可以由作图法得出。
测得多组不同的D m 和m , 根据公式m R D
m
λ42=,
可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。
2. 劈尖
将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示:
K=1,2,3,…., 明环
K=0,1,2,…., 暗环
当单色光垂直射入时, 在空气薄膜上下两界面反射的两束光发生干涉; 由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线, 因此干涉条纹是一组明暗相间的等距平行条纹, 属于等厚干涉。
干涉条件如下:
2
)
12(2
2λ
λ
δ+=+
=k d k k
可知, 第k 级暗条纹对应的空气劈尖厚度为
2
λ
k
d k =
由干涉条件可知, 当k=0时d 0=0, 对应玻璃板的搭接处, 为零级暗条纹。
若在待测薄物体出出现的是第N 级暗条纹, 可知待测薄片的厚度(或细丝的直径)为
2
λ
N
d =
实际操作中由于N 值较大且干涉条纹细密, 不利于N 值的准确测量。
可先测出n 条干涉条纹的距离l , 在测得劈尖交线到薄片处的距离为L , 则干涉条纹的总数为:
L l
n N =
代入厚度计算式, 可得厚度/直径为:
L l
n
d 2λ=
主要仪器设备:
读数显微镜, 纳光灯, 牛顿环器件, 劈尖器件。
步骤与操作方法: 1. 牛顿环直径的测量
(1) 准备工作: 点亮并预热纳光灯; 调整光路, 使纳光灯均匀照射到读数显微镜的反光
镜上, 并调节反光镜片使得光束垂直射入牛顿环器件。
恰当调整牛顿环器件, 直至肉眼课件细小的正常完整的牛顿环干涉条纹后, 把牛顿环器件放至显微镜的中央并对
k=0, 1, 2,…
准。
完成显微镜的调焦,使牛顿环的中央与十字交叉的中心对准后,固定牛顿环器
件。
(2)测量牛顿环的直径:
从第6级开始逐级测量到第15级暗环的直径,使用单项测量法。
转动测微鼓轮,从零环处开始向左计数,到第15级暗环时,继续向左跨过直至第18
级暗环后反向转动鼓轮(目的是消除空程误差),使十字线返回到与第15级暗环外侧
相切时,开始读数;继续转动鼓轮,均以左侧相切的方式,读取第14,13,12.……
7,6级暗环的读数并记录。
继续转动鼓轮,使十字叉线向右跨过圆环中心,使竖直叉丝依次与第6级到第15级
的暗环的右内侧相切,顺次记录读数。
同一级暗环的左右位置两次读数之差为暗环的直径。
2.用劈尖测量薄片的厚度(或细丝直径)
(1)将牛顿环器件换成劈尖器件,重新进行方位与角度调整,直至可见清晰的平行干涉条纹,且条纹与搭接线平行;干涉条纹与竖直叉丝平行。
(2)在劈尖中部条纹清晰处,测出每隔10条暗纹的距离l,测量5次。
(3)测出两玻璃搭接线到薄片的有效距离L,测量5次。
* 注意,测量时,为了避免螺距的空程误差,读数显微镜的测微鼓轮在每一次测量过程中只能单方向旋转,中途不能反转。
数据记录与处理:
牛顿环第一次测量直径
第二次测量直径
劈尖干涉短距离(l)
劈尖干涉全距离(L)
结果与分析:(除了序号外,没有标注的数据单位均为mm) 由牛顿环半径,用逐差法计算平凸透镜的曲率半径:
由第一组数据获得的环直径:
由第二组数据获得的环直径:
由以上两组数据获得直径平均值为:
已知纳光灯的波长λ= 0.0000005893m
R的数据处理过程如下:
得到凸透镜曲率半径的最终结果:R=0.87±0.02 m
用劈尖测量薄片厚度
10条暗纹的长度数据及其处理
得到10条暗纹的间距长度为:
l=(1.30±0.03)*10-03 m
劈尖干涉条纹的整体长度数据及其处理
得到劈尖干涉条纹的整体长度为:
L=(40.4±0.2)*10-03
m
由以上数据, 得到薄片厚度d 的平均值为 d(avg)= 9.14484E-05 影响系数 Cl=0.07, CL=0.002, 得到d 的不确定度为m UL CL Ul Cl Ud -062210*2.00)*()*(=+=
可以得到, 薄片厚度d 为: d= (9.1±0.2)*10-05
m
讨论、建议与质疑:
1. 如果牛顿环中心是亮斑而不是暗斑, 说明凸透镜和平板玻璃的接触不紧密, 或者说没有接触,
这样形成的牛顿环图样不是由凸透镜的下表面所真实形成的牛顿环, 将导致测量结果出现误差, 结果不准确。
2. 牛顿环器件由外侧的三个紧固螺丝来保证凸透镜和平板玻璃的紧密接触, 经测试可以发现, 如
果接触点不是凸透镜球面的几何中心, 形成的牛顿环图样将不是对称的同心圆, 这样将会影响测量而导致结果不准确。
因此在调节牛顿环器件时, 应同时旋动三个紧固螺丝, 保证凸透镜和平板玻璃压紧时, 接触点是其几何中心。
另外, 对焦时牛顿环器件一旦位置确定后, 就不要再移动, 实验中发现, 轻微移动牛顿环器件, 都将导致干涉图样剧烈晃动和变形。
3. 如果读数显微镜的视场不亮, 可以有三个调节步骤: 一, 整体移动显微镜, 使反光镜组对
准纳光灯;二, 通过旋钮调节物镜下方的反光玻璃, 使其成45度, 正好将光线反射到牛顿环器件上; 三, 调节载物台下方的反光镜, 是纳光灯的光线可以通过载物台玻璃照射到牛顿环器件。
总之, 调节反射光路, 是解决视场偏暗的主要方法。
4. 该实验中获得的感触是, 耐心, 细心, 是实验成功的重要保证。
另外, 长期使用读数显微
镜容易导致视疲劳, 建议改进成由电子显示屏输出的样式, 而不用肉眼直接观察。