第六章 直接转矩控制 PPT课件
- 格式:ppt
- 大小:757.50 KB
- 文档页数:57
直接转矩控制原理直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。
电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。
传统直接转矩控制方法偏差分类:磁链:1,需要增大2,需要减小转矩:1,需要增大2,不变3,需要减小可见共有6中要求控制状态。
在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。
仿真系统中这个功能由滞环比较单元与查表单元结合产生。
一、引言电动机调速是各行各业中电动机应用系统的必需环节。
直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。
交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。
直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。
1.交流传动的发展简述首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接转矩控制(DTC)调速系统。
由于VVVF系统只是维持电动机内的磁链恒定,并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。
矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。
但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。
1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。
直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。
交流调速系统第六讲矢量控制系统和直接转矩控制系统主讲人授课班级:2005级自动化班授课时间:2007年9月26日主要内容:第一部分基于动态模型按转子磁链定向的矢量控制调速系统6.1 矢量控制系统的基本思路6.2 按转子磁链定向的矢量控制方程及其解耦作用6.3 转子磁链模型6.4 转速、磁链闭环控制的矢量控制系统——直接矢量控制系统概述: 异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。
需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。
经过多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是按转子磁链定向的矢量控制系统。
6.1 矢量控制系统的基本思路在第6.6.3节中已经阐明,以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流i A、i B、i C,通过三相/两相变换可以等效成两相静止坐标系上的交流电流iα、iβ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流i m和i t。
如果观察者站到铁心上与坐标系一起旋转,他所看到的便是一台直流电机,可以控制使交流电机的转子总磁通Φr 就是等效直流电机的磁通,则M绕组相当于直流电机的励磁绕组,i m相当于励磁电流,T 绕组相当于伪静止的电枢绕组,i t相当于与转矩成正比的电枢电流。
把上述等效关系用结构图的形式画出来,便得到下图。
从整体上看,输入为A,B,C三相电压,输出为转速ω,是一台异步电机。
从内部看,经过3/2变换和同步旋转变换,变成一台由i m和i t输入,由ω输出的直流电机。
既然异步电机经过坐标变换可以等效成直流电机,那么,模仿直流电机的控制策略,得到直流电机的控制量,经过相应的坐标反变换,就能够控制异步电机了。
由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就叫作矢量控制系统(Vector Control System),控制系统的原理结构如下图所示。